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Abstract—In this paper, we put forward and study a commen-
salism system incorporating the Beddington-DeAngelis func-
tional response and the Allee effect in the second species. In the
first place, the legitimacy and well-posedness in the biological
sense of the system solution, such as positiveness and boundness
are proved. Then, by examining the eigenvalues of the Jacobian
matrix at the equilibria and applying the comparison principle
and Dulac theorem, we may determine all feasible equilibria
of the system as well as their local and global stability criteria.
In the second place, by examining the Allee effect, we see that:
(i) when the Allee level threshold is exceeded, the coexistence
equilibrium point exists and is globally stable; otherwise, the
second species will perish; (ii) when the positive equilibrium
exists, the increase of the Allee effect level will decrease the
final density of two species; (iii) the system will take longer to
attain a steady state when the Allee effect is increased. Finally,
numerical simulations are presented to verify the validity of the
main results.

Index Terms—Allee effect, Dynamics, Beddington-DeAngelis,
commensalism system.

1. INTRODUCTION

COMMENSAL symbiosis is a type of biological contact
in which one population benefits while the other does

not benefit or hurt. The Pacific Blue mullet, for example, re-
lies on whales and dolphins for survival. Many scientists have
examined the dynamic behavior of commensal symbiosis
systems in recent years, and while linear functional response
is commonly used, [1]–[12], nonlinear functional response
is clearly preferable. Han and Chen [5] investigated the
following non-monotonic functional response commensalism
system: 

du

dt
= u

(
r1 − k1u+

cv

d+ v2

)
,

dv

dt
= v(r2 − k2v).

(1.1)

In 1959, a Canadian researcher by the name of Holling
[13] proposed the matching functional response function for
various species to illustrate the predation rate of predator
population to prey population based on his experimental
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findings, which includes three main types Holling type I
(or Linear functional response), II (see [14]–[18] ), and III
(see [19]). Beddington (see [20], [21]) presented a nonlinear
functional response called the Beddington-DeAngelis func-
tional response for the predator-prey system. In reality, it
is comparable to the well-known Holling type II functional
response, but the denominator includes an additional nv
element to simulate predator interaction. Many researchers
hold that predators must find food to share or compete, hence
the functional response in the predator-prey model must be
predator dependant, implying that the Beddington-DeAngelis
type functional response is more appropriate. It is commonly
employed in predator-prey systems due to its theoretical and
practical significance. See the literatures [22]–[36] and refer-
ences therein. Furthermore, the Beddington-DeAngelis type
functional response admits rich yet biologically meaningful
dynamics, attracting researchers to further investigate the
Beddington-DeAngelis type systems. Based on the preceding
articles, what happens to the dynamic system if we substitute
the functional response of system (1.1) with the Beddington-
DeAngelis functional response, which is reliant on the second
species? As a result, the system is transformed into the
following:

du

dt
= u

(
r1 − k1u+

cv

1 +mu+ nv

)
,

dv

dt
= v(r2 − k2v).

(1.2)

However, when population density is either high or too
sparse, population reproduction is hampered, which is a
common occurrence in nature. Allee brings this phenomenon
Allee effect in reference [37]. Allee effect occurs for a
variety of reasons, including inbreeding [38], mating chal-
lenges [39], low density social dysfunction [40], and so
forth. Cooperation is frequently useless when the number of
organisms is too small, resulting in a population dynamics
growth level, since an appropriately high growth rate is
required to control certain fatalities caused by environmental
changes. Because of the biological significance of the Allee
effect, an increasing number of researchers include it into
biological mathematical models, such as [16], [41]–[59].
Bazykin [60] presented the following single species model

with Allee effect:
dx

dt
= rx

(
1 − x

K

)
(x − A), where r is

the population’s intrinsic per capita growth rate and K is
environmental capacity. When 0 < A < K, the model has
a strong Allee effect; when A ≤ 0, the model has a weak
Allee effect. They also created a population threshold, which
reflects the bare minimum number required to survive. The
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TABLE I
EXPLANATION OF PARAMETER MEANING IN SYSTEM (1.3)

Parameter Meaning

u the first population density at time t

v the second population density at time t

r1 first population’s intrinsic growth rate
r2 the maximum intrinsic growth rate of

the second population
a the level of Allee of the second species
r1

k1
the environmental capacity of the first species

r2

k2
the environmental capacity of the second species

cv

1 +mu+ nv
Beddington-DeAngelis functional response

population must rise above this limit if the model exhibits
a substantial Allee effect. The model with a modest Allee
effect, on the other hand, has no threshold. Furthermore, to
answer the question ”what minimal numbers are required
for a species to survive in nature?” Dennis [61] originally
described a single species model with additive Allee effect

as:
dx

dt
= rx

(
1 − x

K

)
− Ax

x+M
, where A and M are

constants, A denotes the magnitude of Allee effect, M
represents the number of single populations, and its fitness is

half of its highest value.
A

x+M
represents the additive Allee

effect, which means that: if 0 < A < M , the system has a
weak Allee effect; if A > M , the system has a strong Allee
impact. Dennis discovered that numerical simulation can be
used to calculate the critical density, growth, and extinction
probabilities in sparse populations suffering from the Allee
effect.

Because of the small population, it is difficult for the
population to find a partner and proliferate, hence the Allee
effect impacts the innate rate of increase of the species.
The second population’s intrinsic growth rate is represent-
ed as A(a, v) =

r2v

a+ v
, where r2 denotes the maximum

intrinsic growth rate of the second population, v denotes
the prey population density at time t, and a > 0 denotes
the extent of Allee, which can be used to determine the
extent of Allee impact on the second species. A(a, v) satisfy
lim

a→+∞
A(a, v) = 0, lim

v→0
A(a, v) = 0, lim

a→0
A(a, v) = r2,

lim
v→+∞

A(a, v) = r2,
∂A(a, v)

∂a
< 0. The Allee effect is

introduced into the second population using system (1.2)
to create a commensalism system with the Beddington-
DeAngelis functional reaction and Allee phenomenon as
follows:

du

dt
= u

(
r1 − k1u+

cv

1 +mu+ nv

)
,

dv

dt
= v(

r2v

a+ v
− k2v).

(1.3)

All parameters in the system are positive, In Table I, we
explain what each parameter of system (1.3) means.

The rest of the essay is organized as follows: Section
2 establishes the legality and well-posedness of the system
solution in biological terms, such as boundedness and pos-
itivity. The presence and stability of the system’s equilibria
are discussed. The influence of the Allee effect on the system

is examined in Section 3. The numerical simulation and
discussion in Section 4 serve to illustrate the validity of the
theoretical conclusions. Section 5 concludes this study with
a brief conclusion.

2. QUALITATIVE AND STABILITY ANALYSIS OF THE
SYSTEM

A. Positivity and boundedness of solutions

In order to conduct a qualitative analysis of the system
(1.3), we introduce the following two lemmas:

Lemma 2.1. [62] If p, q > 0 and
dx

dt
≤ (≥)x(t)(p − qx)

with x(0) > 0, then

lim sup
t→+∞

x(t) ≤ p

q
(lim inf
t→+∞

x(t) ≥ p

q
).

The following lemma can also be used to replace the
aforementioned lemma:

Lemma 2.2. [62] If p, q > 0 and
dx

dt
≤ (≥)x(t)(p − qx)

with x(0) > 0, then for all t ≥ 0

x(t) ≤ p

q − Ce−pt
, with C = q − p

x(0)
.

In particular x(t) ≤ max{x(0), p
q
} for all t ≥ 0.

The positivity and boundedness of solutions in system
(1.3) are provided by the following proposition.

Proposition 2.1. (i) All solutions (u(t), v(t)) of system (1.3)
with the initial conditions u(t) > 0, v(t) > 0 are positive for
all t ≥ 0.
(ii) For any t ≥ 0, all solutions (u(t), v(t)) to system (1.3)
with initial conditions u(t) > 0 and v(t) > 0 are bounded.

Proof: (i)Since u = 0 and v = 0 are invariant sets in
system (1.3), any trajectory originating in R2

+ cannot cross
the coordinate axes if u(0) > 0 and v(0) > 0. Therefore,
u(t) > 0 and v(t) > 0 for all t ≥ 0. As a result, for any
t ≥ 0, all solutions (u(t), v(t)) of system (1.3) with the
initial conditions u(t) > 0, v(t) > 0 are positive.
(ii) By applying the positivity of variables u, v, we have

dv

dt
≤ v(r2 − k2v).

From Lemma 2.2, we get

v(t) ≤ max{v(0), r2
k2
} ≡M1 for all t ≥ 0.

Then, from the first equation of the system (1.3), we obtain

du

dt
≤ u(r1 + cM1 − k1u).

From Lemma 2.2, we have

u(t) ≤ max{u(0), r1 + cM1

k1
} ≡M2 for all t ≥ 0.

Therefore all solutions (u(t), v(t)) to system (1.3) under the
initial conditions u(t) > 0 and v(t) > 0 are bounded for any
t ≥ 0.
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B. Equilibria and the conditions for their existence

The following equations’ nonnegative solutions
characterize biologic equilibria in the system (1.3):

u
(
r1 − k1u+

cv

1 +mu+ nv

)
= 0,

v(
r2v

a+ v
− k2v) = 0.

(2.1)

From the second equation of (2.1), we obtain two nonneg-

ative solutions v = 0 or v =
r2 − ak2

k2
, when 0 < a < a1

holds, where a1 =
r2
k2

. Consequently, the following are the

biologic equilibrium points in the system (1.3):
(i) The boundary equilibria B0(0, 0) and B1(u1, 0) always
exist without any restrictions, where u1 =

r1
k1

.

(ii) If 0 < a < a1 holds, the system (1.3) also has another
boundary equilibrium B2(0, v

∗) and positive equilibrium

B3(u
∗, v∗), where v∗ =

r2 − ak2
k2

, and u∗ is the positive

solution of the following single-variable quadratic expres-
sion:

A1u
2 +A2u+A3 = 0,

where A1 = mk1, A2 = k1 + nk1v
∗ − mr1,

A3 = −(r1 + cv∗ + nr1v
∗). It is easy to find that

the equation has a unique positive solution:

u∗ =
−A2 +

√
A2

2 −A1A3

2A1
.

Here, we express the existence conditions of the equilibria
of system (1.3) as the following proposition:

Proposition 2.2. The system (1.3) always exists an trivial
equilibrium B0(0, 0) and a border equilibrium B1(u1, 0);
If 0 < a < a1 holds, the system (1.3) has another border
equilibrium B2(0, v

∗) and positive equilibrium B3(u
∗, v∗).

C. Local and global stability of the equilibria

In order to obtain the stability of the equilibria of system
(1.3), we first calculate the Jacobian matrix of the system at
any point (u, v) as follows:

J(u, v) = r1 − 2k1u+
cv(nv + 1)

(1 +mu+ nv)2
cu(mv + 1)

(1 +mu+ nv)2

0
r2v

2 + 2ar2v

(a+ v)2
− 2k2v

 ,

The following theorems will now be used to describe the
dynamics of the model system at each stable state in turn:

Theorem 2.1. B0(0, 0) is a saddle point, if a =
r2
k2

holds;

while B0(0, 0) is a saddle node, if a 6= r2
k2

holds.

Proof: The Jacobian matrix of system (1.3) at B0 is

J(0, 0) =

(
r1 0
0 0

)
,

its eigenvalues are λ1 = r1 > 0 and λ2 = 0, so the extinction
equilibrium B0(0, 0) is non-hyperbolic. By making time

transformation τ = tr1 and extending the system (1.3) into
a third-order power series centered on point B0(0, 0), we get

du

dτ
= u− k1

r1
u2 +

c

r1
uv − cm

r1
u2v − cn

r1
uv2

+O(|u, v|4),

dv

dτ
=

1

r1

(r2
a
− k2

)
v2 − r2

r1a2
+O(|u, v|4).

(2.2)

Therefore, according to Theorem 7.1 in [63], B0(0, 0) is a
saddle point, if a =

r2
k2

holds; while B0(0, 0) is a saddle

node, if a 6= r2
k2

holds.

Theorem 2.2. B1(u1, 0) is globally attractive if a ≥ a1
holds; and B1(u1, 0) is unstable if 0 < a < a1 holds.

Proof: From the second equation of system (1.3), we
denote

F (v) =
r2v

a+ v
− k2v,

then

F (v) =
−k2v2 + (r2 − ak2)v

a+ v
.

(i)When 0 < a < a1 , i.e., r2 − ak2 > 0 then F (v) = 0
has a unique positive v = v∗, which satisfies vF (v) > 0 for
v ∈ (0, v∗) and vF (v) < 0 for v > v∗, hence

lim
t→+∞

v(t) = v∗, (2.3)

that is, v∗ is globally attractive if 0 < a < a1 holds, hence,
B1(u1, 0) is unstable if 0 < a < a1 holds.
(ii)When a ≥ a1 , i.e., r2 − ak2 ≤ 0 then F (v) = 0 doesn’t
have positive solution, v = 0 is the unique equilibrium, and
vF (v) < 0 for v > 0, then

lim
t→+∞

v(t) = 0. (2.4)

From (2.4), for arbitrary ε > 0, there exists T > 0, when
t > T , we derive

v(t) < ε. (2.5)

From the first equation of system (1.3) and (2.5), we get

u(r1 − k1u) ≤
du

dt
≤ u(r1 − k1u+ cε).

From the comparison principle of differential equation, we
get

r1
k1
≤ u(t) ≤ r1 + cε

k1
, for t > T,

let ε→ 0, then
lim

t→+∞
u(t) = u1. (2.6)

From (2.4) and (2.6), we obtain that B1(u1, 0) is globally
attractive if a ≥ a1 holds.

Theorem 2.3. B2(0, v
∗) is saddle, if a < a1 holds.

Proof: System (1.3)’s Jacobian matrix around B2 is

J(0, v∗) =


cr2 + k2r1 + nr1r2

k2 + nr2
0

0
−r2v∗

(a+ v∗)2

 ,
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TABLE II
STEADY STATE AND ITS STABILITY IN THE SYSTEM (1.3)

Equilibrium Existence Type

B0(0, 0) Always exists a = a1,Saddle.
a 6= a1, Saddle node.

B1(u1, 0) Always exists a ≥ a1, Globally attractive;
0 < a < a1, Unstable.

B2(0, v
∗) 0 < a < a1 0 < a < a1, Saddle.

B∗(u∗, v∗) 0 < a < a1 0 < a < a1, Stable node;
0 < a < a1, Globally
asymptotically stable node.

its eigenvalues are λ1 =
cr2 + k2r1 + nr1r2

k2 + nr2
> 0 and λ2 =

−r2v∗

(a+ v∗)2
< 0. Hence B2(0, v

∗) is saddle, if a < a1 holds.

Theorem 2.4. If a < a1 holds, then
B∗(u∗, v∗) is locally asymptotically stable; furthermore,
B∗(u∗, v∗) exhibits asymptotic global stability.

Proof: System (1.3)’s Jacobian matrix around B∗ is

J(u∗, v∗) = −k1u
∗ − cmu∗v∗

(1 +mu∗ + nv∗)2
cu∗(1 +mu∗)

(1 +mu∗ + nv∗)2

0
−r2v∗

(a+ v∗)2

 ,

its eigenvalues are λ1 = −k1u∗ −
cmu∗v∗

(1 +mu∗ + nv∗)2
<

0 and λ2 =
−r2v∗

(a+ v∗)2
< 0. Hence B2(u

∗, v∗) is locally

asymptotically stable, if a < a1 holds.
In order to prove that B∗ is globally asymptotically stable,
we first construct a Dulac function as follows:

D(u, v) =
1

uv2
.

Let

P (u, v) = u
(
r1 − k1u+

cv

1 +mu+ nv

)
,

Q(u, v) = v
( r2v

a+ v
− k2v

)
.

Then

∂(PD)

∂u
+
∂(QD)

∂v
= − 1

v2

(
k1+

cmv

(1 +mu+ n)2

)
− r2
u(a+ v)2

< 0.

The Dulac Theorem in reference [64] states that the first
quadrant is devoid of limit cycles. B∗(u∗, v∗) is hence global
asymptotic stable.

As illustrated in Table II, we may summarize the stability
and existence of equilibrium points.

3. THE INFLUENCE OF ALLEE EFFECT ON THE TWO
POPULATIONS

This section discusses the Allee effect’s impact on each
population when a positive equilibrium is present.

A. Without Allee effect

If the second species does not exhibit the Allee effect, i.e.,
a = 0, system (1.3) transforms into system (1.2). We find
that B∗(u∗, v∗) is always globally asymptotically stable in
the absence of any constraints.

B. Incorporate Allee effect

We know that u∗ =
−A2 +

√
A2

2 −A1A3

2A1
and v∗ =

r2 − ak2
k2

are continuous functions of a, and u∗ satisfies

r1 − k1u∗ +
cv∗

1 +mu∗ + nv∗
= 0

Take the derivative of parameter a on both sides of the
aforementioned equation, we can arrive at the following
conclusion.

du∗

da
=

−c(1 +mu∗)

k1(1 +mu∗ + nv∗)2 + cmv∗
< 0,

and
dv∗

da
= −1 < 0.

As a result, the final densities of the two populationu∗

and v∗ decrease as Allee level rises. The first population
density u∗ and the second population density v∗ reach their
maximum values when there is no Allee effect present in the
system. Fig. 1 (a) depicts the relationship between u∗ and
a., while Fig. 1 (b) depicts the link between v∗ and a.
We also find that:

lim
a→a1

v∗ = 0, lim
a→a1

u∗ = u1.

That is, as the Allee extent increases and approaches a1, the
second species will go extinct.

4. COMPUTATIONAL SIMULATION

We show a number of numerical simulations in this part to
support the theoretical analysis and clarify the dynamics of
the system (1.3). We looked into the system (1.3)’s dynamic
behavior in order to modify the Allee effect’s strength.
Example 4.1 Set a = 4, r1 = 1.1, r2 = 0.9, k1 =
1, k2 = 0.3, c = 0.7, m = 0.8, n = 0.6, then
a1 = 3, and a ≥ a1. According to theorems 2.1 and 2.2,
the system (1.3) has an trivial equilibrium B0 = (0, 0),
which is saddle, and a border equilibrium B1(1.1, 0), which
is globally asymptotically stable implying that the second
species will eventually die out regardless of the initial value
of population density. Fig. 2 depicts the simulation findings.
Example 4.2 Set a = 0.1, r1 = 1.1, r2 = 0.9, k1 =
1, k2 = 0.3, c = 0.7, m = 0.8, n = 0.6, then a1 = 3, and
a < a1. According to theorems 2.1, 2.2, 2.3, and 2.4, the
system (1.3) has an trivial equilibrium B0 = (0, 0), which is
saddle; and two border equilibria B1(1.1, 0) and B2(0, 2.9),
which are unstable; and a positive B∗(1.6045, 2.9) which is
global asymptotic stable, implying that the two species will
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(a)

(b)

Fig. 1. (a) the function image of u∗ about a; (b) the function image of
v∗ about a.

coexist regardless of the initial value of population density.
Fig. 3 depicts the simulation findings.
Example 4.3 Set r1 = 1.1, r2 = 0.9, k1 = 1, k2 =
0.3, c = 0.7, m = 0.8, n = 0.6, then a1 = 3. We use a =
0, 1, 2, which satisfy a < a1, to examine the Allee effect’s
impact on the system. the system (1.3) has an unique positive
equilibrium B∗ = (1.6134, 3), (1.5107, 2), (1.3604, 1),
which is globally asymptotically stable, implying that the
two species will coexist; Two population density u∗ and v∗

decrease with the increase of the exent of Allee a. The two
population density u∗ and v∗ achieve the maximum values
1.6134 and 3 respectively as a = 0. The bigger the Allee
effect, that is, the higher the amount of Allee a, the longer it
takes for the system to stabilize. Fig. 4 depicts the simulation
findings.

5. CONCLUSION

In this paper, we propose and investigate a commensalism
system with Beddington-DeAngelis functional response
and Allee effect in the second species. We find that:
(i) when the Allee level is weak enough, i.e., a is less
than threshold value a1, the coexistence equilibrium point
exists and is globally asymptotically stable, otherwise,
the second species will perish due to strong Allee effect;
(ii) The final densities of two species can be decreased

(a)

(b)

Fig. 2. (a) The phase diagram of system (1.3) for a = 4, the initial values
are (0.1,10), (0.1,0.5), (7,4), (7,0.5),(5,10); (b) Solution curves for a = 4,
the initial values are (0.1,10), (7,4), (5,10).

when the degree of Allee is increased and the positive
equilibrium is present. The first population density u∗ and
the second population density v∗ achieve the maximum
values, when there is no Allee effect in the system;
(iii) increasing the Allee level will increase the time for
the system to reach steady state. The conclusion of this
paper will enrich the dynamic results of profit biased system.
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