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Positive Solutions for GeneralizegtLaplacian
Systems with Uncoupled Boundary Conditions

Yuejin Zhang

Abstract—We prove that under some assumptions oh and g,  D%y(t)+pag(t, z(t),y(t)) =0, m—1 < g <m, t € (0,1),
it is typical for generalized p-Laplacian systems with uncoupled L
integral boundary conditions to exhibit intervals for A\ and i .
p such that there are positive functions which satisfied the z(1) = )‘1/ z(s)ds, 9(0) =0, 0 <j<n—2
above systems. Through constructing the appropriate cone, we 0
show that there are positive functions which satisfied the above 1 ) )
systems by using a theorem called Guo-Krasnosel'skii theorem. y(1) = A2 /0 y(s)ds, y?’(0) =0, 0<j<m—2.

Index Terms—Generalizedp-Laplacian; Positive solutions; Hen(;lerson [12] considered the system contains fractional
Fixed point theorem; Uncoupled integral boundary conditions. derivatives

Dgix(t) + f(t,y(t)) =0, n—1<a<n, te€(0,1),

I. INTRODUCTION DY y(t) +g(t,z(t) =0, m—1< B <m, te(0,1),

N the past few years, mathematical modelling of manyith the uncoupled relationship
nonlinear problems, for example, control theory, image 1
processing, signal, viscoelasticity, physics, biophysics, bigf1) — / x(s)dH(s), z(0) = 2/ (0) = - = ("2 (0) = 0,
physics, which come from scientific disciplines and various 0
fields of engineering, these practical problems inspire people 1
to consider fractional order differential equations [1-8]. Rex(1) = / y(s)dK (s), y(0) = ¢/ (0) = - = y"™ =2 (0) = 0.
cently, some authors began to seek positive functions which 0
satisfied the equations involved withLaplacian operator. However, in all of the previously mentioned investigations,
The following equation contains fractional derivatives witthere is always either the considered coupled systems were

operator calleg-Laplace only involved with fractional equations or the considered
4 problems were only involved with generalizgel.aplacian
Dy (pp(Dgsu(t))) = f(t,u(t)), t €0,1], operator. Consequently, our results demonstrate the positive

functions which satisfied the coupled fractional systems with

0) = —u(l), Dftu(0)=—-D ) ;
u(0) u(l), Dgiu(0) o+uld); generalizedv-Laplacian operator. So far, there are no paper

was studied by the authors in [9]. considered such coupled systems. Inspired by the above cited
Some other authors go on to discuss fractional equatiditerature, the task of this paper is to seek the positive func-
with the more generalized operator called.aplace. tions which satisfied the for a generalizedlaplacian system
The following equation contains fractional derivatives andf fractional equations which contains some parameters and
parameter\ with generalized-Laplacian operator is subject to uncoupled boundary conditions
Dy, ($(Dg:6(t))) = M (6(t)), t € (0,1), { D§+(¢(CD3+<I>(t)>) = Ah(t, ®(1), ¥(t)), t € (0,1),
5(0) = 8(0) = /(1) =, Dos 9D (1) = ot #0010,
o _ o _ =0, (1) +~v®(n) =0, <D P(0) =0
H(Dg:0(0)) = (#(D§-0(1)))' =0, '(0) —09(¢) =0, ¢ D :
_ | oDy (1) = 5 f aid(“Dg, 2 (&),
was studied by the authors in [10]. U'(0) — 60 (&) = ( )+ ¥ (n) =0, °Dg.¥(0) =0,
On the other hand, coupled systems with fractional equa- G(°DG W(1)) = Z ) qu( DS, W (1)),
tions have been recently applied in various areas of natural = 2

sciences, mathematical biology and engineering due to th@inere D§+ is the Riemann-Liouville fractional derivative,
widely applications, these topic have been treated by manpy, is the Caputo fractional derivativel < 3 < 2,0 <
authors, see the interesting recent paper [11-15,16,17,20k < n < 1,1 < o < 2 0 <,y < 1,,0 < a4,& <
Om Kalthoum Wanassi and Faten Toumi [11] focuseti0 < b;,n; < 1,37, azgﬁ 1oLy et < 1,
on seeking positive functions which satisfied the following, 1 are two positive parameters. LAt= 6(1+7n—7£)+7.
relationship Furthermore, g, ¢ satisfy
o B (H1) The odd strictly increasing function € C’(R, R) and
Dx(t) +pf(t2(t),y(1)) =0, n—1<a<n t€(01), 4o following relationship holds true such that
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(HQ) hag :
continuous;
(Hs) (o — 1)(1 - 6€) > A.

A coupled continuous positive functio®(t), U'(¢)) on

[0,1] x [0,4+00) x [0, +00) — [0, +0cc) are

is the unique function satisfied the following equation and
condition.

L

"D w(t) + k(1) = 0,
/(0) — w(€) =0,

0<t<l,

w' (1) + Y () “)

=0.

the interval [0,1] and®, ¥) # (0,0) is called the positive Let

solution of the relational expression (1),(2).

Il. SOME LEMMAS

Definition 2.1 [8] 8 > 0 order integral involved fractional
order of functiong : (0,00) — R denoted asl” 0rg i
expressed by

(ﬁigﬂs)réntésgmﬁuﬂwda

Definition 2.2[8] 8 > 0 order Riemann-Liouville deriva-
tive involved fractional order of functiog : (0,00) — R
D =
(D3.9)(5) = T 5
Definition 2.3 [8] 8 > 0 order Caputo’s derivative

denoted ang+ g is expressed by
1 d., [*_ 9(0)
5" || gt
in the placen = [5] + 1.
involved fractional order about functiop : (0,00) — R
can be expressed as

1 AR ()
I'(n—p) /0 (s — @)=+l

in the placen = [5] + 1.
Lemma 2.1[8] Presumes > 0 andn = [§] + 1. Assume
thatg, Dy, g, Dy.g € L'(0,1), one has

g(t) —

dltﬁ—l _

(“Dgs9)(s) =

e,

17 cDy g(t) =

1°Dg,9(t) = g(t) -

in the placec;,d;, ¢ can be taken as 1,2 until are real
numbers.

Lemma 2.2 [18] Given 1 < « < 2, for continuous
function k(t) on the interval[0, 1] and the representation

hi — hot — « - — hpt™ 1,

P N L

/1 k(s)G(t,s)ds,
0

w(t)

where

_g)e—t
~a - .
(1—-86+6t)(1—s)~

+ ATl'(a—1)

Y (1=86+3t) (n—s)*""
+1 Al"(og
S(A4ym—yt)(E—=s)* "

AT (o)
(1—8646t)(1—s5)*—2

+ AT'(a—1)
Y(1=8645t) (n=s)*"" .

+2 OB >85>t

(=) (1—8646t)(1—s)*—2

f(?;) s Al'(a—1)

— t)(n—s)*~
IR 2 s 2t 2 s
(1—8&46t)(1—s)*"2
AT (a—1) 3y
—8E46t)(n—s)" ™

TR 2 s 2 62

- (1—6646t)(1—s)*~
+ Al(a_1)

S(14+yn—t)(—s)* "
AT (a) .

= s t=>s;

G(t, s) 3

_ (t=9)”
I'(a)

s 21t 2> s;

(1—8&46t)(1—s)>"2
AT (a—1)

82,8 2t
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S(1+n) + (1 — 5 +6) + (o — 1)(1 — 66 +0)
AT («) ’

B (1-06+38)(a—1)—A

Q)+ (1 = 8E+0)y + (a— 1)(1 — 3¢ +0)

Lemma 2.3[18] Presum& H,), (Hs), (Hs) hold. The func-
tion G(t,s) expressed by equation (3) conforms to the
following relationships:
(1) The expressiorZ(t, s) is positive and continuous;
(ii) The functionG(t, s) less than or equal td/(1 — s)*—2
for s,t belongs to the interval0, 1);
(#i7) The following relationship holds

ming ;<3 G(t,s) greater than or equal t&(M(1 —
5)*72, s€(0,1),

for some positive number.

Lemma 2.4[19] We define

pe)=1- Y a B2,

S
s<&;

M =

®)

thenp(s) is nondecreasingnd positive orf0, 1].
Lemma 2.5 [19] For continuous functiory(t) on the
interval [0, 1], the system

Dl v(t)+yt)=0, 0<t<l, (6)
m—2

v(0) = =Y av(&) 7
=1

has a unique expressiofit) that satisfies the above problem

= / K(t,s)y(s)ds
0

in this place
{109 =900
1>t>s>0,
K(t) = S0r@) | s -1
1>s>t>0

(8)
Lemma 2.6 [19] The Green’s functionk (¢, s) of problem
(6), (7) satisfies the following statement:
(a) K(t,s) is positive fors, ¢ belongs to the interval0, 1);
(b) K(t,s) greater than or equal tat’~1(1—t)(1—s)%"1s
for s, ¢ belongs to the interval0, 1);

(c) K(t,s) less than or equal ta/(1 — s)%1s for s,t¢
belongsto the interval(0, 1);
in this place
_ e PO 2O p(0) £
m= il T EONGRE
p(r) —p(0) — _p(0)(B—1)+ M
M,y = L M=
Tk T P(OL()

We take the following fractional system into account
D, (6(°Dg ®(t))) = Ab(t, ®(1), T(t), 0<t <1, (9)
2'(0) — 62(¢) =0, (1) +~2(n) =0, “Dg:®(0) =0,
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m—2

> aid("DgiD(&)).
i=1

Lemma 2.7 Presume(H,), (Hz), (Hs) hold, the following
relationship

¢(“Dg ®(1)) = (10)

10

1 1
/ gf)’l(/ AH(s,0)h(0,®(0),V(0))d0)G(t, s)ds.
0 0

satisfies the equation (9), (10).
Proof: ChooseV (t) = ¢(“Dg, ®(t)), thus (9), (10) can
be rewritten as

DP W(t) = Ah(t, ®(t), T(t)),

0(0)

From lemma 2.5, one has

1
U(t) 7/0 AK(t,s)h(s, @(s), U(s))ds,

which means

(D2, (1) / K (£, 5)h(s, ®(s), U(s))ds,

thus

°DS ®(t) + <z>—1(/0 MK (t,5)h(s, ®(s), ¥(s))ds) = 0
and
P/(0) — 6B(¢) = 0, /(1) +~®(n) = 0.
Lemma 2.2 implies that

o) = fi oLy AK(s,0)

h(8, ®(0), T(8))dO)G(t, s)ds.

|
Lemma 2.8[19] Suppose thatH;) holds, then

oy (x)y <ot

(zé(y)) < o1 ' (z)y, =,y belong to(0, +00).

Remark 2.1: Similar to Lemma 2.7, one can get similar

Under the normal maximum nori- ||, space consisting
of continuous function on interval [0,1] denoted Ay which
is a Banach space. Mark

Y =X x X,
under the norm
(¥, @)y = ¥ + |,
Y is a Banach space. We mafk as

P ={(T,®)eY :T(t)>0,0(t)>

inf,c2 5 (U(E) + D (1) > TI|(T, By @D

In regard to\, © > 0, operator/; mapsY into X, operator
T, mapsY into X, and operatofl’ mapsY into Y defined
as

K(s,0)h(6,(0), T(0))dO)G(t, s)ds,
(12)
To(@,0)() = [y 67 (J, n
K(s,0)g(0,®(0),¥(0))d0)G(t,s)d
(13)
and
T(®,0) = (T1(2,0), T5(P, V), (O,¥)eY. (14)

Then if (o, ) satisfiesT(®, ¥) = (P,

coupled solutions for (1), (2).
Lemma 3.1Let (H,), (H2), (Hs) are true, thef” denoted

by (14) mappingP to P is compact, moreover] is

continuous.

Proof: Take any element(®,¥) in P. Operator
T,(®, ¥)(t) is nonnegative because of the nonnegativity of
K(t,s) and functionG(t,s) and h. OperatorTy(®, U)(t)
is nonnegative because of the nonnegativityfoft, s) and
function G(t, s) andg.

Lemma 2.3 implies that

U), the (9, 7) is a

IT (@, @) (O] < fy M1~ 5)* 267" ([, A

K(s, 9)h(9 @(9) U (0))df)ds,

results for the following fractional expression which contain

generalized operator calledLaplace
Dy, (6(°DG W (1)) = pg(t, ®(1), W(t)), 0 <t <1,
U'(0) — 0W(§) =0, (1) +y¥(n) =0, “Dg. ¥(0) =0,

m—2

¢(°Dgy W (1)) = > bid("Dgy ¥ (i)
i=1
Ill. EXISTENCE
We introduce

h(t D, )

h{ = limsup max ,

0 ot tel01] H(® + U)

5 limsup ma g(t ®,¥)

X

90 <I>+\Il~>011 fG[O 1] ¢((I)+¢’)
.. h(,D,0)
b = Jigint min, S

) IRV
go, = liminf min <t )
d+W—oote[l, 3] ((I) +0)’

infte[%’%] Tl((P,\I])(t) > fO TM 1-— S a 2(]5 fO

K(s,0)h (9 ®(9), U(6))d6)ds
> T[T (@, W),
IT2(@, 9)B) < fy M(1L—5)* 26" ([,
K(s,0)g (9 @(9) W(6))d6)ds,
infte[%’%] Tg(q), \I/)(t) > fO TM(l — S a 2¢ fO

K(s,0)g(0,9(0),
> Y| T3(2, ).

)

U(0))do)ds

Hence, we have

inf, (1.5 (T1(2, 0)(1) + T>(@, 0) (1)
Z infte[%%] T]_(q), \D)(t) + infte[%%] Tz(q), \IJ)(t)

> Y[T1(®, )| + T T2(2, ¥)|| = TN (2, )|y
Furthermore, the continuity of operatér: P — P can be
obtained from the continuity off, K andh, g. By using the
classical proof method, we can pro¥é and7; mapping

P to P are compact, and then the operaidis completely
continuous. ]

Volume 31, Issue 3: September 2023



Engineering Letters, 31:3, EL._31 3 37

Denote

= [Cv s [ W

_f TM(1—5)* 205 ("1 (1 - 5))
> (f (1 —6)P~1omdo)ds

6)7~10d6)ds,

Theorem 3.1 Let (H),(Hsz),(Hs) are true
and hg,gg,h'oo,g(;o € (O ), then for each
A € (QOQ(QCT)M a‘Pl(QB);f) and p €

(902(20’1‘) T ,1(55 ) =), there aists a coupled positive
function ((I)(t) U(t )) Sc’oitISerS the system (1), (2).

Proof: From (H;) and the definitions of.§, ¢35, there
exist Ry > 0 satisfying

h(t, ®,0) < (hg +e)o(P + V),

9(t, @, V) < (g5 +£)p(® + V),

forall0<t<1, &, 9 >0and0 <&+ ¥ < R;.
Select); as{(®,¥) € Y : ||(®,9)||y < Ry}. For any
(®, ) belongs toP N 09, we get

Ty (®,0)(t) < [y M(1—s)°"2¢71(\ [, M(1—0)7~!
0(hi + )6 (@ <> W (0))d6)ds
< or (B +2))B(| @] + W)
< L@ )y,
thus,
I3 (@, )] < - ||<<I> W)y

Similarly, one has

Ty(®,0)(t) < [y M(1—s)°"2¢" (u [y M(1— )5
6(95 + £)o(2(0) + ¥ (0))do)ds
<1 (ulgs +2) B + 12])
< 3l(@, 9|y,
thus,
1
I1T2(2, O) < SlI(2, O)]ly-
Therefore,
1T(@,V)lly = |T1(2,9)[| + || T2(P, V)]
< S1(@, W)y + 51(®, ¥)||y
=||(®,V)]ly, for (®,¥)e PNaoY.
(15)
According tothe denotation of’_, g¢_, one has
h(t, ®,0) > (hl, —)p(P + V),
g(t, ®,0) > (g, — &)p(® + V),

forall 1 <¢t<2 @ ¥>0and®+ ¥ > Ry, whereR; is
some positie constant. LefRy = max{2R;, %}

SelectQ; as{(®, V) € Y : ||(®,P)|ly < Rz}. For any
(®, ¥) belongs toP N 0, we obtain

(1) +W(t) = infreps 3 (P(t) +W(1) = TI(2, V)lly
=TRs > Rs.

Volume 31, Issue 3:

So, wededuce
1T2(@, ®)(®)|l

— g)ﬁfl
hi, — s)qﬁ(@(ﬂ) + U (0))dO)YM(1 — s)*2ds
e))CT[(2, )]y

Thus,

1
I72(2, 9) [ = S 1[(2, T) [y

Similarly, one get

ITo(@, W)(H)| > [ o~ (n f, K(s,0)
9(6.9(), W (6))do)G(¢,
> [F o7 ([ K (s,0)
(0, <I>(9) (0))d0)G(t, s)ds
>f TM(1 - 5)* 26~ l(u

s)ds

f msﬁ Y1 —s)(1—0)5~
6g, — €)6(D(6) + T (9))d6)ds
> fgl(u(gf;o —e))CY|[(2, ¥)[ly
> 5[(2, ¥)]ly.
Thus,
[T2(®, ¥)]| = 5 ||(<I> Uy
Therefore,
IT(@ W)y =73 (@, 9] + | Ta(2, W)
2 3@, Y)lly + 3 [I(®, ¥)]ly
= [|(®,V)]ly, for (®,T)ec PNoNy.
(16)
Therefore, inview of (15), (16) and theorem of Guo-

Krasnosel'skii type for finding fixed point to the problem,
we can find a coupled functiof®, ¥), which belongs to
PN (922\€) such that

Ry <[] + [|¥]] < Ro.

Obviously,(®, ¥) is a coupled positive function satisfied the
problem (1), (2). [ ]
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