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Abstract— This research evaluates the efficiency of two 

packaging lines: PK1 and PK2, over the year 2020 using 

window analysis and data envelopment analysis (DEA) 

techniques, including CCR, BCC, and slack-based model 

(SBM). Seven-decision making units (DMUs) of the window of 

six months were considered. For each DMU, the planned 

production quantity (PPQ), defect quantity (DQ), and idle time 

(IT) were set as the inputs, whereas the produced quantity was 

the output. Then, the technical efficiency (TE), pure technical 

efficiency (PTE), and scale efficiency (SE) scores were 

calculated for all DMUs. Based on the PT and PTE scores, it is 

found that the efficiency scores of the PK2 line showed more 

stability properties during the year 2020 and were larger than 

their corresponding scores of PK1. Moreover, the SE scores 

indicated that pure technical inefficiency (PTIE) was the main 

contributor to technical inefficiency (TIE) for PK1 in all the 

seven DMUs, while the PTIE and SE were the contributors to 

TIE of PK2. The majority percentages of 61.90% and 52.38 % 

efficient lines for PK1 and PK2 were operating under constant 

returns to scale, respectively. Finally, the results of SBM 

revealed that the averages of input excess slacks of PK1 (PK2) 

in PPQ, DQ, and IT were 59.5793 (14.9193), 1.3275 (2.0703), 

and 58.2518 (12.8491), respectively. Moreover, the inefficiency 

scores by SBM were larger than their corresponding TIE 

values. In conclusion, the results of this research can guide 

decision-makers to the appropriate actions that reduce 

inefficiency scores and enhance lines’ performance. 

 
Index Terms— BCC, CCR, inefficiency, slack-based models, 

window analysis 

I. INTRODUCTION 

oday’s harsh competition in the pharmaceutical market 

demands continual monitoring of operational and scale 

process efficiency. In the pharmaceutical sector, packaging 

processes are continually monitored to ensure the integrity 

and quality of products throughout the distribution chain. 

An efficient operation is regarded as one of the main 

objectives of a firm’s management, which means that a firm 

achieves more outputs by consuming low input levels. Data 

envelopment analysis (DEA) is a nonparametric technique 

used to measure the relative efficiency of a group of 

homogeneous units; referred to as “ making-decision  units”  
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units". (DMUs). Each DMU uses multiple inputs to produce 

multiple outputs [1-3]. Due to its solid theoretical basis, the 

traditional models of DEA have been widely adopted to 

assess efficiency in many real-world problems [4-6]. 

However, when a limited number of DMUs is available, 

those models are found ineffective. Alternatively, the DEA 

window analysis makes it feasible to observe how each 

DMU performs in different periods based on the principle of 

moving averages by treating each DMU in different periods 

as a separate unit [7-13]. DEA window analysis has been 

widely used in monitoring and assessing performance for a 

variety of business applications, including, banking [14-15], 

pharmaceutical [16-19], and energy efficiency and 

productivity [20].  

In this research, a pharmaceutical company aims at 

evaluating the efficiency of its packing lines; PK1 and PK2, 

and determining the sources of the inefficiency over a 

period from January to December 2020 using DEA window 

analysis. The results of this research shall provide valuable 

guidance to production engineers on how to assess the 

performance of its two packaging lines; PK1 and PK2, and 

develop operational and/or managerial means to operate 

efficiently. The remainder of this research including the 

introduction is outlined in the following sequence. Section 

II presents DEA models. Section III conducts data 

collection and analysis. Section IV presents the research 

results and discussion. Finally, conclusions are summarized 

in Section V.   

II. DEA MODELS 

DEA encompasses a variety of approaches to efficiency 

evaluation. These techniques are presented in the following 

subsections. 

A. Technical and Pure-Technical Efficiency Models 

Technical Efficiency (TE) is related to the productivity of 

inputs. Generally, the TE is a comparative measure of how 

well a process’s inputs achieve its outputs, as compared to 

its maximum potential for doing so, as represented by its 

production possibility frontier [21]. A measure of TE under 

the assumption of constant returns-to-scale (CRS) is a 

measure of overall technical efficiency (OTE). Charnes-

Cooper-Rhodes (CCR) model is one of the most well-

known DEA models [1]. Consider a set of n DMUs. For 

DMU k, let yrk (r = 1, ..., s) denote the level of rth output and 

xik (i = 1, ..., m) be the level of the ith input. The input-

oriented CCR model is then used to measure the technical 

efficiency of a specific DMU k as follows [22-24]:  
 

DEA Efficiency Assessment of Packaging Lines 

in A Pharmaceutical Industry   

Abbas Al-Refaie, Ghaleb Abbasi, Ahmad Al-Hawadi 

T 

Engineering Letters, 31:3, EL_31_3_38

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 

mailto:abbas.alrefai@ju.edu.jo
mailto:abbasi@ju.edu.jo


 

)(    
11








 
s

r

r

m

i

i ssMin                                                (1)  

Subject to: 

1

, 1
n

j ij i ik

j

i , ...s x , mx 



     (2) 

1

 , 1
n

j rj r rk

j

y s y r , ..., s 



                  (3)               

  ,0j                                                                (4)  

 unrestricted in sign 

where the si
- and sr

+ are the negative and positive slack 

variables, respectively. Here, ɛ > 0 is a so-called non-

Archimedean element and is smaller than any positive real 

number. The optimal θ, θ*, satisfies 0 ≤ θ* ≤ 1. If θ* equals 

one and all slacks are zeros, then the DMU under 

measurement is identified as TE-efficient. If θ* equals one 

while at least one of the slacks is nonzero, this DMU is 

judged as weakly CCR-efficient. The CCR model states that 

a proportional increase in all inputs results in the same 

proportional increase in output. In other words, the CRS 

means that when an input increases by a factor α, the output 

increases by the same factor. In this case, the size of the 

operation of DMU is optimal. An input-oriented CCR model 

seeks to minimize inputs while satisfying at least the given 

output levels. Consequently, the objective value of CCR is 

designated TE, which reflects the firm’s ability to obtain 

maximum output from a given set of inputs [25].  

Further, the Banker, Charnes, and Cooper (BCC) model in 

DEA measures pure technical efficiency (PTE). The PTE 

ignores the impact of the scale size by only comparing a 

DMU to a unit of a similar scale [26-27]. The PTE assesses 

how a DMU utilizes its sources under exogenous 

environments; a low PTE implies that the DMU inefficiently 

manages its resources. It purely reflects the managerial 

performance to organize the inputs in the production 

process. Usually, the PTE is obtained by estimating the 

efficient frontier under the assumption of variable returns-

to-scale (VRS). The DMU operates under variable returns to 

scale if it is suspected that an increase in inputs does not 

result in a proportional change in the outputs. To take VRS 

into account, the CCR model is extended to BCC models 

[22] as follows:  
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A DMU that has an optimal θ (θ*) equal to one and all 

slacks are zeros is then called BCC efficient. The DMU 

operates under variable returns to scale if it is suspected that 

an increase in inputs does not result in a proportional 

change in the outputs.  

B. Scale Efficiency 

The TE helps to determine inefficiency due to the 

input/output configuration as well as the size of operations. 

The TE is decomposed into two mutually exclusive and 

non-additive components: the PTE and scale efficiency 

(SE). This decomposition allows an insight into the source 

of inefficiencies. Thus, the PTE is used to capture 

managerial performance. The ratio of TE to PTE provides 

SE measure. The SE provides the ability of the management 

to choose the optimum size of resources, i.e., to decide on 

the line’s size or the scale of production that will attain the 

expected production level. The inappropriate scale size of a 

line (too large or too small) may sometimes be a cause of 

technical inefficiency. The scale inefficiency takes two 

forms: an increasing returns-to-scale (IRS) means that when 

an input increases by a factor α, the output increases by 

more than α. Whereas, a decreasing returns-to-scale (DRS) 

indicates that when an input increases by a factor α, the 

output increases by less than α [26]. In other words, DRS 

implies that an organization is too large to take full 

advantage of scale and has a supra-optimum scale size. In 

contrast, an organization experiencing IRS is too small for 

its scale of operations, and thereby it operates at a sub-

optimum scale size. Finally, a process is treated as scale-

efficient when it operates at CRS. 

In practice to minimize costs and maximize revenues, a 

process has to operate at the most productive scale size i.e., 

with CRS. The existence of IRS or DRS can be identified by 

the sum of intensity variables in the CCR model. If the sum 

of intensity variables is less (larger) than one, an IRS (DRS) 

results. The BCC model allows the decomposition of the TE 

into PTE and SE, where the relationship between them is 

expressed as: 

TE
SE

PTE
                                                                         (10) 

 

In practice, SE measures how the scale size affects 

efficiency which helps management in choosing the optimal 

size of resources or production scale that will attain the 

expected level of production. 

C. Window Analysis 

When using the CCR and BCC models, an important rule 

of thumb is that the number of DMUs is at least twice the 

sum of the number of inputs and outputs. Otherwise, these 

models may produce numerous relatively efficient units. To 

resolve this difficulty, DEA window analysis [31] compares 

the performance of a DMU in any period with its 

performance in other periods as well as the performance of 

other DMUs. The window should be as small as possible to 

minimize the unfair comparison over time, but still large 

enough to have a sufficient sample size [32]. Assume that N 

DMUs (n = 1, ..., N) consume r inputs to produce s outputs 

and are observed in T (t = 1, ..., T) periods. Let DMUn
t 

represent an n observation in period t with input vector Xn
t 

and output vector Yn
t. If the window starts at time k (1 ≤ k ≤ 

T) with w (1 ≤ w ≤ T-k) width, then the matrices of inputs 

and outputs are respectively expressed as follows: 

Engineering Letters, 31:3, EL_31_3_38

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

,

21

11

2

1

1

21



























wk

N

wkwk

k

N

kk

k

N

kk

kw

xxx

xxx

xxx

X









 (11) 



























wk

N

wkwk

k

N

kk

k

N

kk

kw

yyy

yyy

yyy

Y









21

11

2

1

1

21

                                      (12) 

 

Substituting the inputs and outputs of DMUn
t into the CCR 

or BCC model will produce the results of DEA window 

analysis. 

 

D. SBM Model  

The slack-based measure (SBM) makes its efficiency 

evaluation invariant to the units of inputs and outputs [33-

35]. This property is known as "dimension-free" or "units’ 

invariant." The SBM has the following important properties:  

(i) invariant concerning the unit of measurement of each 

input and output item, (ii) monotone decreasing in each 

input and output slack (Monotone). The optimal 

efficiency, ,  using SBM is obtained by solving the  

following model [36]: 
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III. DATA COLLECTION AND ANALYSIS 

The data were collected for two packing lines; PK1 and 

PK2, from the production reports over a period of one year 

(January to December 2020 DEA analysis, the planned 

production quantity (PPQ, unit), defect quantity (DQ, unit), 

and idle time (IT, unit) are considered inputs because these 

values are to be reduced. In contrast, the produced quantity 

in units (APQ) has to be increased, and hence it is set as the 

output for each DMU. The collected data for both 

packaging lines are listed in Table 1. Two DEA techniques 

will then be used to assess the DMU efficiency; the first 

technique adopts the traditional CCR and BCC models, 

while the second technique employs the SBM model.   

A. Window Analysis Using CCR and BCC Models  

The basic concept in window analysis is the consideration 

of each packaging line as a different one in each of the 

months listed at the top of Table 1 to obtain the scores listed 

in the rows that constitute the window. The stub on the left 

side indicates the window length and the periods covered. 

 

a. Analysis of technical efficiency 

 

The TE values were estimated using the CCR model for 

PK1 and PK2 and the results are then displayed in Table 2. 

For instance, the first row (1-6) in Table 2 extends from 

January to June 2020 for a window length of six months. 

The next row (2-7) starts in February and extends to July for 

another window, and so on. In data analysis, the rows are 

used to examine trends that occur in each window, whereas 

the columns are employed to examine stability properties. 

From Table 2, it is noted that:  

(i) the TE averages listed in each column (month) show 

stable performance for both lines PK1 and PK2 because the 

differences between the efficiency values in each month are 

negligible. For example, in June (month 6) the TE values for 

PK1 are all equal to one for all six DMUs. This indicates a 

stable performance of both lines in each month of the year 

2020, and hence the monthly average TE values are 

considered reliable for assessing the monthly performance.  

(ii) some of the TE scores of each DMU are found equal to 

one. Nevertheless, the average TE scores are less than one 

for all seven DMUs for lines PK1 and PK2, and thereby 

DMUs are concluded as CCR-inefficient. The largest 

(smallest) average TE scores are 0.941 (0.889) and 0.969 

(0.899) for lines PK1 and PK2, respectively.  

(iii) the TE average scores for line PK2 are larger than their 

corresponding averages for line PK1 for all DMUs. The 

largest TE average (=0.941) for line PK1, which corresponds to 

DMU4, is less than the smallest TE average (0.9540) for line PK2. 

This indicates that the performance of line PK2 outperforms 

that of line PK1 during the year 2020.  

(iv) the TE monthly averages for line PK2 are larger than 

their corresponding averages for line PK1 in almost all 

months. Further, the averages of TE averages for line PK1 

and line PK2 are 0.899 and 0.969, respectively. To become 

CCR-efficient, the inputs of lines PK1 and PK2 shall be on 

average reduced by 10.13 % and 3.10 %, respectively.  

(v) the monthly TE averages reveal that line PK1 is CCR-

efficient (TE =1.0) in Months 5, 6, and 9. While, line PK2 is 

efficient in Months 4, 6, 7, and 11.  

 

b- Analysis of pure technical efficiency 

 

Contrary to TE which measures efficiency without scale 

consideration by comparing a DMU to other DMUs of the 

same size only, the PTE values were computed using the 

BCC model under the assumption of VRS. The PTE 

assesses managerial performance to organize inputs in the 

production process. Table 3 summarizes the estimated PTE 

values of all seven DMUs for the PK1 and PK2 1ines. The 

results show that:  

(i) the monthly PTE averages reveal that line PK1 is found 

to only be BCC-efficient in five months (3, 5, 6, 9, and 11), 

whereas PK2 is found to only be BCC-efficient in eight 

months (4 to 9). The dispersion effect is not noticed in all 

months for both packaging lines.  

(ii) all DMUs of line PK1 are identified as BCC-inefficient 

because the PTE averages are all less than one. The largest 
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PTE average (= 0.984) corresponds to DMU4, whereas the 

smallest PTE average (= 0.918) corresponds to DMU6. The 

average of PTE averages is 0.9312. Consequently, the 

elimination of inefficiency is achieved by an average input 

reduction of 6.88% is required for line PK1 to become 

BCC-efficient. 

(iii) DMU6 is the only BCC-efficient DMU for line PK2. 

The largest PTE average (= 1.00) corresponds to DMU6, 

whereas the smallest average (= 0.968) corresponds to 

DMU1. The PTE average of averages of line PK2 (= 0.981) 

indicates that an average input reduction of 1.88% is needed 

for line PK2 to become BCC-efficient.   

(iv) the PTE averages for line PK2 are larger than their 

corresponding PTE averages for line PK1. Consequently, 

the managerial performance of line PK2 surpasses that of 

PK1 during the year 2020 for all DMUs.  

 

 

c- Analysis of scale efficiency 

 

The SE was calculated by dividing TE by PTE. If TE and 

PTE are found equal, then SE equals one, and hence the 

scale operation size is optimal. Otherwise, returns-to-scale 

analysis is required to determine if the packaging line needs 

size expansion or reduction. When a line has a small size of 

the operation, or increasing IRS, then there shall a plan for 

expansion in the operation size. If most of the inefficiency is 

due to the large size of operations, or decreasing DRS, then 

a size reduction is suggested. Table 4 displays the estimated 

SE values, where it is noted that: 

  

(1) the SE average of line PK1 is equal to one in four 

months; 5, 6, 9, and 12. While the SE averages of PK2 are 

equal to one in five months.  

(2) the SE averages of PK1 are smaller than one for all 

DMUs; except DMU7. While the SE averages of line PK2 

are only equal to one for DMU1 and DMU7. 

(3) the SE averages of line PK2 are larger than their 

corresponding values of line PK1 for all DMUs. Moreover, 

the averages of SE averages for line PK2 are larger than 

their corresponding averages for line PK1. 

 

The TE results show that PK2 operates in more periods at 

optimal size (CRS) than PK1. Moreover, more efforts are 

needed to adjust the size of the PK1. 

 

d- Analysis of SBM 

 

The SBM efficiency values were calculated as shown in 

Table 5 displays. The SBM scores reveal that:  

(i) the optimal efficiency using SBM is smaller than its 

corresponding optimal CCR efficiency for both packaging 

machines because SBM accounts for all inefficiencies 

whereas CCR accounts only for "purely technical" 

inefficiencies. In other words, the SBM inefficiencies are 

larger than the TE inefficiencies.  

(ii) PK1 is found SBM-efficient in two months (5 and 6), 

whereas PK2 is efficient in four months.  

(iii) the average SBM efficiency is less than one for all 

DMUs in both packaging lines, and hence all DMUs of both 

packaging lines are SBM-inefficient during the year 2020. 

The largest average SBM-efficiency (= 0.766) for PK1 

corresponds to DMU4, whereas the largest efficiency (= 

0.865) for PK2 corresponds to DMU (7-12). Moreover, the 

SBM averages for line PK2 are larger than their 

corresponding averages for line PK1 at all DMUs. 

Consequently, line PK2 is concluded that is more SBM-

efficient than line PK1. 

 

IV. RESULTS AND DISCUSSION 

A. Results and Discussion for Window Analysis Using 

CCR and BCC Models 

Table 6 displays the calculated slacks in PPQ, DQ, IT, 

and APQ using the CCR and BCC models for both 

packaging lines. From Table 6, it is found that:   

(i) the CCR model provides zero input excesses and output 

shortages in PPQ and APQ, respectively, for both lines PK1 

and PK2. The IT input contributes the largest averages of 

excess slacks of 46.0802 and 13.554 for lines PK1 and PK2, 

respectively. Moreover, the input slack averages for DQ are 

0.776 and 1.332.  

(ii) for PK1, DMU7 and DMU4 have the smallest excess 

slacks of DQ (= 0.0) and IT (33.660), respectively. While 

for PK2, DMU5 and DMU7 have has the best utilization of 

DQ (= 0.014) and IT (= 6.2708), respectively. On other 

hand, the largest excess slacks of DQ (IT) are 1.008 

(57.757) and 2.659 (21.695) corresponding to DMU3 and 

DMU2 for lines PK1 and PK2, respectively. Finally, the 

average differences of DQ (ΔDQ) and IT (ΔIT) between 

lines PK1 and PK2 are 0.556 and -32.527, respectively. 

Consequently, line PK2 utilizes inputs better than line PK1. 

Moreover, to achieve better performance, a reduction in IT 

input is required for both packaging lines.  

 

Based on the obtained results, it is concluded that PK2 

outperforms line PK1 in utilizing PPQ, DQ, and IT inputs to 

produce the same output (APQ). That is, line PK2 is 

concluded to be more technically efficient than line PK1 

during the year 2020. 

 
Table 6 also displays the estimated input slack values for 

PK1 and PK2, where the ΔDQ, ΔIT, and ΔAPQ between 

lines PK1 and PK2 are 0.074, -21.158, and -0.009, 

respectively. These values indicate that management 

efficiency in organizing the inputs of line PK2 outperforms 

that of line PK1. 

 
The inefficiencies due to technical, pure technical, and 

scale efficiencies; TIE, PTIE, and SIE, respectively are 

summarized in Table 7. Generally, the TIE can be caused by 

either PTIE or SIE. From Table 7, it is found that:  

(i) the TIE, PTIE, and SIE averages for line PK1 are larger 

than their corresponding values for line PK2 in all DMUs. 

The TIE average of averages (=0.0293), PTIE (=0.014), and 

SIE (=0.013) for line PK2 are smaller than their 

corresponding TIE (=0.085), PTIE (0.055), and SIE 

(=0.029) for line PK1. This implies that PK2 operated at a 

more efficient scale size than line PK1. Nevertheless, 
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managerial actions and scale size reduction/increase are 

required to improve the TE scores of both packaging lines. 

(ii) PTIE is the main contributor to the TIE for all seven 

DMUs of line PK1 because the PTIE averages are larger 

than their corresponding SIE averages.  

(iii) PTIE values of DMU1 to DMU3 and DMU7 cause the 

TIE for PK2, while SIE of DMU4 to DMU6 cause the TIE. 

Hence, TIE is concluded to be the main source of the PTIE, 

and thus management needs to enhance the utilization of the 

input resources. 

(iv) the IRS, CRS, and DRS for PK1 (PK2) percentages are 

2.38% (7.14%), 61.90% (52.38%), and 35.71% (40.48%), 

respectively. The total number of different lines (=7×6) is 

42 for each packaging line. The results indicate that the 

highest percentages (= 61.90% and 52.38 %) of the different 

lines for PK1 and PK2 are operating at the most productive 

scale size and experiencing CRS, respectively. Whereas, the 

lowest percentages for PK1 and PK2 of 2.38% and 7.14%, 

respectively, are operating below their optimal scale sizes, 

and hence experiencing IRS. The policy implication of this 

finding is that decision-makers can enhance TE by 

increasing the scale size. The remaining 35.71% and 

40.48% are operating in the zone of DRS, and thus 

downsizing seems to be an appropriate strategic option to 

reduce unit costs. In summary, the main contributor to TIE 

is the PTIE, while further improvement can be achieved in 

TE if the scale size is reduced. 

      Table 8 displays the causes of the TIE in both 

packaging lines. Comparing the monthly SIE and PTIE, it is 

noted that the PTIE is the major source of the monthly TIE 

because most of the monthly inefficiencies are incurred due 

to the PTIE for both packaging lines.  

 

B. Results Discussion for Window Analysis Using SBM 

Models  

Table 9 summarizes the calculated input excess slacks 

and output shortages for both packaging lines during the 

year 2020. It is noted that the averages of excess slacks in 

PPQ, DQ, and IT for line PK1 (PK2) are 59.579 (14.919), 

1.328 (2.0703), and 58.252 (12.849), respectively. The 

largest excess slacks are observed in PPQ and IT for both 

lines and thus actions are needed to reduce the excesses of 

PPQ and IT. Nevertheless, line PK2 provides better 

performance than line PK1. Further, zero shortages in APQ 

appeared for both packaging lines. Finally, consistent 

conclusions regarding the line performance were obtained 

from the window analysis using the traditional DEA models 

and SBM. The main difference between the two techniques 

is that the window analysis using the CCR and BCC models 

identifies the causes of inefficiency; managerial or scale, 

while the SBM calculates the overall inefficiency and 

provides excess input slacks and outputs shortage. In 

conclusion, the proposed window analysis shall provide 

valuable information to the decision-makers regarding the 

existing performance of the packaging operations, help 

identification of the main causes of the technical 

inefficiencies, and determine the required actions for 

efficiency improvement. 

 

V. CONCLUSIONS 

This research proposed a window analysis procedure for 

the efficiency evaluation from fuzzy input and output data 

for packaging operations over the year 2020. Three inputs 

were considered including the planned production quantity, 

defect quantity, and idle time, while the output was the 

produced quantity for seven DMUs. The technical 

efficiency (TE) and pure technical efficiency (PTE) were 

calculated using the CCR and BCC models, respectively. 

Utilizing the TE and PTE, the scale efficiencies were 

assessed for both packaging lines. The results showed that 

for line PK2 TE and PTE are larger than their corresponding 

scores of line PK1 for all DMUs. Also, the PTIE of line 

PK1 is the main contributor to TIE, while for line PK2 the 

cause of TIE is contributed by PTIE and SIE. Finally, SBM 

was employed to assess the overall inefficiencies. The 

results revealed that the inputs’ excess slacks averages for 

the PPQ, DQ, and IT were 59.579 (14.919), 1.328 (2.070), 

and 58.252 (12.849), for line PK1 (PK2), respectively. 

Moreover, line PK2 resulted in significant improvements 

and better utilization of PPQ and IT than line PK1. In 

conclusion, production management should perform 

frequent online detection and testing to prevent producing 

nonconforming packages, assess downtime trends, and 

effectively adjust the scale size according to the IRS and 

DRS results.   
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Table 1. The collected data (×104). 
Period Packaging Line PK1* Packaging Line PK2 

Inputs Output Inputs Output 

PPQ 

(units) 

DQ 

(units) 

IT 

(units) 

APQ 

(units) 

PPQ 

(units) 

DQ 

(units) 

IT 

(units) 

APQ 

(units) 

January 769.23 8.54 184.61 576.08 753.82 9.84 144.00 599.98 

February 661.53 5.13 133.11 523.30 492.34 4.07 72.85 415.42 

March 800.00 6.29 70.63 723.08 769.27 12.39 64.53 692.35 

April 676.92 7.26 69.66 600.00 830.80 17.20 152.03 661.57 

May 584.61 3.45 57.70 523.46 723.09 8.52 83.79 630.78 

June 596.15 4.33 7.21 584.61 753.90 11.57 19.20 723.13 

July 788.46 8.45 149.23 630.78 707.89 10.03 66.89 630.97 

August 507.69 5.03 41.13 461.53 630.77 9.55 175.07 446.15 

September 346.15 4.47 3.22 338.46 634.62 4.82 122.10 507.69 

October 546.15 6.23 155.38 384.53 246.15 6.74 8.65 230.77 

November 846.15 6.80 115.43 723.92 659.23 10.53 2.54 646.16 

December 530.76 5.91 47.70 477.14 530.77 6.16 78.46 446.15 

* PPQ: Planned production quantity; DQ: Defect quantity; IT: Idle time; APQ: actual produced quantity. 

 

Table 2. The estimated technical efficiency for both lines. 
  Month 

PK DMU 1 2 3 4 5 6 7 8 9 10 11 12 Average 

1    

1 
0.76

4 0.807 0.922 0.904 

1.00  

1.00    

    

0.899 

2  0.807 0.922 0.904 1.00  1.00  0.816      0.908 

3   0.922 0.904 1.00  1.00  0.816 0.927      0.928 

4    0.904 1.00  1.00  0.816 0.927  1.00     0.941 

5     1.00  1.00  0.816 0.927  1.00  0.718    0.910 

6      1.00  0.816 0.927  1.00  0.718  0.872   0.889 

7       0.862  1.00  1.00  0.746  1.00  0.959  0.928 

Av. * 
0.76

4 0.807 0.922 0.904 1.00  1.00  0.824 0.942 

1.00  

0.727  0.936  0.959  0.899 

2    

1 
0.98

6 
0.918 0.906 1.00  

1.00  
1.00        

0.968 

2  0.911 0.898  0.992 1.00  0.924 1.00       0.954 

3   0.898  0.992 1.00  0.924 1.00  1.00      0.969 

4    0.992 1.00  0.924 1.00  1.00  0.950     0.978 

5     1.00  0.924 1.00  1.00  0.950  0.968   0.974 

6      0.924 1.00  1.00  0.950  0.968 0.980   0.970 

7       1.00  1.00  0.948 0.966 0.980  1.00  0.982 

Av. 
0.98

6 
0.914  0.901 0.994 1.00  0.936  

1.00  1.00  
0.950 0.967  0.980  1.00 

0.969 

* Average 
 

Table 3. The pure technical efficiency values for both lines. 

 
  Month 

PK DMU 1 2 3 4 5 6 7 8 9 10 11 12 Average 

1 

1 0.773 0.884 1.00 0.914  1.00 1.00       0.929 

2  0.884 1.00 0.914  1.00 1.00 0.842       0.940 

3   1.00 0.914  1.00 1.00 0.842  1.00      0.959 

4    0.975  1.00 1.00 1.00  0.928 1.00    0.984 

5     1.00 1.00 1.00  0.928  1.00 0.720   0.941 

6      1.00 0.861  0.928  1.00 0.720 1.00  0.918 

7       0.920 1.00   1.00 0.751 1.00 0.991 0.944 

Av. * 0.773 0.884 1.00 0.929  1.00 1.00 0.912  0.957 1.00 0.730  1.00 0.991 0.931 

2 

1 0.986 0.918  0.9060 1.00 1.00 1.00       0.968 

2  0.918 0.9053 1.00 1.00 1.00 1.00      0.971 

3   0.9053 1.00 1.00 1.00 1.00 1.00     0.984 

4    1.00 1.00 1.00 1.00 1.00 0.955    0.993 

5     1.00 1.00 1.00 1.00 0.955 1.00   0.993 

6      1.00 1.00 1.00 1.00 1.00 1.00  1.00 

7       1.00 1.00 0.950  1.00 1.00 1.00 0.992 

Av. 0.986 0.918 0.906 1.00 1.00 1.00 1.00 1.00 0.965  1.00 1.00 1.00 0.981 

* Average 
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Table 4. The estimated scale efficiency values for both lines. 

PK DMU   
Month Average 

1 2 3 4 5 6 7 8 9 10 11 12 
 

1  

1 0.988  0.913 0.922 0.989 1.00  1.00    
 

        0.969 

2   0.913 0.922 0.989 1.00  1.00  0.969 
 

        0.965  

3     0.922 0.989 1.00  1.00  0.969 0.927          0.968 

4       0.927 1.00  1.00  0.816 0.999 1.00        0.957 

5         1.00  1.00  0.816 0.999 1.00  1.00      0.969  

6           1.00  0.947  0.999 1.00  0.998 0.872    0.969  

7             1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Av. 0.988  0.913 0.922 0.973  1.00  1.00  0.919  0.985 1.00  0.999  0.936  1.00  0.970 

2 

1 1.00  1.00  1.00  1.00  1.00  1.00  
  

        1.00  

2   0.992  0.992  0.992 1.00  0.924 1.00 
 

        0.983  

3     0.992  0.992 1.00  0.924 1.00 1.00         0.985 

4       0.992 1.00  0.924 1.00 1.00 0.995       0.985  

5         1.00  0.924 1.00 1.00 0.995 1.00      0.986  

6           0.924 1.00 1.00 0.950  0.968 0.980    0.970  

7             1.00 1.00 1.00  1.00  1.00  1.00  1.00  

Av. 1.00  0.996  0.995 0.994 1.00  0.936  1.00 1.00 0.985 0.989  0.990  1.00  0.990  

 

 

 
Table 5. The estimated efficiency values using SBM for both lines. 

PK DMU  
Month Average 

1 2 3 4 5 6 7 8 9 10 11 12 
 

1 

1 0.434  0.537  0.6330 0.541  1.00  1.00        0.691 

2  0.537 0.633 0.541 1.00  1.00  0.473       0.697  

3   0.633 0.541 1.00  1.00  0.473  0.581      0.705 

4    0.541 1.00  1.00  0.473  0.581  1.00     0.766 

5     1.00  1.00  0.473  0.581  1.00  0.402   0.743 

6      1.00  0.473  0.581  1.00  0.402 0.579   0.673 

7       0.615 0.615 0.615 0.615 0.615 0.615 0.615 

Av. 0.434  0.537  0.633 0.541 1.00  1.00  0.497 0.588   0.904  0.473 0.597 0.615 0.651  

2    

1 0.771  0.556 0.546 1.00  1.00  1.00        0.812  

2  0.487  0.480 0.781 1.00  0.633 1.00       0.730  

3   0.480 0.781 1.00  0.632  1.00  1.00      0.816 

4    0.781 1.00  0.632  1.00  1.00  0.728    0.857 

5     1.00  0.632  1.00  1.00  0.728 0.789   0.858  

6      0.632  1.00  1.00  0.728 0.789 0.691  0.807 

7       1.00  1.00  0.727  0.772  0.691 1.00  0.865  

Av. 0.771  0.521  0.502 0.836 1.00  0.694 1.00  1.00  0.728 0.783  0.691 1.00  0.794 

 
 
 

Table 6. The estimated input excess and output shortage slacks for both lines. 

Eff. DMU   
PK1 (Slack) PK2 (Slack) Difference (PK2-PK1) 

PPQ DQ IT APQ PPQ DQ IT APQ ΔPPQ ΔDQ ΔIT ΔAPQ 

TE 

1 0  0.848  57.76 0  0  1.533  14.586 0  0  0.685 -43.171  0  

2 0  0.843  54.44 0  0  2.653 21.695  0  0  1.810 -32.743 0 

3 0  1.008 43.02  0  0  1.532  15.240  0  0  0.525 -27.784 0 

4 0  0.933  33.66  0  0  0.436 10.553 0  0  -0.498 -23.107 0 

5 0  0.851 42.20  0  0  0.014  13.128 0  0  -0.836  -29.075 0 

6 0  0.946  57.50 0  0  1.585  13.403  0  0  0.639  -44.096 0 

7 0  0  33.98  0  0  1.571 6.271 0  0  1.571 -27.710  0 

Av. 0  0.776 46.08  0  0  1.332  13.554 0  0  0.556  -32.527 0 

PTE 

1 0  0.928 39.63  0.027 0  1.501  14.604 0  0  0.574 -25.029 -0.027 

2 0  0.885 34.45  0.027 0  1.470  13.515  0  0  0.586 -20.936 -0.027 

3 0  0.705  24.46  0  0  0.723  7.287  0  0  0.018  -17.175  0 

4 0  0.275  7.73  0  0   0 2.544  0  0  -0.275  -5.186  0 

5 0  0.052  23.47 0  0  0 2.545 0  0  -0.052  -20.920  0 

6 0  0.408  37.70  0  0  0 0.001 0  0  -0.408  -37.703 0 

7 0.58 0.35 25.32 0  0  0 2.821  0  -0.576  -0.350 -22.496  0 

Av. 0 0.54  27.91 0.009 0  0.616 6.749  0  0 0.074 -21.158  -0.009 
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Table 7. The estimated inefficiency values for both lines. 
PK DMU TIE PTIE SIE  IRS  CRS DRS 

1 

DMU1  0.1007 0.0715 0.0314 0 4 2 

DMU2  0.0920 0.0600 0.0347 0 3 3 

DMU3  0.0719 0.0406 0.0323 1 2 3 

DMU4  0.0589 0.0161 0.0431 0 4 2 

DMU5  0.0899 0.0587 0.0309 0 5 1 

DMU6  0.1111 0.0819 0.0306 0 4 2 

DMU7  0.0720 0.0563 0.0000 0 4 2 

Average 0.0852 0.0550 0.0290 2.38% 61.90% 35.71% 

2 

DMU1  0.0317 0.0316 0.0000 0 6 0 

DMU2  0.0460 0.0295 0.0167 0 2 4 

DMU3  0.0311 0.0158 0.0154 0 3 3 

DMU4  0.0224 0.0075 0.0150 1 3 2 

DMU5  0.0264 0.0075 0.0136 1 3 2 

DMU6  0.0297 0.0000 0.0297 1 2 3 

DMU7  0.0177 0.0083 0.0000 0 3 3 

Average 0.0293 0.0143 0.0129 7.14% 52.38% 40.48% 

 
 
 
 

Table 8. The causes of lines’ inefficiency. 

PK Measure 
Month 

1 2 3 4 5 6 7 8 9 10 11 12 

1 

TIE 0.236  0.193  0.078  0.096  0 0 0.176  0.058  0 0.273 0.064 0.041 

PTIE 0.227  0.116  0 0.071 0 0 0.089  0.043  0 0.270  0 0.009 

SIE 0.012 0.087  0.078  0.027 0 0 0.081 0.015  0 0.001 0.064 0 

Cause  PTE PTE SE PTE Efficient Efficient PTE PTE Efficient PTE SE PTE 

2 

TIE 0.014  0.086 0.099  0.006  0 0.0637 0 0 0.0505 0.033 0.020  1.00  

PTIE 0.014  0.082  0.095 0 0 0 0 0 0.0350 0      0 1.00  

SIE 0 0.004 0.005  0.006  0 0.0637 0 0 0.015 0.01 0.010  1.00  

Cause PTE PTE PTE SE Efficient SE Efficient Efficient PTE SE SE  

 
Table 9. The estimated slack values by SBM for both lines. 

DMU  
PK1 (Slack) PK2 (Slack) Difference (PK2-PK1) 

PPQ DQ IT APQ PPQ DQ IT APQ ΔPPQ ΔDQ ΔIT ΔAPQ 

DMU1  72.904  1.548  71.356 0 18.099 2.033  16.065  0 -54.805   0.485  -55.290  0 

DMU2  66.813  1.466  65.347 0 27.244 3.309 23.935  0 -39.569  1.842  -41.412 0 

DMU3  51.670  1.527 50.144 0 16.544 2.522 14.022  0 -35.127 0.995  -36.122 0 

DMU4  41.228 1.370 39.858  0 9.444 1.290 8.154  0 -31.784  -0.080  -31.704 0 

DMU5  56.052  1.464  54.588  0 11.204  1.038 10.166  0 -44.848  -0.427 -44.422 0 

DMU6  74.043 1.704  72.339 0 13.127  2.670 10.457  0 -60.916 0.966 -61.882 0 

DMU7  54.345  0.214 54.132 0 8.775 1.632  7.144 0 -45.571 1.419 -46.988  0 

Average 59.579  1.328 58.252 0 14.919  2.070  12.849  0 -44.660  0.743 -45.403 0 
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