A New Dai-Liao-type Conjugate Gradient Method for Unconstrained Optimization Problems

Ayinde Semiu*, Member, IAENG, Osinuga Idowu, Adio Adesina and Adelodun Joseph

Abstract

Conjugate gradient method is widely acclaimed to be efficient in solving large-scale unconstrained optimization problems. In this study, a new conjugate gradient method constructed based on inexact line search is proposed. Convergence and conjugate descent property of the new method were established based on some assumptions on the objective function and standard Wolfe conditions. Furthermore, numerical experiments established that the method is highly competitive and efficient for the solution of large-scale test functions when subjected to comparison with other methods.

Index Terms-global convergence; step length; strong Wolfe conditions; sufficient descent; unconstrained optimization.

I. Introduction

TapeHIS
aper considers a nonlinear unconstrained optimization problem of the form

$$
\begin{equation*}
\min _{u \in R^{n}} f(u) \tag{1}
\end{equation*}
$$

where $f: R^{n} \longrightarrow R$ and f is continuously differentiable. The aim of this study is to find an effective conjugate gradient method (CG-method) for the solution of large-scale problems of the form (1).
The CG-methods are veritable tools appropriate in solving equations of the form (1) using the following iterative formula:

$$
\begin{equation*}
u_{k+1}=u_{k}+\alpha_{k} d_{k}, \tag{2}
\end{equation*}
$$

where $\alpha_{k}>0$ is a step-length found from line search schemes with the direction d_{k} given by

$$
d_{k}=\left\{\begin{array}{cc}
-g_{k} & k=0 \tag{3}\\
-g_{k}+\beta_{k} d_{k-1} & k \geq 1
\end{array}\right.
$$

The formula $\beta_{k} \in R$ is a scalar called the CG coefficient with g_{k} representing gradient of $f\left(x_{k}\right)$. Different CG-methods arise from different constructions of the formula β_{k}.
Notable classical CG-methods from different constructions

[^0]of the formula β_{k} include:
\[

\left\{$$
\begin{array}{l}
\beta_{k}^{H S}=\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}, \tag{4}\\
\beta_{k}^{F R}=\frac{\left\|g_{k}\right\|^{2}}{\left\|g_{k-1}\right\|^{2}}, \\
\beta_{k}^{P R P}=\frac{g_{k}^{T} y_{k-1}}{\left\|g_{k-1}\right\|^{2}}, \\
\beta_{k}^{L S}=\frac{-g_{k}^{T} y_{k-1}}{d_{k-1}^{T} g_{k-1}}, \\
\beta_{k}^{D Y}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}}, \\
\beta_{k}^{C D}=\frac{-\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} g_{k-1}} .
\end{array}
$$\right.
\]

where $y_{k-1}=g_{k}-g_{k-1}$ and $\|$.$\| is the euclidean norm.$ For more details on the classical or early CG-methods listed above, consult [6, 12, 13, 19, 20 and 21]. However, several modifications of early methods can be found in the literature [2, 3, 7, 8, 916,22 and 23]. Moreover, a number of hybrid CG-method have also been considered. For details on this, see [1, 10, 9, 17 and 18]. In 2018, Adeleke and Osinuga [3] also introduced hybrid CG-method (hAO method). Global convergence of their method was shown and its numerical performance compared with other methods in the literature. The Dai-Liao CG-method (DL CG-method) constructed and introduced in [7], where an inexact line search scheme was used to produce a new conjugacy condition which reduces to Hestenes-Stiefel (HS) CG-method motivates the study. The famous Hestenes Stiefel formula is obtained when (3) satisfies the condition $d_{k}^{T} y_{k-1}=0$. Further developments of DL CG-method were made by several authors including Lu et al. [16] and Zheng [24]. Lu et al. [16] proposed an effective DL- type CG algorithm with a new value of parameter t based on the new conjugacy condition. They further demonstrated its success with image restoration problems while Zheng [24] presented a new family of DL-type CG methods for unconstrained optimization problem where an existing secant equation was modified and considered in DL's conjugacy condition.
Considerable number of authors have worked on the global convergence properties of the aforementioned CG-methods. These include Powell [21], Dai and Yuan [8], Al Baali [4], Zoutendijk [25], Liu, Han and Yin [15] and Hu and Storey [14]. Of interest is the CG-method developed by Dai and Yuan [8] that gives global convergence properties for general functions. Their motivation came from conjugate decent method $\beta_{k}^{C D}$. It is worthy of note that Dai and Yuan [8] showed that conjugate gradient methods defined by $\beta_{k}^{C D}$ and $\beta_{k}^{F R}$ have global convergence based on certain conditions.

In all, the choice of the step-length α_{k} is a factor for global convergence. Basically, α_{k} must satisfy the following Wolfe conditions.

$$
\begin{equation*}
f\left(u_{k}\right)-f\left(u_{k}+\alpha_{k} d_{k}\right) \geq-\delta \alpha_{k} g_{k}^{T} d_{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(u_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \geq \sigma g_{k}^{T} d_{k} \tag{6}
\end{equation*}
$$

for $0<\delta \leq \sigma<1$.
Further to the work of Dai and Liao [7], this paper gives a new CG-method constructed based on an inexact line search scheme for solving non-linear optimization problems that measure up to the standard of the existing ones. The convergence of our method based on conditions (5)-(6) factored after $\beta_{k}^{D Y}$ method is discussed. Test problems selected from [5] are used to subject our method to numerical tests and comparison with other classical, proposed and hybrid CG-methods. It is shown that the proposed method compete favorably well with existing methods.
In this paper, section II discusses the construction of the proposed formula β_{k} and the algorithm for the iteration. Section III looks at the convergence analysis of our method while in section IV, numerical test and comparison in line with Dolan and More [11] performance profile is presented. Conclusion of the work is given in section 5.

II. Construction of new β_{k} And Algorithm

The formula β_{k} is such that (2) and (3) become the linear CG-method for the case where a strictly convex quadratic function $f(u)$ is considered with α_{k} being the exact one-dimensional minimizer in the direction of d_{k}. Hence, d_{k} which is a sequence of search direction is generated in such a way that the CG-method requires that the conjugacy condition holds, i.e.

$$
\begin{equation*}
d_{n}^{T} H d_{m}=0, \quad \text { for } \text { all } \quad n \neq m \tag{7}
\end{equation*}
$$

H denotes the Hessian for $f(u)$.
Let f be a general nonlinear function, for some $t \in(0,1)$, gradient g of f and gradient g^{2} of g,

$$
\begin{equation*}
\alpha_{k-1}^{-1} d_{k}^{T} y_{k-1}=d_{k}^{T} g^{2}\left(u_{k-1}+t \alpha_{k-1} d_{k-1}\right) d_{k-1} \tag{8}
\end{equation*}
$$

holds (see [7]).
Following (8), (7) can be replaced with

$$
\begin{equation*}
d_{k}^{T} y_{k-1}=0 \tag{9}
\end{equation*}
$$

Going by Dai and Liao's [7] approach that uses the quasiNewton method, the new approximation matrix, H_{k} holds for

$$
\begin{equation*}
H_{k} s_{k-1}=y_{k-1} \tag{10}
\end{equation*}
$$

where,

$$
\begin{equation*}
s_{k-1}=\alpha_{k-1} d_{k-1} \tag{11}
\end{equation*}
$$

Hence, d_{k} is found by putting

$$
\begin{equation*}
d_{k}=-H_{k}^{-1} g_{k} \tag{12}
\end{equation*}
$$

By (10) and (12), then,

$$
\begin{equation*}
d_{k}^{T} y_{k-1}=d_{k}^{T}\left(H_{k} s_{k-1}\right)=-g_{k}^{T} s_{k-1} \tag{13}
\end{equation*}
$$

From (3),

$$
\begin{equation*}
d_{k}=-g_{k}+\beta_{k} d_{k-1} \tag{14}
\end{equation*}
$$

For an inexact line search, multiply (14) by g_{k-1} to give

$$
\begin{equation*}
d_{k}^{T} g_{k-1}=-g_{k}^{T} g_{k-1}+\beta_{k} g_{k-1}^{T} d_{k-1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{k}^{T} g_{k-1}=d_{k}^{T} g_{k}-d_{k}^{T} y_{k-1} \tag{16}
\end{equation*}
$$

The conjugacy condition (10) can be conveniently replaced by the condition

$$
\begin{equation*}
d_{k}^{T} y_{k-1}=-t g_{k}^{T} s_{k-1} \tag{17}
\end{equation*}
$$

with a scalar $t \geq 0$ (See [7]).
Hence, (16) becomes

$$
\begin{equation*}
d_{k}^{T} g_{k-1}=d_{k}^{T} g_{k}+t g_{k}^{T} s_{k-1} \tag{18}
\end{equation*}
$$

By using (18) and (15), we have

$$
\begin{equation*}
d_{k}^{T} g_{k}+t g_{k}^{T} s_{k-1}=-g_{k}^{T} g_{k-1}+\beta_{k} g_{k-1}^{T} d_{k-1} \tag{19}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\beta_{k}=\frac{d_{k}^{T} g_{k}}{g_{k-1}^{T} d_{k-1}}+\frac{t g_{k}^{T} s_{k-1}+g_{k}^{T} g_{k-1}}{g_{k-1}^{T} d_{k-1}} . \tag{20}
\end{equation*}
$$

Given $t \in[0, \infty)$, we define

$$
\begin{equation*}
\beta_{k}=\frac{d_{k}^{T} g_{k}}{g_{k-1}^{T} d_{k-1}}-\frac{t g_{k}^{T} s_{k-1}+g_{k}^{T} g_{k-1}}{\left(-g_{k-1}^{T} d_{k-1}\right)} \tag{21}
\end{equation*}
$$

An equivalent representation of

$$
\begin{equation*}
\frac{d_{k}^{T} g_{k}}{g_{k-1}^{T} d_{k-1}} \tag{22}
\end{equation*}
$$

is the formula $\beta_{k}^{D Y}$. This is presented as follows.
Multiplying (14) by g_{k} gives

$$
\begin{gather*}
g_{k}^{T} d_{k}=-\left\|g_{k}\right\|^{2}+\beta_{k}^{D Y} g_{k}^{T} d_{k-1} . \tag{23}\\
g_{k}^{T} d_{k}=-\left\|g_{k}\right\|^{2}+\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}} g_{k}^{T} d_{k-1} . \tag{24}\\
g_{k}^{T} d_{k}=\frac{-\left\|g_{k}\right\|^{2}\left[d_{k-1}^{T}\left(g_{k}-g_{k-1}\right)-g_{k}^{T} d_{k-1}\right]}{d_{k-1}^{T} y_{k-1}} . \tag{25}\\
g_{k}^{T} d_{k}=\frac{\left\|g_{k}\right\|^{2} g_{k-1}^{T} d_{k-1}}{d_{k-1}^{T} y_{k-1}} . \tag{26}
\end{gather*}
$$

Hence,

$$
\begin{equation*}
\frac{d_{k}^{T} g_{k}}{d_{k-1}^{T} g_{k-1}}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}} \tag{27}
\end{equation*}
$$

See [8 (p.180)].
Therefore, β_{k} becomes

$$
\begin{equation*}
\beta_{k}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}}+\frac{t g_{k}^{T} s_{k-1}+g_{k}^{T} g_{k-1}}{d_{k-1}^{T} g_{k-1}} \tag{28}
\end{equation*}
$$

From [6 (p. 144)], we shall use the fact that $g_{k}^{T} g_{k-1}=0$. Hence, the proposed new formula $\beta_{k}^{A y O}$ is

$$
\begin{equation*}
\beta_{k}^{A y O}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}}+\frac{t g_{k}^{T} s_{k-1}}{d_{k-1}^{T} g_{k-1}} \tag{29}
\end{equation*}
$$

Procedure (2)-(3) with $\beta_{k}^{A y O}$ will be called AyO-CG method.

Algorithm (new β_{k})

Step 1: With the initial point $u_{o} \in R^{n}$ and $\epsilon>0$, we set $k=1$ and $d_{0}=-g_{0}$. If $\left\|g_{k}\right\| \leq \epsilon$, then stop;
Step 2: Find $\alpha_{k}>0$ by conditions (5)-(6);
Step 3: Compute $\beta_{k}^{A y O}$ and generate the sequences $\left\{u_{k}\right\}$, $\left\{g_{k}\right\}$ and $\left\{d_{k}\right\}$;
Step 4: Set $k=k+1$ and proceed to step 2.

III. Analysis on Convergence

The discussion of the convergence analysis for the algorithm stated in section II is carried out here based on the conditions of standard Wolfe line search given in (5) and (6).

In the case when $t=0, \beta_{k}^{A y O}=\beta_{k}^{D Y}$. Based on this condition, analysis on convergence for our method is addressed in the following ways:
We first consider the descent property of this new method.

Assumption 3.1

The objective function (1) satisfies the conditions highlighted below.
(i) The set

$$
\begin{equation*}
U=\{u \mid f(u) \leq f(v)\} \tag{30}
\end{equation*}
$$

with $v \in R^{n}$ is bounded.
(ii) Given a neighborhood W of U, f is continuous and differentiable in W and its gradient $g(u)$ with Lipschitz constant L satisfies Lipschitz continuity

$$
\begin{equation*}
\|g(u)-g(v)\| \leq L\|u-v\| \tag{31}
\end{equation*}
$$

for any $u, v \in W$.
Theorem 3.2 addresses descent property of the new method.
Theorem 3.2. Suppose d_{k} and g_{k} are determined by the CG-method algorithm given in section II. Then, d_{k} satisfies the following conditions.

$$
\begin{equation*}
d_{k}^{T} g_{k} \leq-c\left\|g_{k}\right\|^{2} \tag{32}
\end{equation*}
$$

where c is a constant and for each $k \geq 0$.
Proof: By induction, it is obvious for the case when $k=0$ that,

$$
\begin{equation*}
d_{0}^{T} g_{0}=-\left\|g_{0}\right\|^{2} \tag{33}
\end{equation*}
$$

Suppose that (32) is true for $k \geq 1$. Pre multiplying (14) by g_{k} gives

$$
\begin{equation*}
d_{k}^{T} g_{k}=-\left\|g_{k}\right\|^{2}+\beta_{k}^{A y O} d_{k-1}^{T} g_{k} \tag{34}
\end{equation*}
$$

For $s_{k-1}=\alpha_{k-1} d_{k-1}$, we have

$$
\begin{equation*}
d_{k}^{T} g_{k}=-\left\|g_{k}\right\|^{2}+\left(\beta_{k}^{D Y}+\frac{t g_{k}^{T} s_{k-1}}{g_{k-1}^{T} d_{k-1}}\right) d_{k-1}^{T} g_{k} \tag{35}
\end{equation*}
$$

That is,

$$
\begin{equation*}
d_{k}^{T} g_{k}=-\left\|g_{k}\right\|^{2}+\beta_{k}^{D Y} d_{k-1}^{T} g_{k}-\frac{t \alpha_{k-1}\left(g_{k}^{T} d_{k-1}\right)^{2}}{-g_{k-1}^{T} d_{k-1}} \tag{36}
\end{equation*}
$$

Since

$$
\begin{align*}
& d_{k-1}^{T} y_{k-1}=d_{k-1}^{T}\left(g_{k}-g_{k-1}\right) \tag{37}\\
& \quad=d_{k-1}^{T} g_{k}-d_{k-1}^{T} g_{k-1} \tag{38}\\
& \quad \leq\left|d_{k-1}^{T} g_{k}\right|-d_{k-1}^{T} g_{k-1} . \tag{39}
\end{align*}
$$

For (39) and $d_{k-1}^{T} y_{k-1}>0$ to be true always, it implies that

$$
\begin{equation*}
d_{k-1}^{T} g_{k-1}<0 \tag{40}
\end{equation*}
$$

is true.
From (40), $t>0$ and $\alpha_{k-1}>0$

$$
\begin{equation*}
\frac{\alpha_{k-1} t\left(g_{k}^{T} d_{k-1}\right)^{2}}{-d_{k-1}^{T} g_{k-1}}>0 \tag{41}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
d_{k}^{T} g_{k} \leq-\left\|g_{k}\right\|^{2}+\beta_{k}^{D Y} d_{k-1}^{T} g_{k} \tag{42}
\end{equation*}
$$

By [8], $c=\frac{1}{1+\sigma}$. Hence,

$$
\begin{equation*}
d_{k}^{T} g_{k} \leq-\left(\frac{1}{1+\sigma}\right)\left\|g_{k}\right\|^{2} \tag{43}
\end{equation*}
$$

Therefore, sufficient descent property is satisfied.
We consider next result on convergence for the new method.
Lemma 3.3. Suppose the conditions in the assumption 3.1 is satisfied and for any equation of the form (3) with descent direction d_{k} where α_{k} satisfies the Wolfe conditions in (5) and (6). Then,

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|g_{k}\right\|^{2}}<\infty \tag{44}
\end{equation*}
$$

Proof: The comprehensive proof of Lemma 3.3 can be found in [8].
Theorem 3.4. Suppose the conditions in the assumption 3.1 is satisfied and also that u_{k} be generated by the algorithm in section II. Then,

$$
\begin{equation*}
\lim _{\inf _{k \rightarrow \infty}}\left\|g_{k}\right\|=0 \tag{45}
\end{equation*}
$$

Proof: The result is proved by contradiction.
Suppose

$$
\begin{equation*}
\lim \inf _{k \rightarrow \infty}\left\|g_{k}\right\| \neq 0 \tag{46}
\end{equation*}
$$

Given that

$$
\begin{equation*}
\left\|g_{k}\right\|>0 \tag{47}
\end{equation*}
$$

we can find a constant $n>0$, such that,

$$
\begin{equation*}
\left\|g_{k}\right\|>n \quad \forall k \tag{48}
\end{equation*}
$$

From (14), we have

$$
\begin{equation*}
d_{k}+g_{k}=\beta_{k} d_{k-1} \tag{49}
\end{equation*}
$$

Take square of both sides of equation (49) with $\beta_{k}=\beta_{k}^{A y O}$ to have

$$
\begin{equation*}
\left\|d_{k}\right\|^{2}=-\left\|g_{k}\right\|^{2}-2 d_{k}^{T} g_{k}+\left(\beta_{k}^{A y O}\right)^{2}\left\|d_{k-1}\right\|^{2} \tag{50}
\end{equation*}
$$

Divide (50) by $\left(d_{k}^{T} g_{k}\right)^{2}$.

$$
\begin{equation*}
\frac{\left\|d_{k}\right\|^{2}}{\left(d_{k}^{T} g_{k}\right)^{2}}=-\frac{\left\|g_{k}\right\|^{2}}{\left(d_{k}^{T} g_{k}\right)^{2}}-\frac{2 d_{k}^{T} g_{k}}{\left(d_{k}^{T} g_{k}\right)^{2}}+\frac{\left(\beta_{k}^{A y O}\right)^{2}\left\|d_{k-1}\right\|^{2}}{\left(d_{k}^{T} g_{k}\right)^{2}} \tag{51}
\end{equation*}
$$

Since $0 \leq \beta_{k}^{A y O} \leq \beta_{k}^{D Y}$ for $k \geq 1$. The result follows from Theorem 3.3 of [8].

IV. Numerical Test and Discussion of Results

A set of test problems selected from [5] are considered here for the numerical test, evaluations and discussion of results. A comparison of the proposed method with hAO [3], DL [7], NEW + [24] and PRP [19, 20] is employed in this section. The following abbreviations are adopted in the tables: Q-Quadratic, TD-TRIDIA, QD-Quadratic Diagonal Perturbed, QF-Quadratic QF1, AR-ARGLINB, APAlmost Perturbed Quadratic, D4-Diagonal 4, EH-Extended Himmalblau, R1-Raydan 1, R2-Raydan 2, ET-Extended Three Exponential Terms, GR- Generalized Rosenbrock, GP-Generalized PSCI, EC-Extended Cliff, ET-Extended Freudenstein and Roth, D9-Diagonal 9, HG-HIMMELBG, MS-MODF SINE, M1-MDF EXPLIN 1, M2-MDF EXPLIN 2, RC-RMODF COSINE, RS-RMODF SINE, EM-Ext MCCORMCK, PO-Power, EB-Extended Booth, CU-Cube and CQ-Chebyquad.

Table I. List of test problems and initial points.

s / n	Problems	Dim.	initial points
,	$A P$	2	$(0.5,0.5, \ldots, 0.5)$
2	$T D$	2	$(1,1, \ldots, 1)$
3	$Q D$	2	$(0.5,0.5, \ldots, 0.5)$
4	$Q F$	2	$(0,0, \ldots, 0)$
5	$Q F$	4	$(0,0, \ldots, 0)$
6	$A R$	2	$(1,1, \ldots, 1)$
7	$A R$	4	(1, 1, ..., 1)
8	Q	2	$(0.5,0.5, \ldots, 0.5)$
9	D4	2	(1, 1, .., 1)
10	D4	100	$(1,1, \ldots, 1)$
11	D4	500	(1, 1, ... 1)
12	D4	1000	(1, 1, ..., 1)
13	D4	10000	(1, 1, ..., 1)
14	D4	50000	$(1,1, \ldots, 1)$
15	D4	100000	(1, 1, ..., 1)
16	EH	2	$(1,1, \ldots, 1)$
17	EH	100	(1, 1, ..., 1)
18	EH	500	(1, 1, ... 1)
19	EH	1000	(1, 1, ... 1)
20	EH	10000	$(1,1, \ldots, 1)$
21	EH	50000	$(1,1, \ldots, 1)$
22	EH	100000	(1,1, ..., 1)
23	R1	2	(1, 1, ..., 1)
24	R1	100	(1, 1, ... 1)
25	R1	500	(1, 1, ..., 1)
26	R1	1000	$(1,1, \ldots, 1)$
27	$R 1$	10000	$(1,1, \ldots, 1)$
28	R1	50000	$(1,1, \ldots, 1)$
29	$R 1$	100000	(1, 1, ..., 1)
30	$R 2$	2	$(1,1, \ldots, 1)$
31	$R 2$	100	$(1,1, \ldots, 1)$
32	$R 2$	500	(1, 1, ..., 1)
33	R2	1000	$(1,1, \ldots, 1)$
34	R2	10000	(1, 1, .., 1)
35	$R 2$	50000	(1, 1, ..., 1)
36	$R 2$	100000	$(1,1, \ldots, 1)$
37	ET	2	$(0.1,0.1, \ldots, 0.1)$
38	ET	100	$(0.1,0.1, \ldots, 0.1)$

s / n	Problems	Dim.	initial points
39	ET	500	(0.1, 0.1, .., 0.1)
40	ET	1000	(0.1, 0.1, ..., 0.1)
41	$E T$	10000	(0.1, 0.1, ... 0.1)
42	$G R$	2	$(-1.2,1, \ldots,-1.2,1)$
43	$G P$	2	$(3,0.1, \ldots, 3,0.1)$
44	$G P$	100	$(3,0.1, \ldots, 3,0.1)$
45	$G P$	500	$(3,0.1, \ldots, 3,0.1)$
46	$G P$	1000	$(3,0.1, \ldots, 3,0.1)$
47	$E C$	2	$(0,-1, \ldots 0,-1)$
48	EC	100	$(0,-1, \ldots 0,-1)$
49	EC	500	$(0,-1, \ldots 0,-1)$
50	EC	1000	$(0,-1, \ldots 0,-1)$
51	EF	2	$(0.5,-2, \ldots, 0.5,-2)$
52	EF	100	$(0.5,-2, \ldots, 0.5,-2)$
53	D9	2	(1, 1, .., 1)
54	D9	100	(1, 1, .., 1)
55	$H G$	2	$(1.5,1.5, \ldots, 1.5)$
56	$M S$	2	$\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$
57	$M S$	100	$\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$
58	$M S$	500	$\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$
59	M1	2	$(1,1, \ldots, 1)$
60	M1	100	(1, 1, .., 1)
61	M1	500	$(1,1, \ldots, 1)$
62	M1	1000	(1, 1, .., 1)
63	M1	10000	(1, 1, ..., 1)
64	M1	50000	(1, 1, ..., 1)
65	M1	100000	(1, 1, ..., 1)
66	M2	2	(1, 1, ..., 1)
67	$R C$	2	(1, 1, ..., 1)
68	$R C$	100	(1, 1, .., 1)
69	$R C$	500	(1, 1, .., 1)
70	$R C$	1000	(1, 1, ..., 1)
71	$R S$	2	(1, 1, ... 1)
72	$R S$	100	(1, 1, ..., 1)
73	$R S$	500	(1, 1, ..., 1)
74	$R S$	1000	(1, 1, ..., 1)
75	$R S$	10000	(1, 1, ..., 1)
76	$R S$	50000	$(1,1, \ldots, 1)$
77	RS	100000	(1, 1, .., 1)
78	EM	2	$(1,1, \ldots, 1)$
79	$E M$	100	(1, 1, .., 1)
80	EM	500	(1, 1, ..., 1)
81	EM	1000	(1, 1, ..., 1)
82	$E M$	10000	(1, 1, .., 1)
83	PO	2	(1, 1, .., 1)
84	$E B$	2	(1, 3, .., 1, 3)
85	$E B$	100	$(1,3, \ldots, 1,3)$
86	$E B$	500	$(1,3, \ldots, 1,3)$
87	$E B$	1000	$(1,3, \ldots, 1,3)$
88	$E B$	10000	(1, 3, .., 1, 3)
89	$E B$	50000	(1, 3, .., 1, 3)
90	$E B$	100000	$(1,3, \ldots, 1,3)$
91	$C U$	2	(1, 1, .., 1)
92	$C Q$	2	(1, 1, .., 1)
93	$C Q$	100	(1, 1, .., 1)
94	$C Q$	500	(1, 1, .., 1)
95	$C Q$	1000	(1, 1, .., 1)
96	$C Q$	10000	$(1,1, \ldots, 1)$

Table II. Numerical result of number of iterations and values of function f.

s / n	Prob.	Dim.	AyO	$h A O$	PRP	NEW+	DL
			IT/FE	IT/FE	IT/FE	IT/FE	IT/FE
1	$A P$	2	$50 / 1.26 e-05$	70/1.26e-05	$5 / 1.26 e-05$	12/1.26e-05	108/1.26e-05
2	$T D$	2	$32 / 2.90 e-15$	37/5.03e-14	$29 / 2.30 e-14$	25/3.86e-15	313/1.93e-14
3	$Q D$	2	$22 / 3.10 e+00$	$33 / 3.10 e+00$	$45 / 3.10 e+00$	F / F	$29 / 3.10 e+00$
4	$Q F$	2	$6 / 2.00 e-01$	$2 / 2.00 e-01$	$53 / 2.00 e-01$	$72 / 2.00 e-01$	$53 / 2.00 e-01$
5	$Q F$	4	$8 / 3.10 e+00$	$2 / 3.10 e+00$	139/3.10e + 00	32/6.67e-01	102/6.67e-01
6	$A R$	2	$6 / 1.26 e-05$	1488/1.26e-5	$5 / 1.26 e-05$	37/F	$32 / 1.26 e-07$
7	$A R$	4	19/5.61e-16	14/1.24e-14	$657 / 1.21 e-16$	69/F	21/4.64e-17
8	Q	2	29/9.27e-01	15/9.27e-01	$757 / 9.27 e-01$	27/9.27e-01	$40 / 9.27 e-01$
9	D4	2	21/5.97e-17	15/1.72e-16	$799 / 2.91 e-16$	1103/F	70/8.15e-18
10	D4	100	$23 / 1.60 e-16$	15/6.01e-17	$799 / 1.16 e-16$	$36 / F$	25/4.47e-18
11	D4	500	$25 / 1.65 e-15$	$15 / 1.20 e-15$	$851 / 1.17 e-16$	22/3.83e-13	104/3.01e-17
12	D4	1000	$25 / 2.17 e-16$	19/4.17e-17	35/5.96e-16	408/2.4e-13	161/4.05e-15
13	D4	10000	$27 / 5.67 e-15$	$23 / 3.61 e-16$	64/1.86e-17	135/F	$85 / 3.63 e-15$
14	D4	50000	$22 / 1.01 e-14$	19/2.62e-15	887/1.19e-16	28/1.05e-14	17/1.04e-14
15	D4	100000	$28 / 2.01 e-14$	19/5.25e-15	$903 / 1.18 e-16$	28/2.10e-14	$30 / 1.84 e-15$
16	EH	2	$34 / 2.00 e-15$	$42 / 4.17 e-15$	$46 / 4.24 e-16$	26/5.26e-15	$61 / 4.76 e-15$
17	EH	100	37/4.32e-16	$45 / 1.34 e-15$	48/1.42e-16	F / F	$72 / 1.56 e-15$
18	EH	500	39/4.32e-15	47/4.96e-17	50/4.74e-16	77/2.65e-15	52/3.62e-15
19	EH	1000	$34 / 8.03 e-15$	47/9.92e-17	50/9.47e-16	75/1.96e-15	$74 / 4.62 e-15$
20	EH	10000	$40 / 2.97 e-15$	47/9.92e-16	$52 / 6.33 e-16$	56/5.61e-15	$78 / 3.98 e-15$
21	EH	50000	$41 / 6.22 e-15$	$48 / 3.24 e-15$	$52 / 3.17 e-15$	152/1.26e-14	$46 / 5.23 e-15$
22	EH	100000	$42 / 4.20 e-15$	49/1.04e-15	54/4.24e-16	155/1.26e-14	$71 / 1.47 e-14$
23	$R 1$	2	14/5.18E+12	F / F	F / F	F / F	F / F
24	$R 1$	100	$1 / 1.43 e+05$				
25	R1	500	$1 / 8.73 e+07$				
26	$R 1$	1000	$1 / 1.39 e+09$				
27	$R 1$	10000	$1 / 1.39 e+13$				
28	$R 1$	50000	$1 / 8.68 e+15$				
29	R1	100000	$1 / 1.39 e+17$				
30	$R 2$	2	$12 / 2.00 e+00$	$12 / 2.00 e+00$	$11 / 2.00 e+00$	$9 / 2.00 e+00$	$10 / 2.00 e+00$
31	$R 2$	100	$13 / 1.00 e+02$	$13 / 1.00 e+02$	$11 / 1.00 e+02$	$14 / 1.00 e+02$	$11 / 1.00 e+02$
32	R2	500	$13 / 5.00 e+02$	$14 / 5.00 e+02$	$12 / 5.00 e+02$	$15 / 5.00 e+02$	$11 / 5.00 e+02$
33	R2	1000	$13 / 1.00 e+03$	$14 / 1.00 e+03$	$12 / 1.00 e+03$	$49 / 1.00 e+03$	$11 / 1.00 e+03$
34	$R 2$	10000	$14 / 1.00 e+04$	$14 / 1.00 e+04$	$12 / 1.00 e+04$	$37 / 1.00 e+04$	$11 / 1.00 e+04$
35	R2	50000	$14 / 5.00 e+04$	$15 / 5.00 e+04$	$11 / 5.00 e+04$	$83 / 5.00 e+04$	11/5.00e+04
36	$R 2$	100000	$14 / 1.00 e+05$	$15 / 1.00 e+05$	$11 / 1.00 e+05$	$61 / 1.00 e+05$	$11 / 1.00 e+05$
37	ET	2	$22 / 2.95 e+00$	$26 / 2.56 e+004$	$43 / 2.56 e+00$	F / F	$31 / 2.56 e+00$
38	ET	100	$25 / 1.28 e+02$	$29 / 1.28 e+02$	$47 / 1.28 e+02$	F / F	$35 / 1.28 e+02$
39	ET	500	$28 / 6.40 e+02$	$30 / 6.40 e+02$	$49 / 6.40 e+02$	F / F	$36 / 6.40 e+02$
40	$E T$	1000	135/1.28e + 03	$33 / 1.28 e+03$	$93 / 1.28 e+03$	F / F	$369 / 1.28 e+03$
41	$E T$	10000	1692/12800	1335/12800	1146/12800	F / F	54700/12800
42	$G R$	2	109/7.98e-14	120/1.94e-14	81447/3.88-14	598/F	F / F
43	$G P$	2	19/7.73e-01	$24 / 7.73 e-01$	$30 / 7.42 e-07$	$22 / 7.73 e-01$	$22 / 7.73 e-01$
44	$G P$	100	472/98.7	1410/98.7	981/98.7	660/98.7	352/98.7
45	$G P$	500	526/499	2855/499	812/499	476/499	462/499
46	$G P$	1000	443/999	3261/999	868/999	770/999	505/999
47	$E C$	2	47/0.2	276/0.2	120/0.2	39817/48.9	56/48.9
48	EC	100	91/9.99	408/9.99	$62773 / 2450$	51773/999	60/999

Table II. contd.

s / n	Prob.	Dim.	AyO	$h A O$	PRP	$N E W_{+}$	DL
			IT/FE	IT/FE	IT/FE	$I T / F E$	IT/FE
49	EC	500	111/4.99e+1	$223 / 4.99 e+1$	$3796 / 4.99 e+1$	F / F	$89 / 4.99 e+1$
50	EC	1000	117/9.99e+1	178/9.99e+1	347/1.61e-14	F / F	$63 / 9.99 e+1$
51	EF	2	$92 / 4.90 e+1$	106/4.90e + 1	$3796 / 4.90 e+1$	167/4.90e + 1	F / F
52	EF	100	$518 / 2.45 e+3$	142/2.45e + 3	$347 / 2.45 e+3$	F / F	124/2.45e + 3
53	D9	2	127/1.00e +0	$202 / 1.00 e+0$	109/1.00e + 0	$29 / 1.00 e+0$	F / F
54	D9	100	538/99	273/99	445/99	41395/F	806/99
55	$H G$	2	$377 / 7.68 e-7$	F / F	F / F	117/7.53e-7	$77 / 7.20 e-7$
56	$M S$	2	52/-0.125	36/-1.06	F / F	$367 / F$	F / F
57	$M S$	100	88/-53.1	38/-53.1	F / F	115/F	F / F
58	$M S$	500	105/-266	38/-266E	F / F	106/F	F / F
59	M1	2	13/2	32/2	66/2	46/2	114/2
60	M1	100	16/100	37/100	79/100	55/100	131/100
61	M1	500	16/500	39/500	82/500	59/500	137/500
62	M1	1000	16/1000	40/1000	84/1000	61/1000	141/1000
63	M1	10000	18/10000	42/10000	18/10000	$61 / 10000$	151/10000
64	M1	50000	29/50000	44/50000	95/50000	18/50000	159/50000
65	M1	100000	29/100000	45/100000	96/100000	19/100000	162/100000
66	M2	2	14/5.04	11/5.04	247/5.04	F / F	139/5.04
67	$R C$	2	$6 /-1.00$	11/-1.00	21/-1.00	18/-1.00	24/-1.00
68	$R C$	100	$6 /-50$	27/-50	23/-50	$33 / F$	27/-50
69	$R C$	500	$6 /-250$	104/-250	$23 /-250$	72/F	$30 /-250$
70	$R C$	1000	$6 /-500$	$75 /-500$	$23 /-500$	12/F	$33 /-500$
71	$R S$	2	18/-1.00	28/-1.00	57-1.00	24/-1.00	99/-1.00
72	$R S$	100	20/-50	31/-50	65/-50	F / F	7/-50
73	$R S$	500	21/-250	$33 /-250$	$68 /-250$	F / F	121/-250
74	$R S$	1000	22/-500	34/-500	70/-5002	F / F	123/-500
75	$R S$	10000	23/-5000	36/-5000	$75 /-5000$	F / F	132/-5000
76	$R S$	50000	24/-25000	38/-25000	78/-25000	18217/-5.1e+7	139/-25000
77	$R S$	100000	$24 /-50000$	38/-50000	80/-50000	$2514 / 1.00 E+06$	141/-50000
78	EM	2	18/-1.91	22/-1.91	28/-1.91	39/-1.91	24/-11.3
79	EM	100	21/-95.7	24/-95.7	35/-95.7	64/-95.7	$60 /-1.1 E+6$
80	EM	500	22/-478	26/-478	41/-478	132/-2050	38/-19300
81	EM	1000	22/-957	26/-957	43/-957	57/-957	$46 /-4.69 e+5$
82	EM	10000	34/-9570	33/-9570	62/-9570	554/-727e+6	39/-5.12e+5
83	PO	2	$22 / 7.74 e-1$	11/7.74e-1	F / F	F/F	$2 / 7.74 e-1$
84	$E B$	2	27/1.23e-14	30/7.81e-15	26/3.15e-14	17/1.25e-14	28/1.36e-13
85	$E B$	100	$30 / 3.13 e-14$	$32 / 4.21 e-14$	29/5.89e-15	18/1.72e-14	$33 / 3.12 e-15$
86	$E B$	500	32/8.62-15	35/1.54-14	29/2.94-14	24/3.40-14	18/F
87	$E B$	1000	$32 / 1.72 e-14$	35/3.08e-14	29/5.89e-14	$37 / 2.67 e-15$	18/F
88	$E B$	10000	34/1.00-14	38/1.37e - 13	31/8.06e-15	29/1.93e-14	18/F
89	$E B$	50000	40/2.19e-14	42/2.80e - 14	$31 / 4.03 e-14$	20/6.45e-15	$38 / 6.14 e-14$
90	$E B$	100000	41/6.02e-15	42/5.60e - 14	31/8.06e - 14	$53 / 7.48 e-14$	$36 / 1.49 e-13$
91	$C U$	2	559/9.2e-14	141/6.80e-13	1998/2.6e-16	352/5.34e-14	142/2.11e-16
92	$C Q$	2	$1 / 1.50 e+0$				
93	$C Q$	100	$27 / 1.50 e+0$	87/1.50e+0	F / F	F / F	$2 / 1.50 e+0$
94	$C Q$	500	$48 / 1.50 e+0$	F / F	F / F	F / F	$2 / 1.50 e+0$
95	$C Q$	1000	$58 / 1.50 e+0$	F / F	F / F	$461 / 1.50 e+0$	$2 / 1.50 e+0$
96	$C Q$	10000	$69 / 1.50 e+0$	F / F	F / F	F / F	$2 / 1.50 e+0$

Table III. Numerical result of CPU time and gradient norm

s / n	Prob.	Dim.	AyO	$h A O$	PRP	NEW ${ }_{+}$	DL
			CPU/GN	CPU/GN	CPU/GN	CPU/GN	$C P U / G N$
1	$A P$	2	0.8/6.59e-7	1.152/5.91e-7	0.75/2.13e-16	0.208/2.68e-7	2.164/4.00e-7
2	$T D$	2	0.695/1.97e-7	0.82/5.47e - 7	$0.18 / 7.36 e-7$	0.441/9.47e - 7	5.997/9.77e-7
3	$Q D$	2	0.187/3.49e-7	0.756/6.50e-7	0.752/5.77e-7	F/F	0.508/8.20e-7
4	$Q F$	2	0.117/9.03e-8	0.05/2.98e-15	0.889/8.01e-7	1.182/9.75e-7	0.99/7.20e-7
5	$Q F$	4	0.15/4.76e-10	0.04/1.95e-15	2.398/9.79e-7	0.864/5.24e - 7	1.885/9.58e-7
6	$A R$	2	0.119/7.26e-7	23.86/9.77e-7	$0.1 / 2.13 e-16$	0.625/F	0.775/7.01e-7
7	$A R$	4	0.317/3.08e-7	0.245/6.91e-7	12.459.87e-7	$1.115 / F$	0.434/6.52e-7
8	Q	2	0.494/5.29e-8	0.375/2.15e-8	15.01/9.58e-7	0.457/2.74e-7	$0.91 / 7.91 e-7$
9	D4	2	0.202/2.97e - 7	$0.15 / 1.20 e-17$	0.25/1.15e-16	18.312/F	1.468/6.84e-7
10	D4	100	0.289/1.67e-7	0.283/4.82e-8	18.62/9.62e-7	0.825/F	0.538/2.02e-7
11	D4	500	0.597/5.29e-7	0.55/2.15e-7	66.90/9.66e-7	0.396/9.89e-7	$4.46 / 6.45 e-7$
12	D4	1000	0.409/5.66e-7	0.292/2.41e-7	0.859/7.62e-7	6.818/9.72e-7	$3.05 / 8.90 e-7$
13	D4	10000	0.809/8.73e-7	0.178/2.34e-7	0.559/4.94e-7	1.538/F	1.652/8.74e-7
14	D4	50000	2.237/5.96e-7	1.512/2.70e-7	197.0/9.77e-7	2.223/5.95e-7	3.088/7.19e-8
15	D4	100000	4.223/8.43e-7	341.3/3.82e-7	4.002/9.71e-7	1.538/8.41e-7	13.48/3.65e-8
16	EH	2	0.6/4.13e-7	0.774/9.83e-7	0.944/2.61e-7	0.498/8.64e-7	$1.276 / 8.89 e-7$
17	EH	100	$0.672 / 7.81 e-7$	0.881/5.97e-7	1.071/4.78e-7	F / F	1.574/5.58e-7
18	EH	500	0.733/6.17e-7	0.929/1.06e-7	1.226/2.76e-7	1.683/6.41e-7	1.412/8.30e-7
19	EH	1000	0.744/8.73e-7	1.088/1.50e-7	1.484/3.91e-7	1.613/5.68e-7	1.778/9.58e-7
20	EH	10000	1.678/4.78e-7	2.611/4.74e-7	4.965/3.19e-7	4.206/8.63e-7	$4.374 / 8.87 e-7$
21	EH	50000	5.033/9.27e-7	7.48/9.28e-7	18.69/7.14e-7	$22.75 / 8.70 e-7$	6.856/8.79e-7
22	EH	100000	10.12/6.19e-7	14.88/4.23e-7	34.34/2.61e-7	$43.77 / 8.51 e-7$	19.70/8.98e-7
23	R1	2	0.231/0.00e + 0	F / F	F / F	F / F	F / F
24	$R 1$	100	0.009/0.00e + 0	0.012/0.00e + 0	0.011/0.00e + 0	0.018/0.00e + 0	0.021/0.00e + 0
25	R1	500	0.012/0.00e + 0	0.017/0.00e + 0	0.018/0.00e + 0	0.018/0.00e + 0	0.024/0.00e + 0
26	R1	1000	0.018/0.00e + 0	0.017/0.00e + 0	0.017/0.00e + 0	0.019/0.00e + 0	0.017/0.00e + 0
27	$R 1$	10000	0.026/0.0e + 0	0.029/0.0e + 0	0.033/0.0e + 0	0.041/0.0e + 0	0.027/0.00e + 0
28	$R 1$	50000	0.06/0.00e + 0	0.06/0.00e +0	0.059/0.00e + 0	0.058/0.00e + 0	0.059/0.00e + 0
29	R1	100000	0.079/0.00e + 0	0.089/0.00e + 0	0.087/0.00e + 0	0.083/0.0e + 0	0.095/0.0e + 0
30	R2	2	0.227/2.06e-7	0.277/3.86e-7	0.168/1.40e-7	0.16/1.77e-11	0.193/1.90e-7
31	R2	100	0.22/2.30e-7	0.267/5.32e-7	0.169/9.87e-7	0.229/3.29e-9	0.217/2.38e-9
32	$R 2$	500	0.215/5.15e-7	0.263/2.23e-7	0.19/5.55e-10	0.26/4.80e-13	0.233/5.31e-9
33	R2	1000	0.208/7.28e-7	0.235/3.16e-7	0.22/7.85e-10	0.96/3.23e-14	0.229/7.51e-9
34	$R 2$	10000	0.347/1.05e-7	0.36/1.00e-6	0.292/5.96e-7	1.41/5.29e-12	0.311/2.38e-8
35	R2	50000	0.622/2.35e-7	0.665/4.06e-7	0.492/5.55e-9	7.934/1.51e-9	0.525/9.29e-9
36	R2	100000	0.994/3.33e-7	0.993/5.74e-7	0.735/7.85e-9	10.15/2.27e-7	0.696/1.31e-8
37	ET	2	0.378/7.67-7	0.467/7.64e-7	0.738/5.96e-7	F / F	0.628/7.23e-7
38	$E T$	100	0.475/6.27e-7	$0.516 / 7.24 e-7$	0.628/8.49e-7	F / F	0.662/9.88e-7
39	ET	500	0.56/9.61e-7	0.556/9.11e-7	0.964/9.66e-7	F / F	0.731/9.65e-7
40	$E T$	1000	$9.672 / 7.16 e-7$	0.644/9.63e-7	2.071/4.01e-7	F / F	8.029/9.17e-7
41	$E T$	10000	60.25/3.20e-7	63.34/9.91e-7	157.5/7.63e-7	F / F	1605/6.79e-7
42	$G R$	2	1.898/9.35e-7	2.6/2.32e-7	26.48/9.80e-7	9.849/F	F / F
43	$G P$	2	0.402/3.22e-7	0.389/4.85e-7	0.589/9.97e-7	0.404/8.51e-7	$0.426 / 1.78 e-7$
44	$G P$	100	8.014/7.48e-7	23.98/8.54e-7	17.21/9.82e-7	11.39/8.25e-7	6.843/9.15e-7
45	$G P$	500	$9.714 / 7.16 e-7$	50.08/9.60e-7	15.07/5.96e-7	8.362/9.86e-7	9.323/9.46e-7
46	$G P$	1000	8.007/8.24e - 7	59.69/9.00e-7	17.33/6.37e-7	14.60/9.91e-7	10.53/7.42e-7
47	$E C$	2	0.828/6.00e-7	4.777/8.52e-7	$2.412 / 7.90 e-7$	640.6/6.60e-7	1.086/6.51e-7
48	EC	100	1.592/6.34e-7	2.822/7.89e-7	$7.234 / 5.31 e-7$	1095/1.00e-6	$1.265 / 7.09 e-7$

Table III. contd.

s / n	Prob.	Dim.	AyO	$h A O$	PRP	$N E W_{+}$	DL
			CPU/GN	$C P U / G N$	CPU/GN	$C P U / G N$	CPU/GN
49	$E C$	500	2.037/9.98e-7	4.148/9.43e-7	21.7/9.43e-7	F / F	$2 / 4.92 e-9$
50	$E C$	1000	2.079/4.78e-7	3.686/7.53e-7	25.27/8.94e-7	F / F	1.313/9.63e-7
51	EF	2	$1.652 / 6.71 e-7$	$2.02 / 4.36 e-7$	93.78/8.95e-7	3.145/9.16e-7	F / F
52	EF	100	10.581/8.70e-7	2.852/7.89e-7	12.22/5.31e-7	F / F	2.87/5.48e-7
53	D9	2	2.291/5.86e-7	$4.172 / 2.75 e-7$	2.361/5.47e-7	0.491/7.57e-7	F / F
54	D9	100	$4.383 / 9.56 e-7$	$5.751 / 5.17 e-7$	11.42/7.94e-7	801.8/F	18.47/6.79e-7
55	$H G$	2	7.427/9.97e-7	F / F	F / F	$2.581 / 9.78 e-7$	1.503/9.20e-7
56	$M S$	2	1.138/7.73e-7	0.865/3.37e-7	F / F	$6.823 / F$	F / F
57	$M S$	100	1.494/3.86e-7	0.63/4.11e-7	F / F	$3.044 / F$	F / F
58	MS	500	1.891/5.65e-7	0.699/9.18e-7	F / F	5.156/F	F / F
59	M1	2	0.265/8.36e-7	0.825/7.89e-7	1.398/8.46e-7	0.76/8.93e-7	2.826/9.07e-7
60	M1	100	0.387/2.89e-7	0.579/7.35e-7	1.247/9.19e-7	0.87/8.02e-7	$2.505 / 9.63 e-7$
61	M1	500	0.264/6.47e-7	0.638/7.30e-7	1.371/9.72e-7	0.985/8.50e-7	2.66/9.41e-7
62	M1	1000	0.287/9.14e-7	0.673/6.88e-7	1.416/9.45e-7	1.084/9.06e-7	$2.726 / 8.52 e-7$
63	M1	10000	0.469/3.97e-7	1.076/9.68e-7	2.064/3.80e-7	1.642/8.71e-7	4.198/8.83e-7
64	M1	50000	1.334/6.44e-7	1.807/9.62e-7	3.86/8.51e-7	3.536/8.50e-7	6.879/9.47e-7
65	M1	100000	1.806/9.10e-7	$2.74 / 9.7 e-7$	5.669/9.98e-7	6.223/9.64e-7	10.84/9.84e-7
66	M2	2	0.24/6.83e-7	0.21/1.81e-7	$4.31 / 9.59 e-7$	2.654/F	2.755/9.61e-7
67	$R C$	2	0.099/9.31e-9	0.195/1.93e-7	0.374/2.46e-7	0.371/3.67e-7	0.531/3.82e-7
68	$R C$	100	0.106/6.58e-8	0.52/7.67e-7	$0.482 / 3.81 e-7$	0.739/F	0.556/1.33e-7
69	$R C$	500	$0.112 / 1.47 e-7$	$2.282 / 8.75 e-7$	0.54/4.79e-7	$1.057 F$	0.642/3.65e-7
70	$R C$	1000	0.16/2.08e-7	1.647/4.99e-7	0.603/6.77e-7	0.567/F	0.747/5.46e-7
71	$R S$	2	0.3/5.63e-7	0.45/6.34e-7	0.886/8.11e-7	$0.51 / 7.69 e-7$	0.143/9.1e-10
72	$R S$	100	0.354/7.84e-7	0.649/9.68e-7	1.038/8.95e-7	F / F	0.135/6.42e-9
73	$R S$	500	$0.372 / 7.81 e-7$	0.586/7.79e-7	1.305/9.98e-7	F / F	$2.468 / 8.97 e-7$
74	$R S$	1000	$0.414 / 4.88 e-7$	0.682/6.61e-7	1.283/8.87e-7	F / F	$2.484 / 9.80 e-7$
75	$R S$	10000	$0.614 / 6.87 e-7$	0.989/7.53e-7	2.181/8.79e-7	F / F	3.83/9.71e-7
76	$R S$	50000	1.247/6.80e-7	1.768/6.06e-7	3.581/9.80e-7	1152/9.31e-7	0.337/8.80e-7
77	$R S$	100000	1.801/9.62e-7	2.782/8.57e-7	5.971/8.71e-7	412.5/6.58e-7	3.83/9.61e-7
78	EM	2	0.314/8.47e-7	0.374/3.9e-7	0.561/3.84e-7	0.685/6.27e-7	0.472/2.26e-7
79	EM	100	$0.377 / 6.71 e-7$	0.521/5.93e-7	0.632/8.73e-7	1.111/9.97e-7	1.449/4.60e-7
80	EM	500	0.389/5.31e-7	0.49/6.70e-7	0.882/1.33e-7	2.558/8.64e-7	0.777/6.27e-8
81	EM	1000	$0.391 / 7.51 e-7$	0.553/9.47e-7	1.043/7.97e-7	1.149/7.15e-7	0.986/6.38e-7
82	EM	10000	1.124/4.15e-7	1.098/8.52e-7	3.519/1.54e-8	20.85/6.80e-7	1.503/4.79e-7
83	PO	2	0.363/9.29e-9	0.187/8.12e-7	F / F	F / F	0.035/6.3e-16
84	$E B$	2	0.495/5.57e-7	0.509/4.84e-7	0.495/4.06e-7	0.319/2.67e-7	0.552/7.72e-7
85	$E B$	100	$0.306 / 9.73 e-7$	$0.534 / 8.17 e-7$	0.538/1.73e-7	0.366/3.81e-7	0.697/1.59e-7
86	$E B$	500	$0.631 / 5.36 e-7$	0.701/3.34e-7	0.559/3.88e-7	0.443/9.07e-7	0.354/F
87	$E B$	1000	$0.716 / 7.58 e-7$	0.669/4.72e-7	0.625/5.49e-7	0.709/2.96e-7	0.528/F
88	$E B$	10000	1.368/5.92e-7	1.549/7.58e-7	1.602/1.92e-7	1.091/6.81e-7	0.756/F
89	$E B$	50000	3.613/8.84e-7	3.624/6.03e-7	5.152/4.30e-7	2.968/4.09e-7	4.11/7.24e-7
90	$E B$	100000	6.952/4.64e-7	$6.652 / 8.53 e-7$	10.58/6.09e-7	11.36/7.37e-7	$6.174 / 7.84 e-7$
91	$C U$	2	10.25/3.58e-7	3.039/5.32e-7	42.89/9.91e-7	6.246/6.05e-7	2.964/8.94e-7
92	$C Q$	2	0.017/0.00e + 0	0.036/0.00e + 0	0.025/0.00e + 0	0.025/0.00e + 0	0.03/0.00e + 0
93	$C Q$	100	$0.469 / 9.29 e-7$	1.448/9.41e-7	F / F	$F / 2.68 e-16$	0.047/3.1e-17
94	$C Q$	500	0.83/9.83e-7	F / F	F / F	F / F	0.038/3e-15
95	$C Q$	1000	1.061/9.71e-7	F / F	F / F	7.896/9.92e-7	0.047/2.4e-15
96	$C Q$	10000	2.051/9.73e-7	F / F	F / F	F / F	0.063/1.6e-15

Fig. 1: Number of iterations (IT)

Fig. 2: Value of function f (FE)

A. Numerical Experiment and Parameter Settings

This subsection presents analysis and parameter settings for the comparison of the proposed method against selected existing methods. Test problems with their initial points given in Table I are drawn from [5]. Furthermore, the proposed algorithm is coded using conditions in (5)-(6) and implemented on MATLAB R2015b, HP 650 windows 10 OS and RAM 3GB. The algorithm code for the CG-methods runs with $\delta=0.0001, \sigma=0.9$. We select $t=0.1$ for the CGmethods with parameter t while $\rho_{k}=1$ is used for NEW_{+} CG method. The iteration is stopped if

$$
\left\|g_{k}\right\| \leq 10^{-6}
$$

Fig. 3: CPU time

Fig. 4: Gradient norm (GN)

B. Numerical Results and Discussion

The purpose of this subsection is to report the numerical results as well as to evaluate the performance of AyO against the selected existing methods from four performance metrics-the number of iterations (IT), final values of the objective function $f(\mathrm{FE})$, the CPU time consumed by the algorithms in seconds (CPU) and gradient norm (GN). In Tables II and III respectively, results are shown based on the four performance metrics. Varying dimensions $2,4,100,500,1000,10000,50000,100000$ are used. F in the table indicates failure of the method to solve the test problem. Further evaluations of the performance of the five methods were done with the profiling tools of Dolan and More [11].

The Dolan and More theory is stated as follows: Suppose S is the set of n_{s} methods to be compared and M is the set of n_{m} test functions. Let $R_{m, s}$ be either IT, FE, GN or CPU time for every method S and problem M. We compare different methods based on the ratio

$$
\begin{equation*}
r_{m, s}=\frac{R_{m, s}}{\min \left\{R_{m, s}: s \in S \text { and } m \in M\right\}} \tag{52}
\end{equation*}
$$

Then the overall distribution function for $r_{m, s}$ is given by

$$
\begin{equation*}
\phi_{s}(\tau)=\frac{1}{n_{m}}\left|m \in M: \log r_{m, s}\right| \leq \tau \tag{53}
\end{equation*}
$$

for which $\tau \geq 0$. The probability that $r_{m, s}$ is within a factor $\tau \geq 1$ in relation to the method s is $\phi_{s}(\tau)$. When $\tau=1$, the method has the probability $\phi_{s}(\tau)$ that it will outperform the other methods. The chosen method $s \in S$ fails to solve a problem if $r_{i}=r_{m, s}$ for some parameter r_{i}.
Figures (1-4) show the profiles of the five methods relative to IT, FE, CPU-time and GN respectively. Figures 1, 2 and 3 illustrate that the proposed method (AyO) outperformed all the existing methods in terms of number of iterations, values of function and CPU-time. These performance metrics actually affects the robustness and effectiveness of the methods. Meanwhile, Figure 4 presents the gradient norm where the proposed method competes favorably well with the existing methods.

V. Conclusions

A new CG method was constructed in this paper due to the global acceptability of CG method in solving (1). This construction was done based on the quasi-Newton equation. Convergence analysis and descent properties of the new method were shown. Preliminary numerical results showed that the proposed method is promising and effective as it needs the least iterations and less CPU-time consumption. However, we will attempt to extend the Wolfe conditions in the future by different values of σ.

References

[1] Abubakar, A. B., Kumam, P., Malik, M., and Ibrahim, A. H. "A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems", Mathematics and Computers in Simulation, 201, 640-657, 2021.
[2] Abubakar, A. B., Malik, M., Kumam, P., Mohammad, H., Sun, M., Ibrahim, A. H., and Kiri, A. I. "A Liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control", Journal of King Saud University-Science, 34(4), 101923, 2022.
[3] Adeleke, O. J. and Osinuga, I. A., "A five-term hybrid conjugate gradient method with global convergence and descent properties for unconstrained optimization problem," Asian Journal of Scientific Research, vol. 11, no.2, pp. 185-194, 2018.
[4] Al-Baali, M., "Descent property and global convergence of the Fletcher-Reeves method with inexact line search," IMA Journal Numerical Analysis, vol. 5, pp. 121-124, 1985.
[5] Andrei, N., "Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization," Bulletin of the Malaysian Mathematical Sciences Society, vol. 34, no. 2, pp. 319-330, 2011.
[6] Chong, E. K. P. and Zak, S. H., An introduction to optimization, John Willey and Sons. Inc. New-York NY, 1996.
[7] Dai, Y. and Liao, L. " New conjugacy conditions and related nonlinear conjugate gradient methods," Applied Mathematics and Optimization, vol. 43, no. 1, pp. 87-101, 2001.
[8] Dai, Y. and Yuan, Y., "A nonlinear conjugate gradient method with a strong global convergence property," SIAM Journal of Optimization. vol. 10, pp. 177-182, 1999.
[9] Dai, Y. and Yuan, Y., "An efficient hybrid conjugate gradient method for unconstrained optimization," Annals of Operations Research, vol. 103, pp.33-47, 2001.
[10] Deepho, J., Abubakar, A. B., Malik, M., and Argyros, I. K., "Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications", Journal of Computational and Applied Mathematics, 405, [113823]. https://doi.org/10.1016/j.cam.2021.113823, 2022.
[11] Dolan, E. D. and More, J. J., "Benchmarking optimization software with performance profiles," Mathematical Programming, vol. 91, pp. 201-213, 2002.
[12] Fletcher, R. and Reeves, C.M., "Function minimization by conjugate gradients," Computer Journal, vol. 7, pp. 149-154, 1964.
[13] Hestenes, M. R. and Stiefel, E., "Methods of conjugate gradients for solving linear systems," Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-435, (1952).
[14] Hu, Y. and Storey, C., " Global convergence result for conjugate gradient methods," Journal of Optimization Theory and Applications, vol. 71, pp. 399-405, 1991.
[15] Liu, G. Han, J. and Yin, H., "Global convergence of the FletcherReeves algorithm with inexact line search," Applied Mathematics-A Journal of Chinese Universities, vol. 10, pp. 75-82, 1995.
[16] Lu, J., Yuan, G. and Wang, Z., "A modified Dai-Liao conjugate gradient method for solving unconstrained optimization and image restoration problems", Journal of Applied Mathematics and Computing, vol. 68, pp. 681-703, 2022.
[17] Malik, M., Abubakar, A. B., Sulaiman, I. M., Mamat, M., Abas S. S. and Sukono, F. "A new Three-term conjugate gradient method for unconstrained optimization with applications in portfolio selection and robotic motion control," IAENG International Journal of Applied Mathematics, vol. 51, no. 3, pp. 471-486, 2021.
[18] Malik, M., Mamat, M., Abas, S. S., Sulaiman, I. M. and Sukono, F. "Performance analysis of new spectral and hybrid conjugate gradient methods for solving unconstrained optimization problems," IAENG International Journal of Computer Science, vol. 48, no. 1, pp. 66-79, 2021.
[19] Polak, E. and Ribiere, G., "Note sur la convergence de directions conjugates," ESAIM: Mathematical Modelling and Numerical AnalysisModelisation Mathematique et Analyse Numerique,, vol. 3, no. R1, pp. 35-43, 1969.
[20] Polyak, B., " The conjugate gradient method in extremal problems," USSR Computational Mathematics and Mathematical Physics, vol. 9, pp. 94-112, 1969.
[21] Powell, M. J. D., "Restart procedures for the conjugate gradient method", Mathematical Programming, vol. 2, pp. 241-254, 1977.
[22] Stanimirovic, P. S.." Ivanov B and Mosic D., A survey of gradient methods for solving nonlinear optimization," Electronic Research Archive, vol. 28, no. 4, pp. 1573-1624, 2020.
[23] Xu, X. and Kong, F. "New hybrid conjugate gradient methods with the generalized Wolfe line search," Springer Plus, vol.5, pp. 1-10, 2016.
[24] Zheng, Y., "A family of Dai-Liao conjugate gradient methods with modified secant equation for unconstrained optimization, " RAIRO Operations Research, vol. 55, pp. 3281-3291, 2021.
[25] Zoutendijk, G., Nonlinear programming computational methods, in Integer and Nonlinear Programming. J. Abadie (Ed.), Linear and Nonlinear Programming North-Holland, Amsterdam, pp. 37-86, 1970.

[^0]: Manuscript received December 19, 2022; revised July 18, 2023.
 Ayinde, Semiu is a lecturer in the Department of Basic Sciences (Mathematics Unit), Babcock University, Ilishan-Remo, Ogun State, Nigeria. (Corresponding author, phone: +2348056131809 , e-mail: ayindes@babcock.edu.ng).

 Osinuga, Idowu is a Professor in the Department of Mathematics, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. (e-mail: osinuga08@gmail.com).

 Adio, Adesina is an Associate Professor in the Department of Basic Sciences (Mathematics Unit), Babcock University, Ilishan-Remo, Ogun State, Nigeria. (e-mail: adioa@babcock.edu.ng).

 Adelodun, Joseph is a Professor in the Department of Basic Sciences (Mathematics Unit), Babcock University, Ilishan-Remo, Ogun State, Nigeria. (e-mail: adelodunj@babcock.edu.ng).

