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Abstract—Conjugate gradient method is widely acclaimed to
be efficient in solving large-scale unconstrained optimization
problems. In this study, a new conjugate gradient method
constructed based on inexact line search is proposed. Conver-
gence and conjugate descent property of the new method were
established based on some assumptions on the objective func-
tion and standard Wolfe conditions. Furthermore, numerical
experiments established that the method is highly competitive
and efficient for the solution of large-scale test functions when
subjected to comparison with other methods.

Index Terms—global convergence; step length; strong Wolfe
conditions; sufficient descent; unconstrained optimization.

I. INTRODUCTION

THIS
paper considers a nonlinear unconstrained optimization

problem of the form

min
u∈Rn

f(u), (1)

where f : Rn −→ R and f is continuously differentiable.
The aim of this study is to find an effective conjugate gradient
method (CG-method) for the solution of large-scale problems
of the form (1).
The CG-methods are veritable tools appropriate in solving
equations of the form (1) using the following iterative
formula:

uk+1 = uk + αkdk, (2)

where αk > 0 is a step-length found from line search
schemes with the direction dk given by

dk =

{
−gk k = 0,

−gk + βkdk−1 k ≥ 1.
(3)

The formula βk ∈ R is a scalar called the CG coefficient with
gk representing gradient of f(xk). Different CG-methods
arise from different constructions of the formula βk.
Notable classical CG-methods from different constructions
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of the formula βk include:

βHSk =
gTk yk−1

dT
k−1

yk−1
,

βFRk = ||gk||2
||gk−1||2 ,

βPRPk =
gTk yk−1

||gk−1||2 ,

βLSk =
−gTk yk−1

dT
k−1

gk−1
,

βDYk = ||gk||2
dT
k−1

yk−1
,

βCDk = −||gk||2
dT
k−1

gk−1
.

(4)

where yk−1 = gk − gk−1 and ||.|| is the euclidean norm.
For more details on the classical or early CG-methods listed
above, consult [6, 12, 13, 19, 20 and 21]. However, several
modifications of early methods can be found in the literature
[2, 3, 7, 8, 9 16, 22 and 23]. Moreover, a number of hybrid
CG-method have also been considered. For details on this,
see [1, 10, 9, 17 and 18]. In 2018, Adeleke and Osinuga [3]
also introduced hybrid CG-method (hAO method). Global
convergence of their method was shown and its numerical
performance compared with other methods in the literature.
The Dai-Liao CG-method (DL CG-method) constructed and
introduced in [7], where an inexact line search scheme was
used to produce a new conjugacy condition which reduces
to Hestenes-Stiefel (HS) CG-method motivates the study.
The famous Hestenes Stiefel formula is obtained when (3)
satisfies the condition dTk yk−1 = 0. Further developments
of DL CG-method were made by several authors including
Lu et al. [16] and Zheng [24]. Lu et al. [16] proposed
an effective DL- type CG algorithm with a new value of
parameter t based on the new conjugacy condition. They
further demonstrated its success with image restoration
problems while Zheng [24] presented a new family of
DL-type CG methods for unconstrained optimization
problem where an existing secant equation was modified
and considered in DL’s conjugacy condition.
Considerable number of authors have worked on the global
convergence properties of the aforementioned CG-methods.
These include Powell [21], Dai and Yuan [8], Al Baali
[4], Zoutendijk [25], Liu, Han and Yin [15] and Hu and
Storey [14]. Of interest is the CG-method developed by Dai
and Yuan [8] that gives global convergence properties for
general functions. Their motivation came from conjugate
decent method βCDk . It is worthy of note that Dai and Yuan
[8] showed that conjugate gradient methods defined by
βCDk and βFRk have global convergence based on certain
conditions.
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In all, the choice of the step-length αk is a factor for
global convergence. Basically, αk must satisfy the following
Wolfe conditions.

f(uk)− f(uk + αkdk) ≥ −δαkgTk dk (5)

and
g(uk + αkdk)

T dk ≥ σgTk dk (6)

for 0 < δ ≤ σ < 1.

Further to the work of Dai and Liao [7], this paper
gives a new CG-method constructed based on an inexact
line search scheme for solving non-linear optimization
problems that measure up to the standard of the existing
ones. The convergence of our method based on conditions
(5)-(6) factored after βDYk method is discussed. Test
problems selected from [5] are used to subject our method
to numerical tests and comparison with other classical,
proposed and hybrid CG-methods. It is shown that the
proposed method compete favorably well with existing
methods.
In this paper, section II discusses the construction of the
proposed formula βk and the algorithm for the iteration.
Section III looks at the convergence analysis of our method
while in section IV, numerical test and comparison in line
with Dolan and More [11] performance profile is presented.
Conclusion of the work is given in section 5.

II. CONSTRUCTION OF NEW βk AND ALGORITHM

The formula βk is such that (2) and (3) become the
linear CG-method for the case where a strictly convex
quadratic function f(u) is considered with αk being the
exact one-dimensional minimizer in the direction of dk.
Hence, dk which is a sequence of search direction is
generated in such a way that the CG-method requires that
the conjugacy condition holds, i.e.

dTnHdm = 0, for all n 6= m (7)

H denotes the Hessian for f(u).
Let f be a general nonlinear function, for some t ∈ (0, 1),
gradient g of f and gradient g2 of g,

α−1k−1d
T
k yk−1 = dTk g

2(uk−1 + tαk−1dk−1)dk−1 (8)

holds (see [7]).
Following (8), (7) can be replaced with

dTk yk−1 = 0. (9)

Going by Dai and Liao’s [7] approach that uses the quasi-
Newton method, the new approximation matrix, Hk holds
for

Hksk−1 = yk−1 (10)

where,
sk−1 = αk−1dk−1. (11)

Hence, dk is found by putting

dk = −H−1k gk. (12)

By (10) and (12), then,

dTk yk−1 = dTk (Hksk−1) = −gTk sk−1. (13)

From (3),
dk = −gk + βkdk−1. (14)

For an inexact line search, multiply (14) by gk−1 to give

dTk gk−1 = −gTk gk−1 + βkg
T
k−1dk−1 (15)

and
dTk gk−1 = dTk gk − dTk yk−1. (16)

The conjugacy condition (10) can be conveniently replaced
by the condition

dTk yk−1 = −tgTk sk−1 (17)

with a scalar t ≥ 0 (See [7]).
Hence, (16) becomes

dTk gk−1 = dTk gk + tgTk sk−1. (18)

By using (18) and (15), we have

dTk gk + tgTk sk−1 = −gTk gk−1 + βkg
T
k−1dk−1. (19)

Hence,

βk =
dTk gk

gTk−1dk−1
+
tgTk sk−1 + gTk gk−1

gTk−1dk−1
. (20)

Given t ∈ [0,∞), we define

βk =
dTk gk

gTk−1dk−1
− tgTk sk−1 + gTk gk−1

(−gTk−1dk−1)
. (21)

An equivalent representation of

dTk gk
gTk−1dk−1

(22)

is the formula βDYk . This is presented as follows.
Multiplying (14) by gk gives

gTk dk = −||gk||2 + βDYk gTk dk−1. (23)

gTk dk = −||gk||2 +
||gk||2

dTk−1yk−1
gTk dk−1. (24)

gTk dk =
−||gk||2[dTk−1(gk − gk−1)− gTk dk−1]

dTk−1yk−1
. (25)

gTk dk =
||gk||2gTk−1dk−1
dTk−1yk−1

. (26)

Hence,
dTk gk

dTk−1gk−1
=
||gk||2

dTk−1yk−1
. (27)

See [8 (p.180)].
Therefore, βk becomes

βk =
||gk||2

dTk−1yk−1
+
tgTk sk−1 + gTk gk−1

dTk−1gk−1
. (28)

From [ 6 (p. 144)], we shall use the fact that gTk gk−1 = 0.
Hence, the proposed new formula βAyOk is

βAyOk =
||gk||2

dTk−1yk−1
+

tgTk sk−1
dTk−1gk−1

. (29)

Procedure (2)-(3) with βAyOk will be called AyO-CG method.
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Algorithm (new βk)
Step 1: With the initial point uo ∈ Rn and ε > 0, we set
k = 1 and d0 = −g0. If ||gk|| ≤ ε, then stop;
Step 2: Find αk > 0 by conditions (5)-(6);
Step 3: Compute βAyOk and generate the sequences {uk},
{gk} and {dk};
Step 4: Set k = k + 1 and proceed to step 2.

III. ANALYSIS ON CONVERGENCE

The discussion of the convergence analysis for the algo-
rithm stated in section II is carried out here based on the
conditions of standard Wolfe line search given in (5) and
(6).
In the case when t = 0, βAyOk = βDYk . Based on this con-
dition, analysis on convergence for our method is addressed
in the following ways:
We first consider the descent property of this new method.
Assumption 3.1
The objective function (1) satisfies the conditions highlighted
below.
(i) The set

U = {u|f(u) ≤ f(v)} (30)

with v ∈ Rn is bounded.
(ii) Given a neighborhood W of U , f is continuous and
differentiable in W and its gradient g(u) with Lipschitz
constant L satisfies Lipschitz continuity

||g(u)− g(v)|| ≤ L||u− v|| (31)

for any u, v ∈W .

Theorem 3.2 addresses descent property of the new
method.
Theorem 3.2. Suppose dk and gk are determined by the
CG-method algorithm given in section II. Then, dk satisfies
the following conditions.

dTk gk ≤ −c||gk||2, (32)

where c is a constant and for each k ≥ 0.
Proof: By induction, it is obvious for the case when k = 0
that,

dT0 g0 = −||g0||2. (33)

Suppose that (32) is true for k ≥ 1. Pre multiplying (14) by
gk gives

dTk gk = −||gk||2 + βAyOk dTk−1gk. (34)

For sk−1 = αk−1dk−1, we have

dTk gk = −||gk||2 + (βDYk +
tgTk sk−1
gTk−1dk−1

)dTk−1gk. (35)

That is,

dTk gk = −||gk||2 + βDYk dTk−1gk −
tαk−1(g

T
k dk−1)

2

−gTk−1dk−1
. (36)

Since
dTk−1yk−1 = dTk−1(gk − gk−1) (37)

= dTk−1gk − dTk−1gk−1 (38)

≤ |dTk−1gk| − dTk−1gk−1. (39)

For (39) and dTk−1yk−1 > 0 to be true always, it implies that

dTk−1gk−1 < 0 (40)

is true.
From (40), t > 0 and αk−1 > 0

αk−1t(g
T
k dk−1)

2

−dTk−1gk−1
> 0. (41)

Therefore,

dTk gk ≤ −||gk||2 + βDYk dTk−1gk. (42)

By [8], c = 1
1+σ . Hence,

dTk gk ≤ −(
1

1 + σ
)||gk||2. (43)

Therefore, sufficient descent property is satisfied.
We consider next result on convergence for the new

method.
Lemma 3.3. Suppose the conditions in the assumption 3.1
is satisfied and for any equation of the form (3) with descent
direction dk where αk satisfies the Wolfe conditions in (5)
and (6). Then,

∞∑
i=1

(gTk dk)
2

||gk||2
<∞. (44)

Proof: The comprehensive proof of Lemma 3.3 can be found
in [8].
Theorem 3.4. Suppose the conditions in the assumption 3.1
is satisfied and also that uk be generated by the algorithm
in section II. Then,

lim inf
k→∞

||gk|| = 0. (45)

Proof: The result is proved by contradiction.
Suppose

lim inf
k→∞

||gk|| 6= 0. (46)

Given that
||gk|| > 0, (47)

we can find a constant n > 0, such that,

||gk|| > n ∀k. (48)

From (14), we have

dk + gk = βkdk−1. (49)

Take square of both sides of equation (49) with βk = βAyOk

to have

||dk||2 = −||gk||2 − 2dTk gk + (βAyOk )2 ||dk−1||2. (50)

Divide (50) by (dTk gk)
2.

||dk||2

(dTk gk)
2
= − ||gk||

2

(dTk gk)
2
− 2dTk gk

(dTk gk)
2
+

(βAyOk )2 ||dk−1||2

(dTk gk)
2

.

(51)
Since 0 ≤ βAyOk ≤ βDYk for k ≥ 1. The result follows from
Theorem 3.3 of [8].
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IV. NUMERICAL TEST AND DISCUSSION OF RESULTS

A set of test problems selected from [5] are considered
here for the numerical test, evaluations and discussion of
results. A comparison of the proposed method with hAO
[3], DL [7], NEW+ [24] and PRP [19, 20] is employed in
this section. The following abbreviations are adopted in the
tables: Q-Quadratic, TD-TRIDIA, QD-Quadratic Diagonal
Perturbed, QF-Quadratic QF1, AR-ARGLINB, AP-
Almost Perturbed Quadratic, D4-Diagonal 4, EH-Extended
Himmalblau, R1-Raydan 1, R2-Raydan 2, ET-Extended
Three Exponential Terms, GR- Generalized Rosenbrock,
GP-Generalized PSCI, EC-Extended Cliff, ET-Extended
Freudenstein and Roth, D9-Diagonal 9, HG-HIMMELBG,
MS-MODF SINE, M1-MDF EXPLIN 1, M2-MDF EXPLIN
2, RC-RMODF COSINE, RS-RMODF SINE, EM-Ext
MCCORMCK, PO-Power, EB-Extended Booth, CU-Cube
and CQ-Chebyquad.

Table I. List of test problems and initial points.

s/n Problems Dim. initial points
1 AP 2 (0.5, 0.5, ..., 0.5)
2 TD 2 (1, 1, ..., 1)
3 QD 2 (0.5, 0.5, ..., 0.5)
4 QF 2 (0, 0, ..., 0)
5 QF 4 (0, 0, ..., 0)
6 AR 2 (1, 1, ..., 1)
7 AR 4 (1, 1, ..., 1)
8 Q 2 (0.5, 0.5, ..., 0.5)
9 D4 2 (1, 1, ..., 1)
10 D4 100 (1, 1, ..., 1)
11 D4 500 (1, 1, ..., 1)
12 D4 1000 (1, 1, ..., 1)
13 D4 10000 (1, 1, ..., 1)
14 D4 50000 (1, 1, ..., 1)
15 D4 100000 (1, 1, ..., 1)
16 EH 2 (1, 1, ..., 1)
17 EH 100 (1, 1, ..., 1)
18 EH 500 (1, 1, ..., 1)
19 EH 1000 (1, 1, ..., 1)
20 EH 10000 (1, 1, ..., 1)
21 EH 50000 (1, 1, ..., 1)
22 EH 100000 (1, 1, ..., 1)
23 R1 2 (1, 1, ..., 1)
24 R1 100 (1, 1, ..., 1)
25 R1 500 (1, 1, ..., 1)
26 R1 1000 (1, 1, ..., 1)
27 R1 10000 (1, 1, ..., 1)
28 R1 50000 (1, 1, ..., 1)
29 R1 100000 (1, 1, ..., 1)
30 R2 2 (1, 1, ..., 1)
31 R2 100 (1, 1, ..., 1)
32 R2 500 (1, 1, ..., 1)
33 R2 1000 (1, 1, ..., 1)
34 R2 10000 (1, 1, ..., 1)
35 R2 50000 (1, 1, ..., 1)
36 R2 100000 (1, 1, ..., 1)
37 ET 2 (0.1, 0.1, ..., 0.1)
38 ET 100 (0.1, 0.1, ..., 0.1)

s/n Problems Dim. initial points
39 ET 500 (0.1, 0.1, ..., 0.1)
40 ET 1000 (0.1, 0.1, ..., 0.1)
41 ET 10000 (0.1, 0.1, ..., 0.1)
42 GR 2 (−1.2, 1, ...,−1.2, 1)
43 GP 2 (3, 0.1, ..., 3, 0.1)
44 GP 100 (3, 0.1, ..., 3, 0.1)
45 GP 500 (3, 0.1, ..., 3, 0.1)
46 GP 1000 (3, 0.1, ..., 3, 0.1)
47 EC 2 (0,−1, ...0,−1)
48 EC 100 (0,−1, ...0,−1)
49 EC 500 (0,−1, ...0,−1)
50 EC 1000 (0,−1, ...0,−1)
51 EF 2 (0.5,−2, ..., 0.5,−2)
52 EF 100 (0.5,−2, ..., 0.5,−2)
53 D9 2 (1, 1, ..., 1)
54 D9 100 (1, 1, ..., 1)
55 HG 2 (1.5, 1.5, ..., 1.5)
56 MS 2 ( 1n ,

1
n , ...,

1
n )

57 MS 100 ( 1n ,
1
n , ...,

1
n )

58 MS 500 ( 1n ,
1
n , ...,

1
n )

59 M1 2 (1, 1, ..., 1)
60 M1 100 (1, 1, ..., 1)
61 M1 500 (1, 1, ..., 1)
62 M1 1000 (1, 1, ..., 1)
63 M1 10000 (1, 1, ..., 1)
64 M1 50000 (1, 1, ..., 1)
65 M1 100000 (1, 1, ..., 1)
66 M2 2 (1, 1, ..., 1)
67 RC 2 (1, 1, ..., 1)
68 RC 100 (1, 1, ..., 1)
69 RC 500 (1, 1, ..., 1)
70 RC 1000 (1, 1, ..., 1)
71 RS 2 (1, 1, ..., 1)
72 RS 100 (1, 1, ..., 1)
73 RS 500 (1, 1, ..., 1)
74 RS 1000 (1, 1, ..., 1)
75 RS 10000 (1, 1, ..., 1)
76 RS 50000 (1, 1, ..., 1)
77 RS 100000 (1, 1, ..., 1)
78 EM 2 (1, 1, ..., 1)
79 EM 100 (1, 1, ..., 1)
80 EM 500 (1, 1, ..., 1)
81 EM 1000 (1, 1, ..., 1)
82 EM 10000 (1, 1, ..., 1)
83 PO 2 (1, 1, ..., 1)
84 EB 2 (1, 3, ..., 1, 3)
85 EB 100 (1, 3, ..., 1, 3)
86 EB 500 (1, 3, ..., 1, 3)
87 EB 1000 (1, 3, ..., 1, 3)
88 EB 10000 (1, 3, ..., 1, 3)
89 EB 50000 (1, 3, ..., 1, 3)
90 EB 100000 (1, 3, ..., 1, 3)
91 CU 2 (1, 1, ..., 1)
92 CQ 2 (1, 1, ..., 1)
93 CQ 100 (1, 1, ..., 1)
94 CQ 500 (1, 1, ..., 1)
95 CQ 1000 (1, 1, ..., 1)
96 CQ 10000 (1, 1, ..., 1)
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Table II. Numerical result of number of iterations and values of function f .

s/n Prob. Dim. AyO hAO PRP NEW+ DL
IT/FE IT/FE IT/FE IT/FE IT/FE

1 AP 2 50/1.26e− 05 70/1.26e− 05 5/1.26e− 05 12/1.26e− 05 108/1.26e− 05
2 TD 2 32/2.90e− 15 37/5.03e− 14 29/2.30e− 14 25/3.86e− 15 313/1.93e− 14
3 QD 2 22/3.10e+ 00 33/3.10e+ 00 45/3.10e+ 00 F/F 29/3.10e+ 00
4 QF 2 6/2.00e− 01 2/2.00e− 01 53/2.00e− 01 72/2.00e− 01 53/2.00e− 01
5 QF 4 8/3.10e+ 00 2/3.10e+ 00 139/3.10e+ 00 32/6.67e− 01 102/6.67e− 01
6 AR 2 6/1.26e− 05 1488/1.26e− 5 5/1.26e− 05 37/F 32/1.26e− 07
7 AR 4 19/5.61e− 16 14/1.24e− 14 657/1.21e− 16 69/F 21/4.64e− 17
8 Q 2 29/9.27e− 01 15/9.27e− 01 757/9.27e− 01 27/9.27e− 01 40/9.27e− 01
9 D4 2 21/5.97e− 17 15/1.72e− 16 799/2.91e− 16 1103/F 70/8.15e− 18
10 D4 100 23/1.60e− 16 15/6.01e− 17 799/1.16e− 16 36/F 25/4.47e− 18
11 D4 500 25/1.65e− 15 15/1.20e− 15 851/1.17e− 16 22/3.83e− 13 104/3.01e− 17
12 D4 1000 25/2.17e− 16 19/4.17e− 17 35/5.96e− 16 408/2.4e− 13 161/4.05e− 15
13 D4 10000 27/5.67e− 15 23/3.61e− 16 64/1.86e− 17 135/F 85/3.63e− 15
14 D4 50000 22/1.01e− 14 19/2.62e− 15 887/1.19e− 16 28/1.05e− 14 17/1.04e− 14
15 D4 100000 28/2.01e− 14 19/5.25e− 15 903/1.18e− 16 28/2.10e− 14 30/1.84e− 15
16 EH 2 34/2.00e− 15 42/4.17e− 15 46/4.24e− 16 26/5.26e− 15 61/4.76e− 15
17 EH 100 37/4.32e− 16 45/1.34e− 15 48/1.42e− 16 F/F 72/1.56e− 15
18 EH 500 39/4.32e− 15 47/4.96e− 17 50/4.74e− 16 77/2.65e− 15 52/3.62e− 15
19 EH 1000 34/8.03e− 15 47/9.92e− 17 50/9.47e− 16 75/1.96e− 15 74/4.62e− 15
20 EH 10000 40/2.97e− 15 47/9.92e− 16 52/6.33e− 16 56/5.61e− 15 78/3.98e− 15
21 EH 50000 41/6.22e− 15 48/3.24e− 15 52/3.17e− 15 152/1.26e− 14 46/5.23e− 15
22 EH 100000 42/4.20e− 15 49/1.04e− 15 54/4.24e− 16 155/1.26e− 14 71/1.47e− 14
23 R1 2 14/5.18E + 12 F/F F/F F/F F/F
24 R1 100 1/1.43e+ 05 1/1.43e+ 05 1/1.43e+ 05 1/1.43e+ 05 1/1.43e+ 05
25 R1 500 1/8.73e+ 07 1/8.73e+ 07 1/8.73e+ 07 1/8.73e+ 07 1/8.73e+ 07
26 R1 1000 1/1.39e+ 09 1/1.39e+ 09 1/1.39e+ 09 1/1.39e+ 09 1/1.39e+ 09
27 R1 10000 1/1.39e+ 13 1/1.39e+ 13 1/1.39e+ 13 1/1.39e+ 13 1/1.39e+ 13
28 R1 50000 1/8.68e+ 15 1/8.68e+ 15 1/8.68e+ 15 1/8.68e+ 15 1/8.68e+ 15
29 R1 100000 1/1.39e+ 17 1/1.39e+ 17 1/1.39e+ 17 1/1.39e+ 17 1/1.39e+ 17
30 R2 2 12/2.00e+ 00 12/2.00e+ 00 11/2.00e+ 00 9/2.00e+ 00 10/2.00e+ 00
31 R2 100 13/1.00e+ 02 13/1.00e+ 02 11/1.00e+ 02 14/1.00e+ 02 11/1.00e+ 02
32 R2 500 13/5.00e+ 02 14/5.00e+ 02 12/5.00e+ 02 15/5.00e+ 02 11/5.00e+ 02
33 R2 1000 13/1.00e+ 03 14/1.00e+ 03 12/1.00e+ 03 49/1.00e+ 03 11/1.00e+ 03
34 R2 10000 14/1.00e+ 04 14/1.00e+ 04 12/1.00e+ 04 37/1.00e+ 04 11/1.00e+ 04
35 R2 50000 14/5.00e+ 04 15/5.00e+ 04 11/5.00e+ 04 83/5.00e+ 04 11/5.00e+ 04
36 R2 100000 14/1.00e+ 05 15/1.00e+ 05 11/1.00e+ 05 61/1.00e+ 05 11/1.00e+ 05
37 ET 2 22/2.95e+ 00 26/2.56e+ 004 43/2.56e+ 00 F/F 31/2.56e+ 00
38 ET 100 25/1.28e+ 02 29/1.28e+ 02 47/1.28e+ 02 F/F 35/1.28e+ 02
39 ET 500 28/6.40e+ 02 30/6.40e+ 02 49/6.40e+ 02 F/F 36/6.40e+ 02
40 ET 1000 135/1.28e+ 03 33/1.28e+ 03 93/1.28e+ 03 F/F 369/1.28e+ 03
41 ET 10000 1692/12800 1335/12800 1146/12800 F/F 54700/12800
42 GR 2 109/7.98e− 14 120/1.94e− 14 81447/3.88− 14 598/F F/F
43 GP 2 19/7.73e− 01 24/7.73e− 01 30/7.42e− 07 22/7.73e− 01 22/7.73e− 01
44 GP 100 472/98.7 1410/98.7 981/98.7 660/98.7 352/98.7
45 GP 500 526/499 2855/499 812/499 476/499 462/499
46 GP 1000 443/999 3261/999 868/999 770/999 505/999
47 EC 2 47/0.2 276/0.2 120/0.2 39817/48.9 56/48.9
48 EC 100 91/9.99 408/9.99 62773/2450 51773/999 60/999
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Table II. contd.

s/n Prob. Dim. AyO hAO PRP NEW+ DL
IT/FE IT/FE IT/FE IT/FE IT/FE

49 EC 500 111/4.99e+ 1 223/4.99e+ 1 3796/4.99e+ 1 F/F 89/4.99e+ 1
50 EC 1000 117/9.99e+ 1 178/9.99e+ 1 347/1.61e− 14 F/F 63/9.99e+ 1
51 EF 2 92/4.90e+ 1 106/4.90e+ 1 3796/4.90e+ 1 167/4.90e+ 1 F/F
52 EF 100 518/2.45e+ 3 142/2.45e+ 3 347/2.45e+ 3 F/F 124/2.45e+ 3
53 D9 2 127/1.00e+ 0 202/1.00e+ 0 109/1.00e+ 0 29/1.00e+ 0 F/F
54 D9 100 538/99 273/99 445/99 41395/F 806/99
55 HG 2 377/7.68e− 7 F/F F/F 117/7.53e− 7 77/7.20e− 7
56 MS 2 52/− 0.125 36/− 1.06 F/F 367/F F/F
57 MS 100 88/− 53.1 38/− 53.1 F/F 115/F F/F
58 MS 500 105/− 266 38/− 266E F/F 106/F F/F
59 M1 2 13/2 32/2 66/2 46/2 114/2
60 M1 100 16/100 37/100 79/100 55/100 131/100
61 M1 500 16/500 39/500 82/500 59/500 137/500
62 M1 1000 16/1000 40/1000 84/1000 61/1000 141/1000
63 M1 10000 18/10000 42/10000 18/10000 61/10000 151/10000
64 M1 50000 29/50000 44/50000 95/50000 18/50000 159/50000
65 M1 100000 29/100000 45/100000 96/100000 19/100000 162/100000
66 M2 2 14/5.04 11/5.04 247/5.04 F/F 139/5.04
67 RC 2 6/− 1.00 11/− 1.00 21/− 1.00 18/− 1.00 24/− 1.00
68 RC 100 6/− 50 27/− 50 23/− 50 33/F 27/− 50
69 RC 500 6/− 250 104/− 250 23/− 250 72/F 30/− 250
70 RC 1000 6/− 500 75/− 500 23/− 500 12/F 33/− 500
71 RS 2 18/− 1.00 28/− 1.00 57− 1.00 24/− 1.00 99/− 1.00
72 RS 100 20/− 50 31/− 50 65/− 50 F/F 7/− 50
73 RS 500 21/− 250 33/− 250 68/− 250 F/F 121/− 250
74 RS 1000 22/− 500 34/− 500 70/− 5002 F/F 123/− 500
75 RS 10000 23/− 5000 36/− 5000 75/− 5000 F/F 132/− 5000
76 RS 50000 24/− 25000 38/− 25000 78/− 25000 18217/− 5.1e+ 7 139/− 25000
77 RS 100000 24/− 50000 38/− 50000 80/− 50000 2514/1.00E + 06 141/− 50000
78 EM 2 18/− 1.91 22/− 1.91 28/− 1.91 39/− 1.91 24/− 11.3
79 EM 100 21/− 95.7 24/− 95.7 35/− 95.7 64/− 95.7 60/− 1.1E + 6
80 EM 500 22/− 478 26/− 478 41/− 478 132/− 2050 38/− 19300
81 EM 1000 22/− 957 26/− 957 43/− 957 57/− 957 46/− 4.69e+ 5
82 EM 10000 34/− 9570 33/− 9570 62/− 9570 554/− 727e+ 6 39/− 5.12e+ 5
83 PO 2 22/7.74e− 1 11/7.74e− 1 F/F F/F 2/7.74e− 1
84 EB 2 27/1.23e− 14 30/7.81e− 15 26/3.15e− 14 17/1.25e− 14 28/1.36e− 13
85 EB 100 30/3.13e− 14 32/4.21e− 14 29/5.89e− 15 18/1.72e− 14 33/3.12e− 15
86 EB 500 32/8.62− 15 35/1.54− 14 29/2.94− 14 24/3.40− 14 18/F
87 EB 1000 32/1.72e− 14 35/3.08e− 14 29/5.89e− 14 37/2.67e− 15 18/F
88 EB 10000 34/1.00− 14 38/1.37e− 13 31/8.06e− 15 29/1.93e− 14 18/F
89 EB 50000 40/2.19e− 14 42/2.80e− 14 31/4.03e− 14 20/6.45e− 15 38/6.14e− 14
90 EB 100000 41/6.02e− 15 42/5.60e− 14 31/8.06e− 14 53/7.48e− 14 36/1.49e− 13
91 CU 2 559/9.2e− 14 141/6.80e− 13 1998/2.6e− 16 352/5.34e− 14 142/2.11e− 16
92 CQ 2 1/1.50e+ 0 1/1.50e+ 0 1/1.50e+ 0 1/1.50e+ 0 1/1.50e+ 0
93 CQ 100 27/1.50e+ 0 87/1.50e+ 0 F/F F/F 2/1.50e+ 0
94 CQ 500 48/1.50e+ 0 F/F F/F F/F 2/1.50e+ 0
95 CQ 1000 58/1.50e+ 0 F/F F/F 461/1.50e+ 0 2/1.50e+ 0
96 CQ 10000 69/1.50e+ 0 F/F F/F F/F 2/1.50e+ 0
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Table III. Numerical result of CPU time and gradient norm

s/n Prob. Dim. AyO hAO PRP NEW+ DL
CPU/GN CPU/GN CPU/GN CPU/GN CPU/GN

1 AP 2 0.8/6.59e− 7 1.152/5.91e− 7 0.75/2.13e− 16 0.208/2.68e− 7 2.164/4.00e− 7
2 TD 2 0.695/1.97e− 7 0.82/5.47e− 7 0.18/7.36e− 7 0.441/9.47e− 7 5.997/9.77e− 7
3 QD 2 0.187/3.49e− 7 0.756/6.50e− 7 0.752/5.77e− 7 F/F 0.508/8.20e− 7
4 QF 2 0.117/9.03e− 8 0.05/2.98e− 15 0.889/8.01e− 7 1.182/9.75e− 7 0.99/7.20e− 7
5 QF 4 0.15/4.76e− 10 0.04/1.95e− 15 2.398/9.79e− 7 0.864/5.24e− 7 1.885/9.58e− 7
6 AR 2 0.119/7.26e− 7 23.86/9.77e− 7 0.1/2.13e− 16 0.625/F 0.775/7.01e− 7
7 AR 4 0.317/3.08e− 7 0.245/6.91e− 7 12.459.87e− 7 1.115/F 0.434/6.52e− 7
8 Q 2 0.494/5.29e− 8 0.375/2.15e− 8 15.01/9.58e− 7 0.457/2.74e− 7 0.91/7.91e− 7
9 D4 2 0.202/2.97e− 7 0.15/1.20e− 17 0.25/1.15e− 16 18.312/F 1.468/6.84e− 7
10 D4 100 0.289/1.67e− 7 0.283/4.82e− 8 18.62/9.62e− 7 0.825/F 0.538/2.02e− 7
11 D4 500 0.597/5.29e− 7 0.55/2.15e− 7 66.90/9.66e− 7 0.396/9.89e− 7 4.46/6.45e− 7
12 D4 1000 0.409/5.66e− 7 0.292/2.41e− 7 0.859/7.62e− 7 6.818/9.72e− 7 3.05/8.90e− 7
13 D4 10000 0.809/8.73e− 7 0.178/2.34e− 7 0.559/4.94e− 7 1.538/F 1.652/8.74e− 7
14 D4 50000 2.237/5.96e− 7 1.512/2.70e− 7 197.0/9.77e− 7 2.223/5.95e− 7 3.088/7.19e− 8
15 D4 100000 4.223/8.43e− 7 341.3/3.82e− 7 4.002/9.71e− 7 1.538/8.41e− 7 13.48/3.65e− 8
16 EH 2 0.6/4.13e− 7 0.774/9.83e− 7 0.944/2.61e− 7 0.498/8.64e− 7 1.276/8.89e− 7
17 EH 100 0.672/7.81e− 7 0.881/5.97e− 7 1.071/4.78e− 7 F/F 1.574/5.58e− 7
18 EH 500 0.733/6.17e− 7 0.929/1.06e− 7 1.226/2.76e− 7 1.683/6.41e− 7 1.412/8.30e− 7
19 EH 1000 0.744/8.73e− 7 1.088/1.50e− 7 1.484/3.91e− 7 1.613/5.68e− 7 1.778/9.58e− 7
20 EH 10000 1.678/4.78e− 7 2.611/4.74e− 7 4.965/3.19e− 7 4.206/8.63e− 7 4.374/8.87e− 7
21 EH 50000 5.033/9.27e− 7 7.48/9.28e− 7 18.69/7.14e− 7 22.75/8.70e− 7 6.856/8.79e− 7
22 EH 100000 10.12/6.19e− 7 14.88/4.23e− 7 34.34/2.61e− 7 43.77/8.51e− 7 19.70/8.98e− 7
23 R1 2 0.231/0.00e+ 0 F/F F/F F/F F/F
24 R1 100 0.009/0.00e+ 0 0.012/0.00e+ 0 0.011/0.00e+ 0 0.018/0.00e+ 0 0.021/0.00e+ 0
25 R1 500 0.012/0.00e+ 0 0.017/0.00e+ 0 0.018/0.00e+ 0 0.018/0.00e+ 0 0.024/0.00e+ 0
26 R1 1000 0.018/0.00e+ 0 0.017/0.00e+ 0 0.017/0.00e+ 0 0.019/0.00e+ 0 0.017/0.00e+ 0
27 R1 10000 0.026/0.0e+ 0 0.029/0.0e+ 0 0.033/0.0e+ 0 0.041/0.0e+ 0 0.027/0.00e+ 0
28 R1 50000 0.06/0.00e+ 0 0.06/0.00e+ 0 0.059/0.00e+ 0 0.058/0.00e+ 0 0.059/0.00e+ 0
29 R1 100000 0.079/0.00e+ 0 0.089/0.00e+ 0 0.087/0.00e+ 0 0.083/0.0e+ 0 0.095/0.0e+ 0
30 R2 2 0.227/2.06e− 7 0.277/3.86e− 7 0.168/1.40e− 7 0.16/1.77e− 11 0.193/1.90e− 7
31 R2 100 0.22/2.30e− 7 0.267/5.32e− 7 0.169/9.87e− 7 0.229/3.29e− 9 0.217/2.38e− 9
32 R2 500 0.215/5.15e− 7 0.263/2.23e− 7 0.19/5.55e− 10 0.26/4.80e− 13 0.233/5.31e− 9
33 R2 1000 0.208/7.28e− 7 0.235/3.16e− 7 0.22/7.85e− 10 0.96/3.23e− 14 0.229/7.51e− 9
34 R2 10000 0.347/1.05e− 7 0.36/1.00e− 6 0.292/5.96e− 7 1.41/5.29e− 12 0.311/2.38e− 8
35 R2 50000 0.622/2.35e− 7 0.665/4.06e− 7 0.492/5.55e− 9 7.934/1.51e− 9 0.525/9.29e− 9
36 R2 100000 0.994/3.33e− 7 0.993/5.74e− 7 0.735/7.85e− 9 10.15/2.27e− 7 0.696/1.31e− 8
37 ET 2 0.378/7.67− 7 0.467/7.64e− 7 0.738/5.96e− 7 F/F 0.628/7.23e− 7
38 ET 100 0.475/6.27e− 7 0.516/7.24e− 7 0.628/8.49e− 7 F/F 0.662/9.88e− 7
39 ET 500 0.56/9.61e− 7 0.556/9.11e− 7 0.964/9.66e− 7 F/F 0.731/9.65e− 7
40 ET 1000 9.672/7.16e− 7 0.644/9.63e− 7 2.071/4.01e− 7 F/F 8.029/9.17e− 7
41 ET 10000 60.25/3.20e− 7 63.34/9.91e− 7 157.5/7.63e− 7 F/F 1605/6.79e− 7
42 GR 2 1.898/9.35e− 7 2.6/2.32e− 7 26.48/9.80e− 7 9.849/F F/F
43 GP 2 0.402/3.22e− 7 0.389/4.85e− 7 0.589/9.97e− 7 0.404/8.51e− 7 0.426/1.78e− 7
44 GP 100 8.014/7.48e− 7 23.98/8.54e− 7 17.21/9.82e− 7 11.39/8.25e− 7 6.843/9.15e− 7
45 GP 500 9.714/7.16e− 7 50.08/9.60e− 7 15.07/5.96e− 7 8.362/9.86e− 7 9.323/9.46e− 7
46 GP 1000 8.007/8.24e− 7 59.69/9.00e− 7 17.33/6.37e− 7 14.60/9.91e− 7 10.53/7.42e− 7
47 EC 2 0.828/6.00e− 7 4.777/8.52e− 7 2.412/7.90e− 7 640.6/6.60e− 7 1.086/6.51e− 7
48 EC 100 1.592/6.34e− 7 2.822/7.89e− 7 7.234/5.31e− 7 1095/1.00e− 6 1.265/7.09e− 7
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Table III. contd.

s/n Prob. Dim. AyO hAO PRP NEW+ DL
CPU/GN CPU/GN CPU/GN CPU/GN CPU/GN

49 EC 500 2.037/9.98e− 7 4.148/9.43e− 7 21.7/9.43e− 7 F/F 2/4.92e− 9
50 EC 1000 2.079/4.78e− 7 3.686/7.53e− 7 25.27/8.94e− 7 F/F 1.313/9.63e− 7
51 EF 2 1.652/6.71e− 7 2.02/4.36e− 7 93.78/8.95e− 7 3.145/9.16e− 7 F/F
52 EF 100 10.581/8.70e− 7 2.852/7.89e− 7 12.22/5.31e− 7 F/F 2.87/5.48e− 7
53 D9 2 2.291/5.86e− 7 4.172/2.75e− 7 2.361/5.47e− 7 0.491/7.57e− 7 F/F
54 D9 100 4.383/9.56e− 7 5.751/5.17e− 7 11.42/7.94e− 7 801.8/F 18.47/6.79e− 7
55 HG 2 7.427/9.97e− 7 F/F F/F 2.581/9.78e− 7 1.503/9.20e− 7
56 MS 2 1.138/7.73e− 7 0.865/3.37e− 7 F/F 6.823/F F/F
57 MS 100 1.494/3.86e− 7 0.63/4.11e− 7 F/F 3.044/F F/F
58 MS 500 1.891/5.65e− 7 0.699/9.18e− 7 F/F 5.156/F F/F
59 M1 2 0.265/8.36e− 7 0.825/7.89e− 7 1.398/8.46e− 7 0.76/8.93e− 7 2.826/9.07e− 7
60 M1 100 0.387/2.89e− 7 0.579/7.35e− 7 1.247/9.19e− 7 0.87/8.02e− 7 2.505/9.63e− 7
61 M1 500 0.264/6.47e− 7 0.638/7.30e− 7 1.371/9.72e− 7 0.985/8.50e− 7 2.66/9.41e− 7
62 M1 1000 0.287/9.14e− 7 0.673/6.88e− 7 1.416/9.45e− 7 1.084/9.06e− 7 2.726/8.52e− 7
63 M1 10000 0.469/3.97e− 7 1.076/9.68e− 7 2.064/3.80e− 7 1.642/8.71e− 7 4.198/8.83e− 7
64 M1 50000 1.334/6.44e− 7 1.807/9.62e− 7 3.86/8.51e− 7 3.536/8.50e− 7 6.879/9.47e− 7
65 M1 100000 1.806/9.10e− 7 2.74/9.7e− 7 5.669/9.98e− 7 6.223/9.64e− 7 10.84/9.84e− 7
66 M2 2 0.24/6.83e− 7 0.21/1.81e− 7 4.31/9.59e− 7 2.654/F 2.755/9.61e− 7
67 RC 2 0.099/9.31e− 9 0.195/1.93e− 7 0.374/2.46e− 7 0.371/3.67e− 7 0.531/3.82e− 7
68 RC 100 0.106/6.58e− 8 0.52/7.67e− 7 0.482/3.81e− 7 0.739/F 0.556/1.33e− 7
69 RC 500 0.112/1.47e− 7 2.282/8.75e− 7 0.54/4.79e− 7 1.057F 0.642/3.65e− 7
70 RC 1000 0.16/2.08e− 7 1.647/4.99e− 7 0.603/6.77e− 7 0.567/F 0.747/5.46e− 7
71 RS 2 0.3/5.63e− 7 0.45/6.34e− 7 0.886/8.11e− 7 0.51/7.69e− 7 0.143/9.1e− 10
72 RS 100 0.354/7.84e− 7 0.649/9.68e− 7 1.038/8.95e− 7 F/F 0.135/6.42e− 9
73 RS 500 0.372/7.81e− 7 0.586/7.79e− 7 1.305/9.98e− 7 F/F 2.468/8.97e− 7
74 RS 1000 0.414/4.88e− 7 0.682/6.61e− 7 1.283/8.87e− 7 F/F 2.484/9.80e− 7
75 RS 10000 0.614/6.87e− 7 0.989/7.53e− 7 2.181/8.79e− 7 F/F 3.83/9.71e− 7
76 RS 50000 1.247/6.80e− 7 1.768/6.06e− 7 3.581/9.80e− 7 1152/9.31e− 7 0.337/8.80e− 7
77 RS 100000 1.801/9.62e− 7 2.782/8.57e− 7 5.971/8.71e− 7 412.5/6.58e− 7 3.83/9.61e− 7
78 EM 2 0.314/8.47e− 7 0.374/3.9e− 7 0.561/3.84e− 7 0.685/6.27e− 7 0.472/2.26e− 7
79 EM 100 0.377/6.71e− 7 0.521/5.93e− 7 0.632/8.73e− 7 1.111/9.97e− 7 1.449/4.60e− 7
80 EM 500 0.389/5.31e− 7 0.49/6.70e− 7 0.882/1.33e− 7 2.558/8.64e− 7 0.777/6.27e− 8
81 EM 1000 0.391/7.51e− 7 0.553/9.47e− 7 1.043/7.97e− 7 1.149/7.15e− 7 0.986/6.38e− 7
82 EM 10000 1.124/4.15e− 7 1.098/8.52e− 7 3.519/1.54e− 8 20.85/6.80e− 7 1.503/4.79e− 7
83 PO 2 0.363/9.29e− 9 0.187/8.12e− 7 F/F F/F 0.035/6.3e− 16
84 EB 2 0.495/5.57e− 7 0.509/4.84e− 7 0.495/4.06e− 7 0.319/2.67e− 7 0.552/7.72e− 7
85 EB 100 0.306/9.73e− 7 0.534/8.17e− 7 0.538/1.73e− 7 0.366/3.81e− 7 0.697/1.59e− 7
86 EB 500 0.631/5.36e− 7 0.701/3.34e− 7 0.559/3.88e− 7 0.443/9.07e− 7 0.354/F
87 EB 1000 0.716/7.58e− 7 0.669/4.72e− 7 0.625/5.49e− 7 0.709/2.96e− 7 0.528/F
88 EB 10000 1.368/5.92e− 7 1.549/7.58e− 7 1.602/1.92e− 7 1.091/6.81e− 7 0.756/F
89 EB 50000 3.613/8.84e− 7 3.624/6.03e− 7 5.152/4.30e− 7 2.968/4.09e− 7 4.11/7.24e− 7
90 EB 100000 6.952/4.64e− 7 6.652/8.53e− 7 10.58/6.09e− 7 11.36/7.37e− 7 6.174/7.84e− 7
91 CU 2 10.25/3.58e− 7 3.039/5.32e− 7 42.89/9.91e− 7 6.246/6.05e− 7 2.964/8.94e− 7
92 CQ 2 0.017/0.00e+ 0 0.036/0.00e+ 0 0.025/0.00e+ 0 0.025/0.00e+ 0 0.03/0.00e+ 0
93 CQ 100 0.469/9.29e− 7 1.448/9.41e− 7 F/F F/2.68e− 16 0.047/3.1e− 17
94 CQ 500 0.83/9.83e− 7 F/F F/F F/F 0.038/3e− 15
95 CQ 1000 1.061/9.71e− 7 F/F F/F 7.896/9.92e− 7 0.047/2.4e− 15
96 CQ 10000 2.051/9.73e− 7 F/F F/F F/F 0.063/1.6e− 15
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Fig. 1: Number of iterations (IT)

Fig. 2: Value of function f (FE)

A. Numerical Experiment and Parameter Settings

This subsection presents analysis and parameter settings
for the comparison of the proposed method against selected
existing methods. Test problems with their initial points
given in Table I are drawn from [5]. Furthermore, the
proposed algorithm is coded using conditions in (5)-(6) and
implemented on MATLAB R2015b, HP 650 windows 10 OS
and RAM 3GB. The algorithm code for the CG-methods runs
with δ = 0.0001, σ = 0.9. We select t = 0.1 for the CG-
methods with parameter t while ρk = 1 is used for NEW+

CG method. The iteration is stopped if

‖gk‖ ≤ 10−6.

Fig. 3: CPU time

Fig. 4: Gradient norm (GN)

B. Numerical Results and Discussion

The purpose of this subsection is to report the numerical
results as well as to evaluate the performance of AyO
against the selected existing methods from four perfor-
mance metrics-the number of iterations (IT), final values
of the objective function f (FE), the CPU time consumed
by the algorithms in seconds (CPU) and gradient norm
(GN). In Tables II and III respectively, results are shown
based on the four performance metrics. Varying dimensions
2, 4, 100, 500, 1000, 10000, 50000, 100000 are used. F in the
table indicates failure of the method to solve the test problem.
Further evaluations of the performance of the five methods
were done with the profiling tools of Dolan and More [11].

Engineering Letters, 31:3, EL_31_3_43

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



The Dolan and More theory is stated as follows: Suppose
S is the set of ns methods to be compared and M is the
set of nm test functions. Let Rm,s be either IT, FE, GN or
CPU time for every method S and problem M . We compare
different methods based on the ratio

rm,s =
Rm,s

min{Rm,s : s ∈ S and m ∈M}
(52)

Then the overall distribution function for rm,s is given by

φs(τ) =
1

nm
|m ∈M : logrm,s| ≤ τ (53)

for which τ ≥ 0. The probability that rm,s is within a factor
τ ≥ 1 in relation to the method s is φs(τ). When τ = 1,
the method has the probability φs(τ) that it will outperform
the other methods. The chosen method s ∈ S fails to solve
a problem if ri = rm,s for some parameter ri.
Figures (1-4) show the profiles of the five methods relative
to IT, FE, CPU-time and GN respectively. Figures 1, 2 and
3 illustrate that the proposed method (AyO) outperformed
all the existing methods in terms of number of iterations,
values of function and CPU-time. These performance
metrics actually affects the robustness and effectiveness of
the methods. Meanwhile, Figure 4 presents the gradient
norm where the proposed method competes favorably well
with the existing methods.

V. CONCLUSIONS

A new CG method was constructed in this paper due to
the global acceptability of CG method in solving (1). This
construction was done based on the quasi-Newton equation.
Convergence analysis and descent properties of the new
method were shown. Preliminary numerical results showed
that the proposed method is promising and effective as it
needs the least iterations and less CPU-time consumption.
However, we will attempt to extend the Wolfe conditions in
the future by different values of σ.
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