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Abstract—In this work, we present two linearly and un-
conditionally energy stable numerical schemes for a vesicle
membrane model that exactly satisfies the conservation of
volume constraint and penalizes the surface area constraint.
First of all, we introduce some auxiliary variables to transform
the original model into an equivalent system using the energy
quadratization(EQ) technique. Moreover, with the transformed
free energy a quadratic functional with respect to the new
variables and the modified energy dissipative law is satisfied.
Then an implicit-explicit(IMEX) time discrete technique for
the semi-discrete scheme is used to construct two linearly
and unconditionally energy stable fully discrete schemes for
the model. Finally, numerical experiments are presented to
demonstrate the accuracy and unconditionally energy-stability
of the proposed schemes.

Index Terms—Vesicle membrane, Phase-field model, Uncon-
ditionally energy stable, Stability analysis.

I. Introduction

B IOLOGICAL vesicle membranes have been widely
studied in biology, biophysics and bioengineering for

the past several decades ([4] and the references therein). It is
a great challenge to model and simulate the morphological
changes accurately due to the variety of equilibrium shapes
assumed by vesicles in biological experiments [7].

In recent times, many works have focused on designing
and studying numerical approximations of this type of mod-
els. In the pioneering work of Canham, Evans and Helfrich
[3], [5], [10], [16] in which the sharp interface method is
derived. On the other hand the phase field method had been
used in the field base on a phase field variable [8], [9]. The
evolution equations then resulted from the variation of the
action function of the free energy.

From the numerical point of view, the main challenge
in designing efficient and accurate schemes for the models
is to preserve the thermodynamically consistent law at the
discrete level while imposing physical constraints such as
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conservation of volume and surface area. There are many
popular strategy to design energy stable time discretization
schemes for phase-field models. Such as convex splitting
method [13], [14], [17], stabilization approach [2], [6], [17],
IEQ or EQ method [12], [19], [20], SAV method [1], [7],
[18] and Runge-Kutta method [1], [18]. It is remarkable
that, when dealing with the phase-field vesicle membrane
model we have some essential difficulties, including that (i)
the sixth order derivative for spatial variable, (ii) the semi-
discrete scheme is nonlinear, (iii) the constraint of mass and
surface area are desired for designing numerical schemes.
[7], [12].

Therefore, the main purpose of this work is to develop two
linearly and unconditionally energy stable schemes for the
phase field vesicle membrane model. First of all, using the
new unknown variables, we can write the sixth-order model
as a second-order system. Second, reformulate the system
to an equivalent quadratic form by using EQ method. Then
IMEX time discrete technique is used to construct completely
linear schemes. The proposed schemes are proven rigorously
to be unconditionally energy stable.

The rest of the work is organized as follows. In section 2,
we briefly introduce the model. Section 3 is devoted to design
two linear numerical schemes and show their unconditionally
energy stability. In section 4, we present numerical tests
to validate the accuracy and efficiency of the numerical
schemes. Finally, some conclusions of our work are given
in sections 5.

II. The model
In the phase-field vesicle membrane model, the location of

the membrane is described by a phase function ϕ. The cor-
responding interface motion is derived through the energetic
variational approach with respect to the bending energy:

Eb(ϕ) :=
ε

2

∫
Ω

(
∆ϕ − 1

ε2 G(ϕ)
)2

dx =
ε

2

∫
Ω

w2dx , (1)

where

w := −∆ϕ + 1
ε2 G(ϕ) , G(ϕ) := F′ − εk(x)H′(ϕ),

with
F(ϕ) :=

1
4

(ϕ2 − 1)2 , H(ϕ) :=
1
3
ϕ3 − ϕ ,

and k(x) is a given function representing the spontaneous
curvature. The vesicle volume and surface area defined as

A(ϕ) :=
∫
Ω

ϕdx and B(ϕ) :=
∫
Ω

(
ε

2
|∇ϕ|2 + 1

ε
F(ϕ)
)
dx.

The model to study deformation of vesicle membranes can
be derived from the bending energy (1) as the Cahn-Hilliard
equation

ϕt − ∇ ·
(
γ∇(δEb

δϕ

))
= 0, (2)
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where γ > 0 is a mobility parameter and

δEb

δϕ
= ε
(
− ∆w +

1
ε2 G′(ϕ)w

)
.

A penalty term is added to the elastic bending energy Eb(ϕ)
in order to enforce the surface area constraints. Then a
modified energy is given by

Ebp(ϕ) := Eb(ϕ) +
1
2η
(
B(ϕ) − β)2 , (3)

where η > 0 is the penalization parameter, and β > 0 is
the desired surface area. Then, we introduce the (chemical
potential) unknown

µ :=
δEbp

δϕ
= −ε∆w+

1
ε

G′(ϕ)w+
1
η

(
B(ϕ)−β)(−ε∆ϕ+ 1

ε
F′(ϕ)

)
.

Using the new unknown, it is possible to write the corre-
sponding sixth-order Cahn-Hilliard equation as the second-
order system of (µ,w, ϕ) :
ϕt − γ∆µ = 0,

−ε∆w + 1
ε
G′(ϕ)w + 1

η

(
B(ϕ) − β)( − ε∆ϕ + 1

ε
F′(ϕ)

)
−µ = 0,

εw + ε∆ϕ − 1
ε
G(ϕ) = 0.

(4)

Supplemented by the initial condtion

ϕ|t=0 = ϕ0, in Ω.

The boundary condtions can be either one of the following
types:

∇ϕ · n|Ω = 0, ∇w · n|Ω = 0, ∇µ · n|Ω = 0,
ϕ|Ω = −1, wΩ = 0, ∇µ · n|Ω = 0,
ϕ|Ω = −1, ∇w · n|Ω = 0, ∇µ · n|Ω = 0.

(5)

Lemma 2.1: [12] System (4) complemented with one of
the boundary conditions proposed in (5) satisfies the follow-
ing dissipative energy law,

d
dt

Ebp(ϕ) + γ||∇µ||2 = 0 . (6)

III. Numerical schemes

In order to construct the linearly and unconditionally
energy stable numerical schemes for the model, we introduce
the auxiliary variables.

Let B(ϕ) − β = U, ϕ2 − 1 = V, ϕ3 − ϕ = g.

Ebp(ϕ) = Eb(ϕ) +
1
2η

(B(ϕ) − β)2

=
ε

2

∫
Ω

w2dx +
1
2η

U2 := E(w,U). (7)

Then we obtain a new, but equivalent PDE system by taking
the time derivative for the new variables:

ϕt − γ∆µ = 0,
−ε∆w + 1

ε

(
(3V + 2) − 2εk(x)ϕ

)
w

+ 1
η

(
− ε∆ϕ + 1

ε
F′(ϕ)

)
U − µ = 0,

εw + ε∆ϕ − 1
ε

(
g − εk(x)V

)
= 0,

Ut =
∫
Ω

(−ε∆ϕ + 1
ε
F′(ϕ))ϕtdx,

Vt = 2ϕϕt,

gt = (3ϕ2 − 1)ϕt.

(8)

Supplemented by the initial condition

ϕ|t=0 = ϕ0, U |t=0 = B(ϕ0) − β, V |t=0 = ϕ
2
0 − 1. (9)

and one of the admissible boundary conditions given in (5).
It is clear that the new transformed system still retains a

similar energy dissipative law.
Lemma 3.1: System (8) complemented with one of the

boundary conditions proposed in (5) satisfies the following
dissipative energy law,

d
dt

Ebp(ϕ) =
d
dt

E(w,U) = −γ||∇µ||2 ≤ 0 . (10)

Proof. Testing (8)1 by µ, (8)2 by ϕt and taking the time
derivative of (8)3 by w, (8)4 by U, (8)5 by V and adding
these relations, we can easily derive the energy dissipation
law of the new system.

Let Th be a triangulation of Ω, and h be the mesh
parameter of Th. The unknowns (ϕ, µ,w) are approximated
by the conforming finite element spaces:

(Φh,Mh,Wh) ⊂ (H1(Ω),H1(Ω),H1(Ω)) . (11)

Then, we give the semi-discrete scheme as follows. Find
(ϕ(t), µ(t),w(t)) ∈ (Φh,Mh,Wh), such that

(ϕt, µ̄) + γ(∇µ,∇µ̄) = 0,

(ε∇w,∇ϕ̄) + 1
ε

((
(3V + 2) − 2εk(x)ϕ

)
w, ϕ̄
)

+ 1
η

(( − ε∆ϕ + 1
ε
F′(ϕ)

)
U, ϕ̄
)
− (µ, ϕ̄) = 0,

ε(w, w̄) − ε(∇ϕ,∇w̄) − 1
ε

(
(g, w̄) − (εk(x)V, w̄

))
= 0,

Ut =
∫
Ω

(−ε∆ϕ + 1
ε
F′(ϕ))ϕtdx,

Vt = 2ϕϕt,

gt = (3ϕ2 − 1)ϕt.

(12)

A. First order scheme

Let ∆t = T
N , tn = n∆t. Assuming that ϕn,Un,Vn,wn,

gn are already calculated, we then compute ϕn+1,wn+1,
Un+1,Vn+1, gn+1 from the fully-discrete scheme:

( ϕn+1−ϕn

∆t , µ̄
)
+ γ(∇µn+1,∇µ̄) = 0,

(ε∇wn+1,∇ϕ̄) + 1
ε

((
(3Vn + 2) − 2εk(x)ϕn)wn+1, ϕ̄

)
+ 1
η

(( − ε∆ϕn + 1
ε
F′(ϕn)

)
Un+1, ϕ̄

)
−(µn+1, ϕ̄) = 0,
ε(wn+1, w̄) − ε(∇ϕn+1,∇w̄)

− 1
ε

(
(gn+1, w̄) − (εk(x)Vn+1, w̄

))
= 0,

Un+1 − Un =
∫
Ω

(−ε∆ϕn + 1
ε
F′(ϕn))(ϕn+1 − ϕn)dx,

Vn+1 − Vn = 2ϕn(ϕn+1 − ϕn),
gn+1 − gn =

(
(3ϕn)2 − 1

)
(ϕn+1 − ϕn).

(13)

Theorem 3.1: The linear scheme (13) is unconditionally
energy stable, i.e. satisfies the following discrete energy
dissipation law:

En+1 +
ε

2
||wn+1 − wn||2 + 1

2η
(Un+1 − Un)2

+ γ∆t||∇µn+1||2 = En, (14)

where En = ε2 ||wn||2 + 1
2η (U

n)2.
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Proof. Taking µ̄ = ∆tµn+1, ϕ̄ = ϕn+1 − ϕn in (13)1,2, adding
the resulting relations, we obtain

γ∆t||∇µn+1||2 + (ε∇wn+1,∇(ϕn+1 − ϕn)
)

+
1
ε

((
(3Vn + 2) − 2εk(x)ϕn)wn+1, ϕn+1 − ϕn

)
+

1
η

(( − ε∆ϕn +
1
ε

F′(ϕn)
)
Un+1, ϕn+1 − ϕn

)
= 0. (15)

Subtracting (13)3 and (13)3 for previous time step, and taking
w̄ = wn+1, we obtain

ε(wn+1 − wn,wn+1) − ε(∇(ϕn+1 − ϕn),∇wn+1)

− 1
ε

(
(gn+1 − gn,wn+1) − (εk(x)(Vn+1 − Vn),wn+1))

= 0. (16)

We can easily derived

− 1
ε

(
(gn+1 − gn,wn+1) − (εk(x)(Vn+1 − Vn),wn+1))

= −1
ε

((
(3Vn + 2) − 2εk(x)ϕn)(ϕn+1 − ϕn),wn+1

)
. (17)

By taking the simple multiplication of (13)4 with 1
η
Un+1 and

applying the following identities

(a − b, a) =
1
2

(|a|2 − |b|2 + |a − b|2). (18)

We obtain

1
2η

(
(Un+1)2 − (Un)2 + (Un+1 − Un)2

)
=

1
η

(( − ε∆ϕn +
1
ε

F′(ϕn)
)
Un+1, ϕn+1 − ϕn

)
. (19)

Combing of above relations gives us

ε

2

(
||wn+1||2 − ||wn||2 + ||wn+1 − wn||2

)
+

1
2η

(
(Un+1)2 − (Un)2 + (Un+1 − Un)2

)
+ γ∆t||∇µn+1||2 = 0. (20)

i.e.

ε

2
||wn+1||2 + 1

2η
(Un+1)2 +

ε

2
||wn+1 − wn||2

+
1
2η

(Un+1 − Un)2 + γ∆t||∇µn+1||2

=
ε

2
||wn||2 + 1

2η
(Un)2. (21)

Then, we have completed the proof.

B. Second order scheme

Assuming that ϕn−1, Un−1, Vn−1, wn−1, gn−1 and ϕn,
Un, Vn, wn, gn are already calculated, we then compute

ϕn+1,wn+1,Un+1,Vn+1, gn+1 from the fully-discrete scheme:

( 3ϕn+1−4ϕn+ϕn−1

2∆t , µ̄
)
+ γ(∇µn+1,∇µ̄) = 0 ,

(ε∇wn+1,∇ϕ̄) + 1
ε

((
(3V∗ + 2) − 2εk(x)ϕ∗

)
wn+1, ϕ̄

)
+ 1
η

(( − ε∆ϕ∗ + 1
ε
F′(ϕ∗)

)
Un+1, ϕ̄

)
−(µn+1, ϕ̄) = 0 ,
ε(wn+1, w̄) − ε(∇ϕn+1,∇w̄)

− 1
ε

(
(gn+1, w̄) − (εk(x)Vn+1, w̄

))
= 0 ,

3Un+1 − 4Un + Un−1

=
∫
Ω

(−ε∆ϕn + 1
ε
F′(ϕn))(3ϕn+1 − 4ϕn + ϕn−1)dx ,

3Vn+1 − 4Vn + Vn−1 = 2ϕ∗(3ϕn+1 − 4ϕn + ϕn−1) ,
3gn+1 − 4gn + gn−1

=
(
(3ϕ∗)2 − 1

)
(3ϕn+1 − 4ϕn + ϕn−1) .

(22)

where ϕ∗ = 2ϕn − ϕn−1, V∗ = 2Vn − Vn−1.
Theorem 3.2: The linear scheme (22) is unconditionally

energy stable, i.e. satisfies the following discrete energy
dissipation law:

En+1 +
ε

2
||wn+1 − 2wn + wn−1||2 + 1

2η
(Un+1 − 2Un + Un−1)2

+ 2γ∆t||∇µn+1||2 = En, (23)

Where

En =
ε

2
(||wn||2 + ||2wn −wn−1||2)+ 1

2η
(
(Un)2 + (2Un −Un−1)2).

Proof. Taking µ̄ = 2∆tµn+1, ϕ̄ = 3ϕn+1 − 4ϕn + ϕn−1 in
(22)1,2, adding the resulting relations, we obtain

2γ∆t||∇µn+1||2 + (ε∇wn+1,∇(3ϕn+1 − 4ϕn + ϕn−1)
)

+
1
ε

((
(3V∗ + 2) − 2εk(x)ϕ∗

)
wn+1, 3ϕn+1 − 4ϕn + ϕn−1

)
+

1
η

(( − ε∆ϕn +
1
ε

F′(ϕ∗)
)
Un+1, ϕn+1 − ϕn

)
= 0. (24)

Reformulate (22)3 and the two previous time steps, and
taking w̄ = wn+1, we obtain

ε(3wn+1 − 4wn + wn−1,wn+1)

− ε(∇(3ϕn+1 − 4ϕn + ϕn−1),∇wn+1)

− 1
ε

(
(3gn+1 − 4gn + gn−1,wn+1)

− (εk(x)(3Vn+1 − 4Vn + Vn−1),wn+1)) = 0. (25)

Applying the following identities

2(3a − 4b + c, a)

= (|a|2 − |b|2 + |2a − b|2 − |2b − c|2 + |a − 2b + c|2). (26)

We obtain
ε

2
(||wn+1||2 − ||wn||2 + ||2wn+1 − wn||2 − ||2wn − wn−1||2)
+ ||wn+1 − 2wn + wn−1||2

− 1
ε

((
3(ϕ∗)2 − 1

)
(3ϕn+1 − 4ϕn + ϕn−1),wn+1)

− (2εk(x)ϕ∗(3ϕn+1 − 4ϕn + ϕn−1),wn+1) = 0. (27)
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We can easily derived

− 1
ε

((
3(ϕ∗)2 − 1

)
(3ϕn+1 − 4ϕn + ϕn−1),wn+1)

− (2εk(x)ϕ∗(3ϕn+1 − 4ϕn + ϕn−1),wn+1) =
1
ε

((
3(V∗)2 + 2 − 2εk(x)ϕ∗

)
(3ϕn+1 − 4ϕn + ϕn−1),wn+1). (28)

By taking the simple multiplication of (22)4 with 1
η
Un+1 and

the identities (26), We obtain

1
2η
(
(Un+1)2 − (Un)2 + (2Un+1 − Un)2

− (2Un − Un−1)2 + (Un+1 − 2Un + Un−1)2)
=

1
η

(( − ε∆ϕ∗ + 1
ε

F′(ϕ∗)
)
Un+1, 3ϕn+1 − 4ϕn + ϕn−1

)
. (29)

Combing of above relations gives us the following results
ε

2
(||wn+1||2 − ||wn||2 + ||2wn+1 − wn||2

− ||2wn − wn−1||2 + ||wn+1 − 2wn + wn−1||2)
1
2η
(
(Un+1)2 − (Un)2 + (2Un+1 − Un)2 − (2Un − Un−1)2)

+ (Un+1 − 2Un + Un−1)2 + 2γ∆t||∇µn+1||2 = 0. (30)

i.e.
ε

2
(||wn+1||2 + ||2wn+1 − wn||2) + 1

2η
(
(Un+1)2 + (2Un+1 − Un)2)

+
ε

2
(||wn+1 − 2wn + wn−1||2)

+
1
2η
(
(Un+1 − 2Un + Un−1)2) + 2γ∆t||∇µn+1||2

=
ε

2
(||wn||2 + ||2wn − wn−1||2)

+
1
2η
(
(Un)2 + (2Un − Un−1)2). (31)

Then, we have completed the proof.

IV. Numerical experiments

In this sections we present some numerical experiments
to illustrate the theoretical results obtained in the previous
sections and and demonstrate the accuracy and stability of
the proposed schemes. All the simulations have been carried
out in 2D domains using Freefem++ software[15].

Assume Ω = [0, 1]× [0, 1], and h = 1
20 , the right-hand side

function f1 is chosen to ensure that the given solution can
satisfy the system (4)1. The following function is assumed
to be the exact solution

ϕ(x, y, t) = cos(πx)cos(πy)t. (32)

The physical parameters are presented as follows:

ε = 0.01, η = 0.01, γ = 0.01, T = 0.1 .

The L2 and H1 errors of the first order scheme are shown in
Table 1.

Moreover, we test the unconditionally energy stability. We
set the initial condition as ϕ = 0.25cos(πx)cos(πy), Assume
Ω = [0, 1] × [0, 1], h = 1

20 and ∆t = 0.0001. The energy,
volume and surface area evolution using various time step
sizes are summarized in Figure 1, demonstrating the energy
stability, volume and surface area constraint of our proposed
scheme. We observe the calculated energies are all decreasing

with time, which are agreed with Theorem 3.1(En+1 ≤ En for
an arbitrary time step), i.e., unconditionally energy stable.

Table 1. Numerical results of the first order scheme

∆t Err(ϕ)L2 Rate Err(ϕ)H1 Rate

5 × 10−2 1.97e-3 - 1.08e-2 -

2.5 × 10−2 5.86e-4 1.75 4.16e-3 1.38

1.25 × 10−2 1.62e-4 1.85 1.81e-3 1.20

6.25 × 10−3 4.27e-5 1.92 8.60e-4 1.07

3.125 × 10−3 1.10e-5 1.96 4.25e-4 1.02

1.5625 × 10−3 2.85e-6 1.95 2.12e-4 1.00

Furthermore, we use the second order scheme to the same
problem and T = 0.5, the corresponding results are shown
in Table 2.

Table 2. Numerical results of the second order scheme

∆t Err(ϕ)L2 Rate Err(ϕ)H1 Rate

1 × 10−1 3.56e-1 - 1.71e-0 -

9 × 10−2 2.55e-1 3.17 1.20e-0 3.36

8 × 10−2 1.83e-1 2.82 8.43e-1 3.00

7 × 10−2 1.31e-1 2.50 5.94e-1 2.62

6 × 10−2 9.26e-2 2.25 4.16e-1 2.31

5 × 10−2 6.39e-2 2.03 2.86e-1 2.06

V. Conclusion

In this work, we present a linearly and unconditionally
energy stable scheme for a vesicle membrane model that
satisfies exactly the conservation of volume constraint and
penalizes the surface area constraint. First of all, we intro-
duce auxiliary variables to transform the original model into
an equivalent system using the energy quadratization(EQ)
technique. Moreover, with the transformed free energy a
quadratic functional with respect to the new variables and
the modified energy dissipative law is conserved. Then an
implicit-explicit(IMEX) time discrete scheme for the semi-
discrete scheme to construct a linearly and unconditionally
energy stable fully discrete schemes for the model. Numer-
ical examples are given to demonstrate the efficiency of the
proposed schemes. Further study is underway to improve the
simulation by extending to more realistic problems.
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