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Abstract—Time series forecasting (TSF) is a prevalent re-
search task in various fields such as medicine, transportation,
environment, network detection, finance, and others. The TSF
task aims to identify underlying patterns in data and make rela-
tively accurate estimates of future data based on known values.
In recent years, deep learning models have gained popularity for
TSF tasks due to their capability to capture internal information
effectively. However, traditional deep-learning models encounter
difficulties when parallelizing data calculations, leading to error
accumulation and reduced forecasting accuracy. Additionally,
when dealing with excessively long input data, traditional
deep learning models may experience performance degrada-
tion despite providing sufficient information and making it
arduous to predict future data. Transformer-based models,
with Self-Attention as the core, have shown the ability to
facilitate global information interaction and enhance prediction
efficiency. Nonetheless, they may encounter problems with
significant and redundant parameters, causing unnecessary
time overhead. To overcome these challenges, we propose a
novel model called VarSeg-Trans, which incorporates three key
optimizations: the cut-up mechanism, the variables-isolating
mechanism, and an improved attention calculation method to
enhance the transformer model’s performance. Specifically, the
cut-up mechanism enables the model to process longer input
sequences, the variables-isolating mechanism mitigates overfit-
ting, and the improved attention method leverages sequence
information more effectively. Compared to other baseline TSF
models and previous Transformer-based models, VarSeg-Trans
has achieved an average reduction of 9% in MSE and MAE,
along with a 3% increase in the coefficient of determination R².
This trend is substantiated by consistent results across multiple
experimental trials.

Index Terms—Time series forecasting, Deep learning,
Transformer-based models, Self-Attention

I. INTRODUCTION

T IME series forecasting (TSF), particularly long-term
TSF, is essential in various real-life scenarios. Such as

predicting environment quality using a hybrid Convolutional
Neural Network - Long Short Term Memory (CNN-LSTM)
model [1–3], estimating traffic flow using Graph Convolution
Recurrent Network (GCRN) [4–6], forecasting stock prices
using an ARIMA-based model [7–9], forecasting electricity
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TABLE I
LSTM PERFORMANCE AND FORECASTING LENGTH

Different forecasting steps MSE MAE
12 0.173 0.167
24 0.272 0.263
36 0.643 0.632
48 1.505 1.528
96 3.831 4.002

demand using Recurrent Neural Networks (RNNs) [10–12],
and predicting air quality and population movement using
Support Vector Machines(SVM) [13, 14]. Unfortunately,
most existing models are designed for short-term forecasting,
typically predicting points in less than 24 steps.

Take the LSTM, a wide-used model developed from
RNNs, as an example in Table I. As the sequence length
increases, the influence of historical data on the forecast
output may weaken, thereby increasing the forecast error.
When forecasting more than 24 steps, the MSE of the result
can increase significantly [15]. Therefore, researchers need to
explore new models and techniques to improve the accuracy
of long-term TSF.

To summarize, here are some of the difficulties associated
with TSF tasks:

1) Long-term dependencies: In time series prediction, the
current data is often related to multiple past time points,
and these relationships may be long-term. Deep learning
models usually have strong representation capabilities
and can automatically learn long-term dependencies.

2) Non-stationarity: Time series data is usually non-
stationary, meaning its statistical characteristics change
over time. This characteristic can make the prediction
task more challenging.

3) Multivariate prediction: In most cases, time series pre-
diction requires considering not only past historical data
but also the influence of other variables that may affect
the data, making the model more complex.

In order to achieve better prediction results, we conducted
numerous experiments to validate our findings. The contri-
butions of this paper are as follows:

1) We introduced a cut-up mechanism to address the
problem of insufficient information per time step. Im-
plementing this mechanism enhances the module’s effi-
ciency in processing longer sequence inputs and uncov-
ering more relationships.

2) We introduced a variables-isolating mechanism that
involves predicting each variable individually. The pre-
diction results are then stitched together in the end. This
approach allows the Transformer model to focus on a
single variable, resulting in faster calculations.

3) We improved the core calculation mechanism of the
existing excellent model to enhance both forecasting
time and prediction accuracy.
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II. RELATED WORK

A. Transformer Modules and Their Variants

Since the Vanilla Transformer model was introduced
in 2017 [16], the structure diagram is shown in Fig. 1.
Many fields, including Natural Language Processing (NLP)
and Computer Vision (CV), have made breakthroughs us-
ing the Transformer model or its core method. Numerous
Transformer-based models have also been introduced in TFS
tasks. The Self-Attention mechanism of the Transformer
model, which enables it to efficiently extract features from
time series and capture dependencies among elements in long
sequences [17, 18], has significantly improved the accuracy
of long-term forecasting. Reformer [19], Informer [20], and
Autoformer [21] are excellent variants of the Transformer
model that demonstrate outstanding performance in TFS
tasks.

However, all Transformer-based models face some com-
mon problems [22, 23]. Firstly, the Self-Attention mech-
anism is a time-consuming process. In Fig. 2, we depict
the computation of the Self-Attention mechanism, where
it becomes evident that 16 computations are required to

consider merely 4 input elements. As a consequence of
the imperative requirement to perform pairwise comparisons
of attention weights between each position and all other
positions within the input sequence during the computation
process, a quadratic computational complexity arises, leading
to a pronounced escalation in both computational and mem-
ory overhead as the length of the input sequence undergoes
substantial extension. In other words, the temporal and spatial
complexities manifest as O(L2). Even a relatively short input
will bring huge costs. Secondly, if the model reads too much
input sequence, it can fall into a local optimal solution.
Based on the previous, this can increase computational cost.
However, if too little data is read, it will fail to build a model.
Thirdly, Unlike NLP tasks, TSF tasks exhibit a notable
distinction in which the informational content encapsulated
within a solitary time step is circumscribed, thereby limiting
the capacity of individual time steps to convey substantial
significance. These three aspects impede the applicability of
Transformer-based models in the context of TFS tasks.

To address these challenges, researchers have proposed
various methods. Reformer addresses these issues using
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Fig. 2. Illustration of Self-Attention Computation Complexity

Locality Sensitive Hashing Attention and Chunking Feed-
forward Neural Network (HA-CFNN) layers to reduce time
and space costs. However, this approach only works when
the input sequence is excessively long. Informer proposes
a ProbSparse Self-Attention calculation and Self-Attention
Distilling, which can reduce computational cost. However, it
may limit the efficiency of information utilization and affect
the prediction quality. Autoformer overcomes the bottleneck
of information utilization through the Decomposition Archi-
tecture and Auto-Correlation mechanism. However, it spends
too much time searching for the periodic characteristics of
time series data, making it unsuitable for training on datasets
with weak periodicity.

Therefore, to overcome the abovementioned problems, we
have designed a new model that can better handle TFS tasks.
We have made several improvements to the Transformer-
based TFS model and proposed several structural changes
to increase forecasting accuracy.

B. Variables-isolating Mechanism in Other Fields

Variables-isolating, which involves processing data in dif-
ferent dimensions, is used in various fields. One such field
is CV, where AlexNet performs independent convolution
operations on different channels to improve the model’s
accuracy and efficiency [24]. Moreover, Ioffe and Szegedy
introduced a batch normalization operation, which performs
independent normalization on each channel to reduce internal
covariate shifts and enhance the robustness of the model [25].
However, despite the widespread use of this technique in CV,
it has been scarcely adopted in TSF tasks.

C. Cut-up Mechanism in Other Fields

Cut-up involves splitting a sequence into smaller frag-
ments and has been widely used in various deep-learning
models. In NLP, Taku Kudo was the first to adopt subword
tokenization with an unigram language model [26]. While
BERT, the most famous example of this technique, uses
subword-based tokenization instead of traditional character-
based tokenization [27]. In CV, YOLO divides the input
image into multiple small blocks for processing, which
improves the speed and accuracy of the model’s detection
capabilities [28, 29]. Similarly, UTNet has made significant
progress in the medical image field by dividing the input

image into multiple small blocks for processing [30–32]. This
approach can also be applied to TFS tasks by splitting the
input sequence into smaller parts, where each part represents
one token instead of a one-time step representing one token.

III. PRELIMINARY

To begin with, we should clearly define TSF tasks. Given
a set of observation values Xd×L = [xt1 , xt2 , . . . , xtL ]
from time t1 to tL and the corresponding real values
Yd×T =

[
ytL+1

, ytL+2
, . . . , ytL+T

]
from time tL+1 to tL+T .

Our objective is to locate a function or model that satisfies
Equation (1):

f(xt1 , xt2 , . . . xtL) = [ŷtL+1
, ŷtL+2

, . . . , ŷtL+T
] (1)

Naturally, all previous work and our work should
aim to minimize the gap between the real values[
ytL+1

, ytL+2
, . . . , ytL+T

]
and forecasting values

[ŷtL+1
, ŷtL+2

, . . . , ŷtL+T
]. The L and T represent the

length of the observed and forecasted values, which may
not be equal in typical circumstances. The d in observation
value Xd×L and real value Yd×T represents dimension that
may also differ. The d in the real values is typically 1.
While in the observed values, it is usually greater than 2.

One of the most well-known models for TSF tasks is
the Transformer, which is based on an exciting mechanism
called Self-Attention. Like humans, the Transformer model
prioritizes specific parts of data using the Self-Attention
mechanism. This mechanism can accept n inputs that im-
pact each other and then identify the significant points for
attention score calculation. The output from the module is
the attention score of these interactions.

The Transformer model relies heavily on the attention
mechanism to capture global dependencies between input
and output. As depicted in Fig. 1, the Self-Attention module
is the cornerstone of both the encoder and decoder modules.
Notably, the encoder and decoder are similar, with minor
differences in structure. Unlike the RNN model, which en-
counters the vanishing gradient problem due to diminishing
gradients during training and requires n− 1 steps to process
the n − th input, the Transformer and Transformer-based
models have a direct path of only 1, thereby circumvent-
ing the vanishing gradient issue. The Transformer model’s
remarkable capacity to capture long-term dependencies and
interactions confers substantial advantages for TSF tasks.
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IV. METHODS

We proposed a new model to solve the mentioned prob-
lems, which includes a variables-isolating mechanism and
cut-up mechanism, as well as an improved Transformer
model. The specific flowchart can be seen in Fig. 3.

A. Variables-isolating Mechanism

The multivariate time series represents a dataset with
multiple variables. Each time step may contain a diverse
set of information. In traditional Transformer-based models,
all variables are read simultaneously. This can make input
tokens with multiple dimensions and increase computational
complexity.

Correspondingly, a variables-isolating mechanism is em-
ployed to partition the input value Xd×L split into
(X1, X2, . . . , Xd). Each Xi (where i ∈ 1, 2, . . . , d) denotes
a single feature in Xd×L with length L. Consequently,
a one-dimensional input sequence is formed, which the
Transformer model processes. Each Transformer module can
handle the input more efficiently and lower computational
costs by processing univariate sequences with shared weights
across all dimensions.

We proposed a learnable weighting vector denoted as
W1×d, possessing a dimension equivalent to the number
of variables within the inputs. Each constituent element of
this vector signifies the weight assigned to its corresponding
variable, serving the purpose of weighting and amalgamating
the prediction results associated with each variable. Indepen-
dent predictions for each variable undergo multiplication by
this designated weighted vector, with the resultant values
subjected to summation, thus engendering an overarching
prediction. This process can be expressed as Equation (2):

RV i =

d∑
i = 1

wi × ŷi (2)

Within this equation, RV i means the final weighted av-
erage summation result, and wi denotes the value at the
ith position of the weight vector, while ŷi represents the
predicted value of the ith variable. Initially set to a uniform
value of 1, the weights are regarded as learnable parame-
ters, amenable to optimization throughout model training to
minimize prediction errors or other pertinent metrics.

Incorporating a variables-isolating mechanism in TSF
tasks can result in three major benefits [33]. Firstly, it enables

a simplified model that predicts each variable independently
without influences from other variables. Secondly, the overall
accuracy of time series prediction can be improved by using
different prediction methods for each variable, given that the
prediction of each variable is independent. Thirdly, feature
engineering can be simplified by applying different feature
engineering methods to each variable independently without
considering the impact of other variables. Thereby can reduce
the complexity of feature engineering.

B. Cut-up Mechanism

Through the application of variables-isolating, standard-
ization, and normalization operations, the module divides the
input into fixed-length segments. It discards any remaining
data that does not meet the minimum length requirement.
However, determining the appropriate length involves various
factors [34], such as data length, the information density of
the data itself, time scale, and task requirements. Fig. 4(a)
indicates that the modeling time decreases as the segment
length increases. Fig. 4(b) demonstrates that the accuracy is
the highest when the segment length is 32. The error bar in
Fig. 4(a) is the standard deviation of five experiments.

Assuming the initial input possesses a length denoted as
L equivalent to the extent of observation values, the number
of segments following this partitioning is designated as N ,
with each segment uniformly possessing a length denoted as
l. In order to optimize the exploitation of information within
the time series data, an overlapping arrangement is instituted
among these segments, characterized by the parameter o.
Then, we can get a simple equation: N = L/(l − o). This
equation means the cut-up mechanism can reduce the original
input sequence’s length to 1/(l− o). When o is set to 0, the
input length can be significantly reduced to 1/l, enabling the
model to process more input data while maintaining the same
computational complexity.

Each segment is treated as a single token. The model
will hand them over to the improved Transformer model for
further processing to obtain the prediction result. There are
two reasons for using the cut-up mechanism. Firstly, time
series exhibit strong locality, meaning adjacent values are
highly similar. Therefore, it is reasonable to base the attention
calculation on segments. Secondly, the cut-up mechanism can
improve forecasting performance by allowing the model to
read more extended observable sequences.
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C. Transformer Model

We employ the Transformer’s encoder module to extract
time dependencies in time series. First, applying the linear
transformation matrix WL ∈ RL×N and the position
encoding matrix WPE ∈ RL×D shown in Equation (3).

PE(pos, 2i) = sin(
pos

1000
2i
dk

)

PE(pos, 2i+1) = cos(
pos

1000
2i
dk

)
(3)

Then, the model utilizes the learnable weight matrices
WQ ∈ RD×dk , WK ∈ RL×dk , WV ∈ RL×dk to convert
input Xi into Query(Q), Key(K), V alue(V ), where dk
represents the embedding dimension. The conversion process
is shown in Equation (4).

Qj = W j
QX

T
i , j = 1, 2, . . . , 8

Kj = W j
KXT

i , j = 1, 2, . . . , 8

Vj = W j
V X

T
i , j = 1, 2, . . . , 8

(4)

Attention scores are obtained after performing a scaled
dot-product operation of Equation (5) among Q, K, and V .
In this equation, Q ∈ RLQ×d, K ∈ RLK×d, V ∈ RLv×d,
d means dimension.

Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
V (5)

Further improvements will be discussed in the following
section. In addition, the multi-head attention mechanism is
employed to enhance the model’s performance. As shown in
Equation (6), the Transformer model will calculate multiple
sets of Q, K, and V .

Qi = WQ (WLX
T
i + WPEX

T

i ), Qi ∈ RL×dk

Ki = WK (WLX
T
i + WPEX

T

i ), Ki ∈ RL×dk

Vi = WV (WLX
T
i + WPEX

T

i ), Vi ∈ RL×dk

(6)

This mechanism extends the Self-Attention mechanism by
projecting input feature vectors onto multiple attention heads,
with the vanilla Transformer defaulting to 8. That is as shown
in Equation (7), calculate 8 groups of attention mechanisms.

headj = Attention (Qj , Kj , Vj) , j = 1, 2, . . . , 8 (7)

Attention weights and outputs are calculated for each head,
and the outputs from all attention heads are concatenated to
form the final output. This process is as described in Equation
(8). Different Q, K, and V increase the model’s expressive
power, and computation can be parallelized. Furthermore,
multi-head attention can enable the model to learn distinct
feature representations in different subspaces, each focusing
on a specific aspect of attention.

MutilHeadAttention (Q, K, V )

= Concat(head1, head2, . . . , head8 )
(8)

After the multi-head attention calculation, the data is
propagated through a batchNorm layer and a feed-forward
network layer with residual connections. The final out-
put is obtained via a feed-forward layer, which com-
putes a feed-forward calculation on the Self-Attention
layer’s output. The resulting output is denoted by Ŷ =
(ŷtL+1

, ŷtL+2
, . . . , ŷtL+T

).

D. Dynamic ProbSparse Attention Calculation Mechanism

The Informer proposed the ProbSparse Attention mecha-
nism to enhance the efficiency and storage of Self-Attention
computations. This mechanism only considers interactions
between a small subset of adjacent positions in the input
sequence rather than comparing all positions. The adjacent
positions are selected based on dot-product similarity calcu-
lations where only the most relevant positions are included
in the interaction. Consequently, the attention weight matrix
generated from this approach contains a sparse subset of
non-zero elements, significantly reducing computational and
storage costs. Informer uses the Equation (9) to measure the
i− th Q′s sparsity.

M (Qi K) = ln

LK∑
j=1

e
QiK

T
j√

d − 1

Lk

LK∑
j=1

QiK
T
j√
d

(9)

Based on this measurement, the ProbSparse Attention
converts the Self-Attention Equation (5) into the following
Equation (10). Q̄ is a sparse matrix with the same size as Q
and it contains only queries that are active in QL,where L
means the length of Q.
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Attention (Q, K, V ) = softmax

(
Q̄KT

√
dk

)
V (10)

However, the ProbSparse Attention mechanism possesses
several drawbacks:

1) Being a sparse attention mechanism, it may overlook
critical inputs, leading to inaccurate results and ineffi-
cient use of information.

2) Its inability to handle long sequences is widespread
among Transformer-based models.

3) Sparse operations can have adverse effects on sparse
input sequences.

As a remedy, we propose a dynamic ProbSparse Attention
calculation mechanism. This mechanism switches to the full-
attention calculation if it detects a Q that appears too dense.
Conversely, if the Q′s sparsity conforms to Equation (2),
the mechanism will use the ProbSparse attention calculation.
Moreover, we will use half of LQ instead of lnLQ to enhance
information utilization.

V. EXPERIMENT

A. Datasets

VarSeg-Trans has been assessed on multiple popular
datasets, including Weather, Electricity, and ETT (ETTh1,
ETTh2, ETTm1). These datasets typically exhibit higher
timesteps and more excellent stability, decreasing suscep-
tibility to overfitting. Table II summarizes the statistical
information about these datasets.

TABLE II
OVERVIEW OF EXPERIMENT DATASETS

Datasets Number of
Features

Number of
Instances

Start Date
-End Date

Duration
(Months)

ETTh1 8 17520 2016.07-2018.07 24

ETTh2 8 8760 2016.07-2018.07 24

ETTm1 8 70080 2016.07-2018.07 24

Weather 13 35065 2010.01-2013.12 47

Electricity 9 2075259 2006.12-2010.11 47

1) ETT: This dataset contains historical temperature and
weather data for ten power transformers in a particular
region of China. Each transformer has multiple sensors
that record temperature values at different positions.
Additionally, the dataset includes daily weather condi-
tions such as temperature, humidity, wind speed, and
weather types. The primary use of the ETT dataset is for
predicting the temperature of power transformers, aiding
engineers and researchers in forecasting future temper-
ature trends.The ETT dataset has three different time
scales, the 2-hour level, 1-hour level, and 15-minute
level, which we refer to as ETTh2, ETTh1, and ETTm1,
respectively. The dataset is split into train/val/test sets
of 12/4/4 months.

2) Weather: This dataset collects hourly climate data from
1,600 locations in the United States from 2010 to 2013,
including the forecast target "wet bulb" and 11 other
climate indicators. The train/val/test is 28/10/10 months.

3) Electricity: This dataset comprises 2,075,259 measure-
ments of residential electricity consumption in kilowatt-
hours, recorded at 15-minute intervals, within a house-
hold located in Sceaux, a vicinity situated 7 kilometers
from Paris, France, spanning from December 2006 to
November 2010.

B. Baselines and Experimental Setting

To assess the performance of VarSeg-Trans in the con-
text of time series forecasting (TSF), we have chosen to
compare it against three Transformer-based TSF models and
the LSTM model, a widely employed baseline in the TSF
domain. A concise overview of these baseline models is
provided below:

1) Autoformer: In essence, Autoformer operates on a prin-
ciple akin to the Transformer architecture. Its distin-
guishing feature lies in its fusion of the advantages
of the self-attention mechanism, a core component of
the Transformer, and autoregressive modeling. The self-
attention mechanism enables the model to consider
interdependencies among different positions when pro-
cessing sequential data. At the same time, autoregres-
sive modeling empowers the model to predict the next
element based on the known sequence.

2) Informer: The Informer model is a deep learning ar-
chitecture designed explicitly for time series forecast-
ing. Its primary advantage lies in effectively capturing
and predicting temporal patterns within sequential data
types. Key features of the Informer model include its
efficient Transformer architecture, enabling the handling
of long-term dependencies, and adaptability to irregu-
larly sampled time series data. The architecture of In-
former incorporates components such as the ProbSparse
Attention mechanism, temporal convolution layers, and
autoregressive forecasting. Collectively, these attributes
provide robust tools and methodologies for its applica-
tion in time series analysis.

3) Reformer: Reformer, a deep learning model based on
the Transformer architecture, is characterized by its
remarkable capacity to preserve high performance while
substantially mitigating the demands on memory and
computational resources. In the context of large-scale
sequences, Reformer introduces the concept of local
hashed attention, a technique that effectively reduces
computational complexity. Furthermore, Reformer in-
corporates sparse attention mechanisms, significantly
lowering self-attention’s computational cost, rendering
it particularly suitable for extended sequences. Addi-
tionally, Reformer can enhance its model’s performance
through a trainable sorting mechanism applied to input
sequences.

4) LSTM: LSTM is a deep learning model widely em-
ployed in time series forecasting tasks. Its principal
characteristic lies in its internal architecture, which
facilitates the effective capture and utilization of long-
term dependencies within time series data. The core
components of an LSTM model include memory cells,
each endowed with the ability to store and update
information. This distinctive structure enables the model
to retain information relevant to past data points, which
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TABLE III
VARSEG-TRANS AND OTHER BASELINE MODELS COMPARISON

Datasets Forecasting
Steps

VarSeg-Trans Autoformer Informer Reformer LSTM

MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2

ETTh1

24 0.334 0.380 0.942 0.329 0.422 0.937 0.340 0.431 0.921 0.367 0.427 0.892 0.403 0.504 0.883

48 0.377 0.453 0.911 0.393 0.483 0.887 0.407 0.450 0.891 0.392 0.472 0.875 0.620 0.715 0.827

96 0.418 0.449 0.874 0.437 0.451 0.854 0.449 0.464 0.847 0.440 0.543 0.799 0.966 1.288 0.744

192 0.449 0.537 0.834 0.464 0.542 0.808 0.522 0.623 0.796 0.563 1.204 0.746 1.513 1.609 0.629

ETTh2

24 0.129 0.201 0.924 0.182 0.237 0.918 0.159 0.236 0.919 0.194 0.231 0.885 0.378 0.594 0.853

48 0.147 0.212 0.908 0.196 0.253 0.888 0.188 0.249 0.889 0.224 0.268 0.838 0.593 0.654 0.823

96 0.186 0.253 0.850 0.204 0.284 0.843 0.197 0.278 0.829 0.246 0.322 0.804 0.874 1.106 0.759

192 0.210 0.265 0.822 0.254 0.301 0.805 0.249 0.320 0.771 0.270 0.310 0.742 1.447 1.533 0.620

ETTm1

24 0.253 0.277 0.948 0.276 0.329 0.900 0.250 0.301 0.912 0.283 0.314 0.912 0.411 0.624 0.885

48 0.340 0.373 0.927 0.383 0.426 0.870 0.372 0.394 0.865 0.377 0.454 0.861 0.704 0.902 0.822

96 0.382 0.402 0.859 0.411 0.464 0.834 0.495 0.554 0.813 0.528 0.548 0.790 1.095 1.253 0.762

192 0.432 0.513 0.801 0.458 0.479 0.806 0.501 0.625 0.770 0.542 0.634 0.742 1.471 1.563 0.615

Weather

24 0.117 0.178 0.931 0.119 0.173 0.881 0.115 0.168 0.927 0.204 0.239 0.890 0.267 0.602 0.859

48 0.162 0.211 0.874 0.173 0.229 0.884 0.187 0.217 0.861 0.222 0.271 0.858 0.409 0.720 0.809

96 0.204 0.237 0.868 0.228 0.331 0.829 0.241 0.340 0.838 0.249 0.304 0.801 0.896 1.247 0.759

192 0.242 0.293 0.806 0.263 0.374 0.795 0.270 0.390 0.785 0.288 0.326 0.768 1.337 1.554 0.617

Electricity

24 0.143 0.184 0.940 0.147 0.168 0.906 0.139 0.167 0.939 0.183 0.211 0.878 0.137 0.173 0.952
48 0.168 0.209 0.876 0.178 0.202 0.857 0.190 0.228 0.867 0.194 0.250 0.841 0.300 0.346 0.791

96 0.182 0.266 0.851 0.195 0.317 0.803 0.204 0.345 0.824 0.224 0.336 0.777 0.732 0.843 0.737

192 0.217 0.293 0.829 0.234 0.323 0.763 0.241 0.378 0.761 0.239 0.370 0.749 1.249 1.609 0.616

can be referenced in subsequent time steps. Addition-
ally, LSTM leverages gating units to control the flow of
information rigorously. Lastly, the multi-layered struc-
ture of LSTM permits the model to learn and represent
the inherent properties of time series data at various
levels of abstraction.

We use Python and Pytorch deep learning architecture to
implement the above five models. The model training and
validation were performed on a Linux server with an Intel(R)
Xeon(R) Silver 4214R CPU @ 2.40GHz and an NVIDIA
RTX 2080Ti (11GB) GPU. To evaluate their performance,
we will set the length of the observation values L=96 and the
length of forecasting values T∈{24, 48, 96, 192}. In addition,
we partitioned the five datasets into training, validation, and
test sets in a ratio of 6:2:2, respectively. In the case of
Transformer-based models, it is necessary to set the number
of encoders and decoders to be the same and ensure that
other parameters, such as the sizes of Q, K, and V , are the
same. We run each model five times for each dataset and use
the average value as the result.

C. Evaluation Metrics

We use three evaluation indicators, MAE, MSE, and
R-squared, to evaluate the difference between a model’s
forecasting and actual values. The MSE is calculated by sub-
tracting the predicted value from the actual value, squaring
the difference, and taking the mean. The MAE is similar to
the MSE, but instead of squaring the difference. It takes the
absolute value of the difference. The calculation Equation

(11) is as follows:

MSE =
1

n

n∑
i=1

(ŷ − y)
2

MAE =
1

n

n∑
i=1

|ŷ − y|
(11)

R-squared (R²), also referred to as the coefficient of
determination, serves as a statistical metric for assessing a
regression model’s efficacy in fitting observed data. It quan-
tifies the extent to which a regression model elucidates the
variance exhibited by the dependent variable. The customary
range for R-squared values is 0 to 1. An R-squared of 0
signifies the model’s inability to account for the variance
within the dependent variable. In contrast, an R-squared of 1
denotes that the regression model offers a comprehensive
representation of the variance in the dependent variable.
Consequently, higher R-squared values closer to 1 signify
an improved model fit. To calculate R², a series of steps is
undertaken:

1) Compute the sum of squares of the discrepancies be-
tween the predicted values ŷ generated by the model
and the actual observed values y, referred to as the Sum
of Squares for Error (SSE).

2) Calculate the sum of squares of the discrepancies be-
tween the actual observed values y and the mean of
the observed data y, denoted as the Sum of Squares for
Total (SST).

3) Finally, R² is derived using the following Equation (12):

R2 = 1 −

n∑
i = 1

(yi − ŷi)
2

n∑
i = 1

(
yi − −

y i

)2 = 1 − SSE

SST
(12)

In summary, among the three evaluations mentioned above
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TABLE IV
VARSEG-TRANS AND OTHER MODELS (% DIFFERENCE)

Datasets Forecasting
Steps

Metrics

MSE MAE R2

ETTh1

24 1.52% -9.95% 0.53%

48 -3.83% 0.67% 2.24%

96 -4.35% -0.44% 2.34%

192 -3.23% -0.92% 3.22%

ETTh2

24 -18.87% -12.99% 0.54%

48 -21.81% -14.86% 2.14%

96 -5.58% -8.99% 0.83%

192 -15.66% -11.96% 2.11%

ETTm1

24 12.00% -7.97% 3.95%

48 -8.60% -5.33% 6.55%

96 -7.06% -13.36% 3.00%

192 -5.68% 7.10% -0.62%

Weather

24 1.74% 2.89% 0.43%

48 -6.36% -2.76% 1.13%

96 -10.53% -22.04% 3.58%

192 -7.98% -10.12% 1.38%

Electricity

24 2.88% 9.52% -1.26%

48 -5.62% 3.47% 1.04%

96 -6.67% -16.09% 3.28%

192 -7.26% -9.29% 8.65%

metrics, the superior forecasting capability of a model is
indicated by lower values of MSE and MAE, along with
a higher value of the coefficient of R².

D. Result and Analysis

As is shown in Table III, we have presented the predictive
results of various models across five different datasets and
for five distinct forecasting horizons. Optimal results are
denoted in bold, while the second-best results are underlined.
In Table IV, we conducted an in-depth analysis of VarSeg-
Trans compared to the other models to better represent the
experimental outcomes. Positive values in the MSE and
MAE columns signify that VarSeg-Trans did not achieve the
best performance within the specified dataset and forecast
range, with the numerical values quantifying the extent of
the deviation from the optimal results. Conversely, negative
values indicate that VarSeg-Trans outperformed the second-
best result within the designated dataset and forecasting
range, with the numerical values reflecting the degree of its
superiority. As for the R² column, positive values indicate
that VarSeg-Trans achieved the best performance within the
given dataset and forecast range, with the numerical values
measuring the extent of its superiority over the second-best
results, while negative values signify that VarSeg-Trans did
not attain the optimal results within the designated dataset
and forecast range, with the numerical values representing
the disparity from the optimal results.

Compared to other models, VarSeg-Trans exhibits a note-
worthy advantage on the ETTh1 dataset, with reductions
of 2.47% in MSE, 2.66% in MAE, and a 2.08% increase
in R² across four distinct forecast horizons. On the ETTh2
dataset, VarSeg-Trans outperforms other models by reducing

MSE and MAE by 15.48% and 12.2%, respectively, with a
1.41% R² improvement. In the case of the ETTm1 dataset,
VarSeg-Trans surpasses other models with a 2.33% reduction
in MSE, a 4.89% reduction in MAE, and a 3.22% increase
in R² across four forecast horizons. For the Weather dataset,
VarSeg-Trans outperforms other models with MSE and MAE
reductions of 5.78% and 8.01%, respectively, alongside a
1.63% increase in R² across four forecast horizons. Lastly, on
the Electricity dataset, VarSeg-Trans excels by reducing MSE
and MAE by 4.17% and 3.1%, respectively, and increasing
R² by 2.93% across four forecast horizons in comparison to
the second-best model.

For brevity, we classify forecast horizons less than or
equal to 48 as short-to-medium-term forecasting, while those
greater than 48 are categorized as long-term forecasting.
Baseline comparisons reveal that LSTM delivers strong per-
formance for 24-step forecasts on specific datasets. However,
due to inherent issues with gradient vanishing, its perfor-
mance lags behind Transformer-based models for forecasts
exceeding 24 steps. Reformer’s Hashing Attention mecha-
nism effectively mitigates errors for longer forecast horizons.
However, it performs poorly for short horizons, resulting in
an overall drop in performance due to increased short-to-
medium-term forecast errors. Notably, VarSeg-Trans’ cut-
up mechanism successfully mitigates these issues. Auto-
former’s Auto-Correlation mechanism yields decent results
for datasets with pronounced periodicity but falters when
dealing with less cyclic data. Furthermore, it struggles when
the period length of data exceeds the forecast horizon since
Autoformer fails to identify the data’s periodicity. The top-
performing model overall, except for VarSeg-Trans, Informer
benefits from the ProbSparse Self-Attention mechanism, pro-
viding solid performance for short-to-medium-term forecasts.
Nevertheless, when it comes to forecast horizons exceeding
48, its mechanism proves ineffective in leveraging neighbor-
ing time series data, resulting in performance degradation.
In contrast, VarSeg-Trans’s cut-up mechanism and improved
Attention computation can better harness this aspect, yielding
superior results for long-term forecasts.
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Fig. 5. Mitigating Overfitting with Variable-Isolating
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E. Ablation Experiments

To validate the effectiveness of each module and its
impact, a series of ablation experiments were conducted on
the ETTh1 dataset. Based on the various components of the
VarSeg-Trans model, three variants were designed, namely:

1) Seg-Trans: This variant removes the variable-isolation
feature from VarSeg-Trans and uses Variable Mixing to
handle variable inputs. It aims to test the effectiveness
of the variable-isolation mechanism.

2) Var-Trans: In this variant, the removal of the cut-up
mechanism transforms VarSeg-Trans, treating each time
point as a single input, with the primary objective of
thoroughly evaluating the effectiveness of the cut-up
mechanism.

3) VarSeg-Inform: In this variant, the Transformer model
in VarSeg-Trans is replaced with the Informer model,
specifically using Dynamic ProbSparse Attention in-
stead of ProbSparse Attention. The goal is to evaluate
the effectiveness of Dynamic ProbSparse Attention in
VarSeg-Trans.

These variants were designed to evaluate and validate
the impact of individual components of the VarSeg-Trans
model on its performance. This approach aims better to
understand the model’s working principles and advantages.
Table V presents the ablation experiments’ results on our
proposed model and its various sub-models. The Var-Trans
model without the cut-up mechanism significantly decreases
performance in long-term forecasting scenarios among all
sub-models. This corroborates the effectiveness of the cut-
up mechanism in significantly enhancing the model’s accu-
racy in long-term prediction tasks. The cut-up mechanism
empowers the model to treat multiple time points as a single
input, thereby fully leveraging the information from adjacent
data points in the time series.

Furthermore, we replaced our improved Transformer
model with the Informer, which resulted in the most pro-
nounced performance decline. This indicates the effective-
ness of our proposed Dynamic ProbSparse Attention mecha-
nism. Our mechanism balances computational accuracy and
time expenditure compared to the original Self-Attention and
ProbSparse Attention mechanisms.

The variables-isolating mechanism primarily comes into

play during model training. In theory, the Variable-mixing
mechanism possesses the capability to discover cross-
variable information. However, it may lead to the model
learning numerous irrelevant features, thus diminishing its
generalization ability and causing overfitting [35]. In Fig. 5,
we illustrate the relationship between test values and epochs.
We employ the complete training data and plot the results
for the first 20 epochs. The results indicate that the variables-
isolating mechanism does not lead to rapid overfitting of the
data.

Another notable characteristic of the cut-up mechanism is
its ability to enhance the model’s capacity to handle longer
input sequences, thereby furnishing more comprehensive
information and significantly improving predictive accuracy.
As depicted in Fig. 6(a), we extended the input sequence
L, and the VarSeg-Trans model utilizing the cut-up mecha-
nism exhibited a considerably smaller increase in prediction
error compared to other Transformer-based models. This
outcome suggests that, unlike other Transformer models,
VarSeg-Trans can effectively exploit valuable information
from longer input sequences. Additionally, this mechanism
effectively mitigates the growth in modeling overhead when
processing extended input sequences, as illustrated in Fig.
6(b). It is worth noting that the time data provided here
is based on specific experimental configurations, and actual
time values may vary depending on different settings.

F. Summarize

VarSeg-Trans surpasses other Transformer-based models
and commonly used deep learning models in time series
forecasting across nearly all metrics. The variables-isolating
mechanism effectively reduces model overfitting. The cut-
up mechanism enhances the model’s ability to analyze more
observation values and detect historical relevance while
reducing computational costs. Additionally, the Dynamic
ProbSparse Attention calculation mechanism improves the
calculation accuracy of ProbSparse Attention, and the time
overhead is almost unchanged.

VI. CONCLUSION

This paper investigates the primary challenges in TSF
tasks and proposes a novel Transformer-based model to ad-
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TABLE V
ABLATION EXPERIMENTS OF VARSEG-TRANS

The original model
and Variants

Forecasting
Steps

Metrics

MSE MAE R2

VarSeg-Trans

24 0.334 0.380 0.942
48 0.377 0.453 0.911
96 0.418 0.449 0.874

192 0.449 0.537 0.834

Seg-Trans

24 0.342 0.391 0.938

48 0.388 0.460 0.902

96 0.417 0.453 0.869

192 0.462 0.550 0.827

VarSeg-Informer

24 0.347 0.427 0.925

48 0.393 0.457 0.894

96 0.420 0.458 0.863

192 0.578 0.667 0.796

Var-Trans

24 0.351 0.402 0.927

48 0.400 0.462 0.894

96 0.431 0.461 0.872

192 0.502 0.581 0.816

dress them. VarSeg-Trans adopts two effective mechanisms,
cut-up and variables-isolating, along with a more accurate
attention calculation mechanism. In contrast to prior works,
VarSeg-Trans successfully mitigates model overfitting, cap-
tures long-term dependencies in time series more effectively,
and reduces modeling time. Experimental results on real-
world data demonstrate the model’s potential for diverse
applications and its suitability as a basis for TSF tasks. The
mechanisms in VarSeg-Trans can be readily integrated into
other models to enhance their ability, paving the way for
future breakthroughs.

We anticipate extensive investigations into VarSeg-
Trans’s performance across diverse real-world scenarios
and domains. We express keen interest in delving into
potential extensions and adaptations that cater to the
challenges of TSF in diverse data types. Additionally, a
compelling avenue for future research lies in unraveling the
interpretability of the model and examining its capacity to
handle uncertainty in time series forecasting tasks effectively.
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