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Abstract—This paper focuses on the S-asymptotically ϖ-
periodic oscillation for a type of fractional-order fuzzy Cohen-
Grossberg neural networks (CGNNs) by employing some prop-
erties of Mittag-Leffler mappings and fixed point theorems.
Further, the global asymptotic stability of CGNNs is received.
For CGNNs, our works in this paper not only enrich its
theoretical achievements, but also expand its application scope.

Index Terms—Cohen-Grossberg, Mittag-Leffler function,
global stability, asymptotic periodicity.

I. INTRODUCTION

COHEN and Grossberg in 1983 [1] produced Cohen-
Grossberg neural networks (CGNNs), which are of in-

terest to numerous academics by virtue of its prospective ap-
plications. These manipulations are reliant on the networks’
dynamics. Therefore, learning the above dynamics is the
prerequisite required for the programming of the operation
to neural networks. As well known, an optimization problem
is strictly related to their equilibriums, so neural networks
are commonly adopted to tackle optimization problems. It
is not surprising, in these contexts, that we should place a
high value on their equilibriums. There are also findings
of the neural dynamical systems that address more than
just stability, as well as many other dynamical behaviors,
such as periodicity, see [2–4]. Lately, several monographs are
related to the aforementioned features of equilibrium points
in CGNNs, also other dynamical behaviors, see [5–8].

Fractional calculus [9–14] has a history of over three hun-
dred years. The wonderful of the derivative one is nonlocal,
the other is its future state relies on both present and past
states, which makes it more accurate to describe the problem
compared to the classical derivative. Fractional equations
have been employed to characterize lots of realistic problems
in the present day, for instance, heat conduction [15], neural
network [16], biological systems [17], robots [18]. Remark-
ably, fractional-order neural networks (FONNs) have a piv-
otal position in neural networks due to it provides an efficient
method memory and genetic properties [10]. The utilization
of FONNs is remarkable and dynamic characteristics have
become very important research objects in recent years, such
as synchronization [16], approximate periodicity [19, 20],
Hopf bifurcation [21], stability [22, 23] and chaos [24], etc.
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Zadeh [25] in 1965 offered fuzzy logic, which takes into
account uncertainty and ambiguity, and is one of the most
widespread and critical problems in realistic modeling. Yang
and Yang [26] then introduced a novel cellular neural net-
works involved fuzzy logic. It is a fuzzy neural network
features fuzzy logic towards template inputs and/or outputs.
Lately, with its advantages in the areas of picture processing,
etc., fuzzy neural networks have drawn an increasing amount
of attention, see [27–30].

The two principal motivations for the work in this paper,
with the above discussion in mind, are as follows. First of all,
the periodically movement in real-world applications is an in-
triguing and important dynamic property of neural networks,
given that numerous living and cognitive activities are regular
repetitions of actions such as heartbeat, movement, memory,
etc. In this regard, there is an importance of examining
the periodicity of neural networks to find out how they
works. Up to now, various researchers have discussed the
periodicity or almost periodicity of classical CGNNs [29, 31–
36]. However, there are few literatures dealing with periodic
oscillations to fractional-order neural networks (FONNs), re-
sulting from the non-periodicity of fractional-order differ-
ential equations (FODEs) [37], which exhibit asymptotic pe-
riodicity alone, see [38–40]. Secondly, some literatures [38–
42] have studied the Mittag-Leffler stability for FONNs free
of time lag. It is important to note that, according to same
methods as articles [38–42], the result that FONNs with time
variable lags is the Mittag-Leffler stable cannot be yielded.
Therefore, this article focuses on asymptotic periodicity and
global asymptotic stability of fractional-order fuzzy CGNNs
involved time-varying lags (FOCGNNs).

The remainders of this article are arranged below. Some
useful preliminaries for fractional-order calculus and Mittag-
Leffler function are reviewed in section 2. section 3 discusses
that FOCGNNs (1) admits a sole S-asymptotical ϖ-periodic
oscillation (S-APOϖ). In section 4, the global asymptotic
stability of the FOCGNNs (1) is acquired in accordance with
Laplace transform, the comparison principle and the stability
theorem. In section 5, a numerical example is presented
to illustrate the validity and feasibility of our work. We
conclude the findings of this paper and look forward to the
future work in section 6.

II. PREVIOUS PREPARATIONS

Notations: Rn stands for the family of real vectors in n-
dimension, Z = {. . . ,−2,−1, 0, 1, 2, . . .}, Z+ = {1, 2, . . .},
C is complex set and Cn(Ω,Rn) is a collection consisting of
continuous and differentiable functions up to order n: Ω ⊆
Rn → Rn.
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A. Model description

For simplicity, let

pℏi (t) = ℏi
(
xi(t)

)
=

∫ xi(t)

0

1

di(s)
ds with ℏi(0) = 0,

Λℏ
i

(
pi(t)

)
= λpi(t)− ai

(
pℏi (t)

)
and ℏ−1

i stand for the inverse function of ℏi for λ > 0,
i = 1, 2, . . . , n.

This article considers the following nonlocal CGNNs:
cDγ

0pi(t) = −λpi(t) + Λℏ
i

(
pi(t)

)
+

n∑
j=1

bij(t)gj
(
pℏj (t− σj(t))

)
+

n∨
j=1

ϑijgj
(
pℏj (t− σj(t))

)
+

n∧
j=1

νijgj
(
pℏj (t− σj(t))

)
+

n∨
j=1

Tijβj

+
n∧

j=1

Hijβj + Ji(t), t > 0, (1)

with initial conditions

pi(s) = φi(s), s ∈ [−σ, 0],

in which σ = max1≤j≤n supt>0 σj(t),
cDγ

0 denotes Caputo
frctional derivative of the order γ ∈ (0, 1], pi is the ith
state, di > 0 shows an amplification function, ai(0) = 0,
gj denotes the neuronal function, bij represents the ijth
strength, Ji is the input, ϑij , νij , Pij , Hij are the operating
elements of fuzzy models, i, j = 1, 2, . . . , n.

In terms of the discussion in our previous work [30], if
γ = 1 in CGNNs (1), then it is equivalent to

dxi(t)

dt
= −di

(
xi(t)

)[
ai
(
xi(t)

)
−

n∑
j=1

bij(t)gj
(
xj(t− σij)

)
−

n∨
j=1

ϑijgj
(
xj(t− σij)

)
−

n∧
j=1

νijgj
(
xj
(
t− σj

))
−

n∨
j=1

Tijβj −
n∧

j=1

Hijβj − Ji(t)

]
, t > 0, (2)

where i = 1, 2, . . . , n.

B. Some definitions and lemmas

Definition II.1 ([10]). For g ∈ Cn([t0,∞),Rn), the frac-
tional derivative of f in sense of Caputo with γ-order can
be given by

cDγ
t0g(t) =

1

Γ(n− γ)

∫ t

t0

g(n)(s)

(t− s)γ−n+1
ds

for 0 < n− 1 < γ < n, n ∈ Z+.

Definition II.2 ([10]). The types of Mittag-Leffler mappings
can be described by

Eγ(z) :=
∞∑
k=0

zk

Γ(γk + 1)
, Eγ,β(z) :=

∞∑
k=0

zk

Γ(γk + β)
,

where z ∈ C, γ, β > 0.

Lemma II.1 ([10]).
d

dz
[zγEγ,γ+1(κz

γ)] = zγ−1Eγ,γ(κz
γ),

where γ, κ, z ∈ C.

Lemma II.2 ([42]). lim
t→∞

tγEγ,γ+1(−κtγ) =
1

κ
and

tγEγ,γ+1(−κtγ) ≤ 1
κ for κ > 0, γ ∈ (0, 1], t ≤ 0.

Lemma II.3 ([20]). If c, κ > 0 and γ ∈ (0, 1], then

lim
t→∞

Eγ(−κtγ) = 0,

lim
t→∞

∫ c

0

(t− s)γ−1Eγ,γ [−κ(t− s)γ ]ds = 0.

III. S-APOϖ OF FOCGNNS

Let ∥x∥1 = max
1≤i≤n

|xi| for any x = (x1, x2, . . . , xn)
⊤ ∈

Rn. Set ḡ = sup
t≥0

|g(t)| and g = inf
t≥0

|g(t)| for bounded

function g defined on [0,+∞).

Definition III.1 ([38, 39]). Assume that g ∈
C([t0,+∞),Rn) and there is a positive constant ϖ
ensuring that lim

t→+∞
∥g(t + ϖ) − g(t)∥1 = 0, then g is

S-APOϖ.

In FOCGNNs (1), let the assumptions below hold.
(H1) bij , Ji are S-APOϖ and σj(t+ϖ) = σj(t) with ϖ > 0,

i, j = 1, 2, . . . , n.
(H2) There exists Lg

j > 0 satisfying |gj(x)−gj(y)| ≤ Lg
j |x−

y|, ∀x, y ∈ R, j = 1, 2, . . . , n.

(H3) 0 < νi =
1

λ

[
Lλ
i +

n∑
j=1

(
b̄ij + |ϑij | + |νij |

)
Lg
j d̄j

]
<

1, i = 1, 2, . . . , n.

Let Sϖ={z ∈ C([0,+∞),Rn) : z is S-APOϖ with
φi(s), s ∈ [−σ, 0]}. Then Sϖ is Banach space with norm
∥z∥∞ = sup

t≤0
max
1≤i≤n

|pi(t)|.

Consider the system:{ cDγ
0 z(t) = −az(t) + b(t)f(z(t− σ)), t > 0,

z(s) = φ(s), s ∈ [−σ, 0],
(3)

where a ∈ R is a positive constant, b(t) ∈ C(R,Rn×n) is S-
asymptotically ϖ-periodic function, there exists Lg > 0 such
that g(x) ∈ C(Rn,Rn) satisfies the following condition

∥g(x)− g(y)∥1 ≤ Lg∥x− y)∥1, ∀x, y ∈ Rn.

For each ϕ(t) ∈ Sϖ, it gets g(ϕ(t)) ∈ Sϖ. Then, we research{ cDγ
0 z(t) = −az(t) + b(t)g(ϕ(t− σ)), t > 0,

z(s) = φ(s), s ∈ [−σ, 0].
(4)

Via [10], (4) is depicted as

z(t) = zϕ(t) = φ(0)Eγ(−atγ)

+
∫ t

0
(t− s)γ−1Eγ,γ [−a(t− s)γ ]

×b(s)g(ϕ(s− σ))ds, t > 0

z(s) = zϕ(s) = φ(s), s ∈ [−σ, 0].

(5)

Based on Eqs. (5), let P : ϕ → zϕ (i.e., Pϕ = zϕ),∀ϕ ∈
Sϖ. If operator P owns a sole fixed point ϕ∗ ∈ Sϖ, then
ϕ∗ = Pϕ∗ = zϕ

∗
. From Eqs. (5), ϕ∗ is the unique S-APOϖ

of Eqs. (3).
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According to FOCGNNs (1) and Eqs. (4), the following
system should be considered

cDγ
0pi(t) = −λpi(t) + Λℏ

i

(
ϕi(t)

)
+

n∑
j=1

bij(t)gj
(
ϕℏj (t− σj(t))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (t− σj(t))

)
+

n∧
j=1

νijgj
(
ϕℏj (t− σj(t))

)
+

n∨
j=1

Tijβj +
n∧

j=1

Hijβj + Ji(t), t > 0,

pi(s) = φi(s), s ∈ [−σ, 0], i = 1, 2, . . . , n

for any ϕ = (ϕ1, ϕ2, . . . , ϕn)
⊤ ∈ Sϖ.

Define the following operator

P : ϕ→ zϕ, ∀ϕ ∈ Sϖ :

Pϕ =
(
(Pϕ)1, (Pϕ)2, . . . , (Pϕ)n

)⊤
= (zϕ1 , z

ϕ
2 , . . . , z

ϕ
n)

⊤ = zϕ, (6)

where

(Pϕ)i(t) = pϕi = φi(0)Eγ(−λtγ)

+
∫ t

0
(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
[
Λℏ
i

(
ϕi(s)

)
+

n∑
j=1

bij(s)

×gj
(
ϕℏj (s− σj(s))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (s− σj(s))

)
+

n∧
j=1

νijgj
(
ϕℏj (s− σj(s))

)
+

n∨
j=1

Tijβj +
n∧

j=1

Hijβj + Ji(s)
]
ds, t > 0,

(Pϕ)i(s) = p
ϕ(s)
i = φi(s), s ∈ [−σ, 0],

(7)

where i = 1, 2, . . . , n. Same as the discussion of Eqs. (5),
we can conclude that if ϕ∗ ∈ Sϖ is the sole fixed point of
operator P , then ϕ∗ = Pϕ∗ = zϕ

∗
is the sole S-APOϖ of

Eqs. (1).

Remark III.1. If γ = 1 in system (1), then it is a classical
integer-order model:

dpi(t)

dt
= −ai

(
pℏi (t)

)
+

n∑
j=1

bij(t)gj
(
pℏj (t− σj(t))

)
+

n∨
j=1

ϑijgj
(
pℏj (t− σj(t))

)
+

n∧
j=1

νijgj
(
pℏj (t− σj(t))

)
+

n∨
j=1

Tijβj

+
n∧

j=1

Hijβj + Ji(t), t > 0, i = 1, 2, . . . , n,

which is widely researched in literatures [28, 30, 33, 43–
45], such as stability [28], exponential stability [30, 43],
global stability [33], synchronization [30, 44, 45]. Therefore,

the results in this paper enrich these studies in mono-
graphs [28, 30, 33, 43–45] to a certain extent.

Theorem III.1. System (1) owns a sole S-APOϖ, if (H1)-
(H3) and the following assumption are fulfilled.

(H4) It holds that |Λℏ
i (x) − Λℏ

i (y)| ≤ Lλ
i |x − y| for some

Lλ
i > 0, ∀x, y ∈ R, i = 1, 2, . . . , n.

Proof: In the first place, one shows P : Sϖ → Sϖ. For
any ϕ = (ϕ1, ϕ2, . . . , ϕn)

⊤ ∈ Sϖ, ϵ > 0, it has t > t1 > 0
so that

|ϕi(t+ϖ)− ϕi(t)| < ϵ,

|ϕi(t+ϖ − σi(t+ϖ))− ϕi(t− σi(t))|

= |ϕi(t+ϖ − σi(t))− ϕi(t− σi(t))| < ϵ,

|bij(t+ϖ)− bij(t)| < ϵ,

|Ji(t+ϖ)− Ji(t)| < ϵ, i, j = 1, 2, . . . , n.

Besides, ∥ϕ∥∞ < +∞ since ϕ ∈ Sϖ.
According to Eqs. (7), for t > 0, it follows

(Pϕ)i(t+ϖ) = φi(0)Eγ(−λ(t+ϖ)γ)

+

∫ t+ϖ

0

(t+ϖ − s)γ−1

×Eγ,γ [−λ(t+ϖ − s)γ ]
[
Λℏ
i

(
ϕi(s)

)
+

n∑
j=1

bij(s)gj
(
ϕℏj (s− σj(s))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (s− σj(s))

)
+

n∧
j=1

νijgj
(
ϕℏj (s− σj(s))

)
+

n∨
j=1

Tijβj +

n∧
j=1

Hijβj + Ji(s)
]
ds

= φi(0)Eγ(−λ(t+ϖ)γ)

+

∫ t

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
[
Λℏ
i

(
ϕi(s+ϖ)

)
+

n∑
j=1

bij(s+ϖ)gj
(
ϕℏj (s+ϖ − σj(s))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (s+ϖ − σj(s))

)
+

n∧
j=1

νijgj
(
ϕℏj (s+ϖ − σj(s))

)
+

n∨
j=1

Tijβj +
n∧

j=1

Hijβj

+Ji(s+ϖ)
]
ds. (8)

So,

(Pϕ)i(t+ϖ)− (Pϕ)i(t)

= φi(0)Eγ(−λ(t+ϖ)γ)

−φi(0)Eγ(−λtγ)
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+

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
[
Λℏ
i

(
ϕi(s+ϖ)

)
− Λℏ

i

(
ϕi(s)

)
+

n∑
j=1

bij(s+ϖ)gj
(
ϕℏj (s+ϖ − σj(s))

)
−

n∑
j=1

bij(s)gj
(
ϕℏj (s− σj(s))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (s+ϖ − σj(s))

)
−

n∨
j=1

ϑijgj
(
ϕℏj (s− σj(s))

)
+

n∧
j=1

νijgj
(
ϕℏj (s+ϖ − σj(s))

)
−

n∧
j=1

νijgj
(
ϕℏj (s− σj(s))

)
+Ji(s+ϖ)− Ji(s)

]
ds

+

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
[
Λℏ
i

(
ϕi(s+ϖ)

)
+

n∑
j=1

bij(s+ϖ)gj
(
ϕℏj (s+ϖ − σj(s))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (s+ϖ − σj(s))

)
+

n∧
j=1

νijgj
(
ϕℏj (s+ϖ − σj(s))

)
+

n∨
j=1

Tijβj +

n∧
j=1

Hijβj + Ji(s+ϖ)
]
ds

= λi1(t) + λi2(t) + λi3(t) + λi4(t)

+λi5(t) + λi6(t) + λi7(t) + λi8(t)

+λi9(t) + λi10(t) + λi11(t) + λi12(t)

+λi13(t) + λi14(t). (9)

where

λi1(t) = φi(0){Eγ [−λ(t+ϖ)γ ]− Eγ(−λtγ)},

λi2(t) =

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

{Λℏ
i [ϕi(s+ϖ)]− Λℏ

i [ϕi(s)]}ds,

λi3(t) =

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
n∑

j=1

[bij(s+ϖ)− bij(s)]

×gj
[
ϕℏj (s+ϖ − σj(s))

]
ds,

λi4(t) =

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]
n∑

j=1

bij(s)

×{gj [ϕℏj (s+ϖ − σj(s))]− gj [ϕ
ℏ
j (s− σj(s))]}ds,

λi5(t) =

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
{ n∨

j=1

ϑijgj
[
ϕℏj (s+ϖ − σj(s))

]
−

n∨
j=1

ϑijgj
[
ϕℏj (s− σj(s))

]}
ds,

λi6(t) =

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
{ n∧

j=1

νijgj
[
ϕℏj (s+ϖ − σj(s))

]
−

n∧
j=1

νijgj
[
ϕℏj (s− σj(s))

]}
ds,

λi7(t) =

∫ t

0

(t−s)γ−1Eγ,γ [−λ(t−s)γ ]
[
Ji(s+ϖ)−Ji(s)

]
ds,

λi8(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]Λℏ
i

(
ϕi(s+ϖ)

)
ds,

λi9(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
n∑

j=1

bij(s+ϖ)gj
(
ϕℏj (s+ϖ − σj(s))

)
ds,

λi10(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
n∨

j=1

ϑijgj
(
ϕℏj (s+ϖ − σj(s))

)
ds,

λi11(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
n∧

j=1

νijgj
(
ϕℏj (s+ϖ − σj(s))

)
ds,

λi12(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]
n∨

j=1

Tijβjds,

λi13(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]
n∧

j=1

Hijβjds,

λi14(t) =

∫ 0

−ϖ

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×Ji(s+ϖ)ds,

where t > 0, i = 1, 2, . . . , n.
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For any ϵ > 0, there is t2 > t1 satisfying

|λi1(t)| < ϵ, ∀t > t2, i = 1, 2, . . . , n. (10)

There is a fact that Eγ,γ [−λtγ ] ≥ 0 for t ≥ 0. According to
assumption (H4), it obtains

|λi2(t)|

≤
∣∣∣ ∫ t1

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]{Λℏ
i [ϕi(s+ϖ)]

−Λℏ
i [ϕi(s)]}ds

∣∣∣+ ∣∣∣ ∫ t

t1

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×{Λℏ
i [ϕi(s+ϖ)]− Λℏ

i [ϕi(s)]}ds
∣∣∣

≤ 2Lλ
i ∥ϕ∥∞

∫ t1

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]ds

+Lλ
i ϵ

∫ t

t1

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]ds

≤ 2Lλ
i ∥ϕ∥∞

∫ t1

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]ds+ Lλ
i ϵ

×(t− t1)
γEγ,γ+1[−λ(t− t1)

γ ],

∀t > t1, i = 1, 2, . . . , n. By Lemmas II.2-II.3, there exists
t3 > t2 so that

|λi2(t)| <
2Lλ

i

λ
ϵ, ∀t > t3, i = 1, 2, . . . , n. (11)

In line with Corollary 1 in paper [26], there exists t4 > t3
such that

|λi3(t)| <
2

λ

n∑
j=1

(Lg
j d̄j∥ϕ∥∞ + |gj(0)|)ϵ, (12)

|λi4(t)| <
2

λ

n∑
j=1

b̄ijL
g
i d̄jϵ, (13)

|λi5(t)| <
2

λ

n∑
j=1

ϑijL
g
i d̄jϵ, (14)

|λi6(t)| <
2

λ

n∑
j=1

νijL
g
i d̄jϵ, (15)

|λi7(t)| <
2

λ
ϵ, |λi8(t)| < Lλ

i ∥ϕ∥∞ϵ, (16)

|λi9(t)| <
n∑

j=1

|bij |[Lg
j d̄j∥ϕ∥∞ + |gj(0)|]ϵ, (17)

|λi10(t)| <
[ n∑

j=1

|ϑij |Lg
j d̄j∥ϕ∥∞

+
n∨

j=1

|ϑij ||gj(0)|
]
ϵ, (18)

|λi11(t)| <
[ n∑

j=1

|νij |Lg
j d̄j∥ϕ∥∞

+
n∧

j=1

|νij ||gj(0)|
]
ϵ, (19)

|λi12(t)| <
n∨

j=1

|Tij ||βj |ϵ, (20)

|λi13(t)| <
n∧

j=1

|Hij ||βj |ϵ, (21)

|λi14(t)| < J̄iϵ, t > t4, i = 1, 2, . . . , n. (22)

From Eqs. (10) to Eqs. (22), a sufficiently large M exists to
guarantee that

|(Pϕ)i(t+ϖ)− (Pϕ)i(t)| < Mϵ, t > t4, i = 1, 2, . . . , n,

namely, Pϕ ∈ Sϖ.
Subsequently, the contractility for operator P will be

stated. For ϕ, ψ ∈ Sϖ, by Eqs. (7) and Lemmas II.1-II.2,
it gets

(Pϕ)i(t)− (Pψ)i(t)

=

∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]

×
[
Λℏ
i

(
ϕi(s)

)
− Λℏ

i

(
ψi(s)

)
+

n∑
j=1

bij(s)gj
(
ϕℏj (s− σj(s))

)
−

n∑
j=1

bij(s)gj
(
ψℏ
j (s− σj(s))

)
+

n∨
j=1

ϑijgj
(
ϕℏj (s− σj(s))

)
−

n∨
j=1

ϑijgj
(
ψℏ
j (s− σj(s))

)
+

n∧
j=1

νijgj
(
ϕℏj (s− σj(s))

)
−

n∧
j=1

νijgj
(
ψℏ
j (s− σj(s))

)]
ds

≤
[
Lλ
i +

n∑
j=1

(
b̄ij + |ϑij |+ |νij |

)
×Lg

j d̄j

]
∥ϕ− ψ∥∞

×
∫ t

0

(t− s)γ−1Eγ,γ [−λ(t− s)γ ]ds

≤ 1

λ

[
Lλ
i +

n∑
j=1

(
b̄ij + |ϑij |+ |νij |

)
×Lg

j d̄j

]
∥ϕ− ψ∥∞, t ≥ 0 (23)

for i = 1, 2, . . . , n. By means of assumption (H4), it gets

∥Pϕ(t)− Pψ(t)∥∞ ≤ max
1≤i≤n

1

λ

[
Lλ
i +

n∑
j=1

(
b̄ij + |ϑij |

+|νij |
)
Lg
j d̄j

]
∥ϕ− ψ∥∞

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 12-20

 
______________________________________________________________________________________ 



= max
1≤i≤n

νi∥ϕ− ψ∥∞.

So P has the feature of contraction, which admits only one
ϕ∗ = Pϕ∗ and ϕ∗ is S-APOϖ of model (1). This completes
the proof.

Remark III.2. In view of assumption (H4) and the ex-
pression Λℏ

i

(
pi(t)

)
= λpi(t) − ai

(
pℏi (t)

)
(i = 1, 2, . . . , n),

we can see that there is a close relationship between
Lλ
i (i = 1, 2, . . . , n) and λ. To be precise, we need ai is

a nondecreasing function as di > 0 for i = 1, 2, . . . , n.

Remark III.3. The assumption (H3) in literature [48] de-
mands the boundedness of function gj(j = 1, 2, . . . , n),
which is very restricted. Whereas, we remove it in this paper.
For this reason, compared with literature [48], the present
text possesses apparent advantages.

Remark III.4. In light of assumption (H3) in Theorem
III.1, it is worth noting that the Lipschitz constants Lg

j and
Lλ
i (i, j = 1, 2, . . . , n) respectively in conditions (H2) and

(H4) and the coefficients of Eqs. (1) are preferably smaller
positive constants, in contrast, λ is a larger positive constant.

Remark III.5. Assumptions (H2)-(H4) in Theorem III.1
imply that the uniqueness of solution to Eqs. (1) remains un-
affected by time-varying delays. However, in order to achieve
the S-APOϖ for Eqs. (1), delay σj(t)(j = 1, 2, . . . , n) is
required to be periodic. Naturally, there is an open problem
whether the conclusion is valid in case delay σj(t)(j =
1, 2, . . . , n) is S-asymptotically ϖ-periodic.

IV. GLOBAL ASYMPTOTICAL STABILITY (GAS)

Lemma IV.1 ([47]). Let us study the following FODEs
cDγ

0wi(t) ≤ −aiwi(t) + bi

n∑
j=1

wj [t− σj(t)], t > 0,

wi(t) = ϕi(t) ≥ 0, t ∈ [−σ, 0], σ = max
1≤i≤n

sup
t>0

|σj(t)|,

and
cDγ

0pi(t) = −aipi(t) + bi

n∑
j=1

pj [t− σj(t)], t > 0,

pi(t) = ϕi(t) ≥ 0, t ∈ [−σ, 0],
(24)

where wi, pi ≥ are continuous on [0,+∞), i = 1, 2, . . . , n.
If ai > 0 and bi > 0, then wi(t) ≤ pi(t), ∀t ≥ 0, i =
1, 2, . . . , n.

Lemma IV.2 ([20]). Assume that σ̇+
j = supt≥0 σ̇j(t) <

1(i = 1, 2, . . . , n) and min
1≤i≤n

ai > max
1≤j≤n

n∑
i=1

bi

1− σ̇+
j

in

system (24), then system (24) is GAS.

A. Stability result for FOCGNNs

Set

Lg = max
1≤j≤n

Lg
j , Lλ = max

1≤i≤n
Lλ
i , b̄i∗ = max

1≤j≤n
b̄ij ,

ϑi∗ = max
1≤j≤n

|ϑij |, νi∗ = max
1≤j≤n

|νij |, d̄ = max
1≤j≤n

d̄j

for i = 1, 2, . . . , n.

Lemma IV.3 ([38]). Let x ∈ C1([0,+∞),R). Then
cDγ

0 |x(t)| ≤ sgn(x(t))cDγ
0x(t) for t ≥ 0 and γ ∈ (0, 1).

Theorem IV.1. Model (1) is GAS when (H2), (H4) and

(H5) λ > Lλ + max
1≤j≤n

n∑
i=1

(b̄i∗ + ϑi∗ + νi∗)L
gd̄

1− σ̇+
j

.

are fulfilled.

Proof: Let u = (u1, u2, . . . , un)
⊤ and v =

(v1, v2, . . . , vn)
⊤ solve model (1) and qi = ui − vi, i =

1, 2, . . . , n. So
cDγ

0 qi(t) = −λqi(t) + Λℏ
i

(
ui(t)

)
− Λℏ

i

(
vi(t)

)
+

n∑
j=1

bij(t)gj
(
uℏj (t− σj(t))

)
−

n∑
j=1

bij(t)gj
(
vℏj (t− σj(t))

)
+

n∨
j=1

ϑijgj
(
uℏj (t− σj(t))

)
−

n∨
j=1

ϑijgj
(
vℏj (t− σj(t))

)
+

n∧
j=1

νijgj
(
uℏj (t− σj(t))

)
−

n∧
j=1

νijgj
(
vℏj (t− σj(t))

)
, t > 0. (25)

By Lemma IV.3 and Eqs. (25), it has
cDγ

0 |qi(t)|
= sgn(qi(t))

cDγ
0 qi(t)

= −λqi(t)sgn(qi(t))
+sgn(qi(t))

[
Λℏ
i

(
ui(t)

)
− Λℏ

i

(
vi(t)

)]
+ sgn(qi(t))

×
n∑

j=1

bij(t)
[
gj
(
uℏj (t− σj(t))

)
− gj

(
vℏj (t− σj(t))

)]
+sgn(qi(t))

×
n∨

j=1

ϑij

[
gj
(
uℏj (t− σj(t))

)
− gj

(
vℏj (t− σj(t))

)]
+sgn(qi(t))

×
n∧

j=1

νij

[
gj
(
uℏj (t− σj(t))

)
− gj

(
vℏj (t− σj(t))

)]
≤ (−λ+ Lλ)|qi(t)|+

n∑
j=1

(b̄i∗ + ϑi∗ + νi∗)

×Lgd̄|qj(t− σj(t))|, t > 0, i = 1, 2, . . . , n. (26)

Then
cDγ

0ρi(t) = (−λ+ Lλ)ρi(t) +

n∑
j=1

(b̄i∗ + ϑi∗ + νi∗)

×Lgd̄ρj(t− σj(t)), t > 0,

ρi(s) = |qi(s)| ≥ 0, s ∈ [−σ, 0], i = 1, 2, . . . , n.

By (H5), Lemmas IV.1 and IV.2, lim
t→∞

|qi(t)| ≤
lim
t→∞

ρ(t) = 0, i = 1, 2, . . . , n. It obtains GAS of Eqs. (1).
The proof is end.
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Summarize Theorems III.1 and IV.1, one obtains

Theorem IV.2. System (1) admits a unique globally asymp-
totically stable S-APOϖ if (H1)-(H5) are fulfilled.

Remark IV.1. Hypothesis (H5) illustrates that the global
asymptotic stability of Eqs. (1) depends on delay σ, con-
cretely, it demands σ̇+

j < 1 for j = 1, 2, . . . , n.

Remark IV.2. According to Theorem III.1 and Theo-
rem IV.1, we can see that activation functions gj(·) and Λi(·)
are very important.

Remark IV.3. For the effectiveness of condition (H5), it
is well worth paying attention to the following aspects.
On one hand, the coefficients (bij , ϑij , νij , di) and Lipschitz
constants (Lg

j , L
λ
i )(i, j = 1, 2, . . . , n) should be selected

smaller positive constants. For another, the delay σ̇+
j (j =

1, 2, . . . , n) term should optimally be close to 1 and λ should
be a greater positive constant.

V. NUMERICAL EXAMPLES

Example V.1. We discuss

cD0.4
0 zi(t) = −λzi(t) + Λℏ

i

(
zi(t)

)
+

2∑
j=1

bij(t)gj
(
zℏj (t− σj(t))

)
+

2∨
j=1

ϑijgj
(
zℏj (t− σj(t))

)
+

2∧
j=1

νijgj
(
zℏj (t− σj(t))

)
+

2∨
j=1

Tijβj

+

2∧
j=1

Hijβj + Ji(t), t > 0, (27)

where zi(s) = φi(s) for s ∈ [−1.02, 0] with σi(t) = 1 +
0.02 cos t, Ji(t) = 1+sin

√
3t, βi = 0.1, ai(zi(t)) = 2zi(t),

di(s) =
1

1+0.01 sin s ,

bij(t) =

(
b11(t) b12(t)
b21(t) b22(t)

)

=

(
0.2 + 0.1 sin t 0.3 cos

√
5t

0.3 sin
√
5t 0.2 + 0.1 cos t

)
,

ϑij(t) =

(
ϑ11(t) ϑ12(t)
ϑ21(t) ϑ22(t)

)
=

(
0.1 0.2
0.2 0.4

)

=

(
T11(t) T12(t)
T21(t) T22(t)

)
= Tij(t),

νij(t) =

(
ν11(t) ν12(t)
ν21(t) ν22(t)

)
=

(
0.4 0.5
0.1 0.1

)

=

(
H11(t) H12(t)
H21(t) H22(t)

)
= Hij(t)

for i, j = 1, 2 and

g1(z1(t)) = 0.1| sin(z1(t))|, g2(z2(t)) =
0.02z22(t)

1 + z22(t)
.

Taking λ = 12, it follows from a direct calculation
and MATLAB tool that Lg

1 = 0.1, Lg
2 = 0.04, Lλ =

max1≤i≤2 L
λ
i ≈ 10.0198. Evidently, assumptions (H1),

(H2) and (H4) hold. Besides, for i = 1, one has

1

λ

[
Lλ
1 +

n∑
j=1

(
b̄1j + |ϑ1j |+ |ν1j |

)
Lg
j d̄j

]
∈ (0.8617, 0.8650)

and if i = 2, then

1

λ

[
Lλ
1 +

n∑
j=1

(
b̄2j + |ϑ2j |+ |ν2j |

)
Lg
j d̄j

]
∈ (0.9267, 0.9300).

Furthermore,

Lλ + max
1≤j≤n

n∑
i=1

(b̄i∗ + ϑi∗ + νi∗)L
gd̄

1− σ̇+
j

≈ 10.2925 < 12.

As a consequence, system (27) possesses a single S-
asymptotic ϖ-periodic oscillation, as well as global asymp-
totic stability, see Figures 1-4.

0 1 2 3 4 5 6 7 8 9 10
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0.1

0.15
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z 1(t
)

Fig. 1: State variable z1(t) of Eqs. (27)

0 1 2 3 4 5 6 7 8 9 10
time t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

z 2(t
)

Fig. 2: State variable z2(t) of Eqs. (27)
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Fig. 3: Global asymptotic stability of z1(t) of Eqs. (27)
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Fig. 4: Global asymptotic stability of z2(t) of Eqs. (27)

VI. CONCLUSIONS AND FUTURE WORKS

The present paper learns S-APOϖ in FOCGNNs via ex-
ploiting several crucial pivotal properties, in accordance with
the Volterra integral expression corresponding to FODEs
depicted by Mittag-Leffler function Eγ,β(z), which is a gen-
eralized formulation of the Volterra integral equation corre-
sponding to the integer-order differential equations expressed
by the exponential function ez . Furthermore, FOCGNNs is
GAS. However, there are several outstanding topics that are
worth addressing in the future, highlighted below.

1) The other cases, such as γi ∈ (1, 2] (i = 1, 2, . . . , n),
should be discussed.

2) It is meaningful to take the Mittag-Leffler Euler differ-
ences for Reimann-Liouville nonlocal derivatives into
consideration.

3) Some other dynamical behaviors of FOCGNNs (1) can
be taken into further consideration, such as, Mittag-
Leffler stability, (pseudo) almost period, (pseudo) al-
most automorphism, etc.

4) We can also research dynamical behaviors of impulsive
or stochastic FOCGNNs.

5) Given that biological models are not only affected
by time but also spatially related, it is of interest to
consider fractional-order parabolic CGNNs.
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