
 

  

Abstract—Given that traditional networks lack the ability to 

adaptively fine-tune weight parameters within feature layers 

and solely rely on deep feature data, this paper introduces a 

pioneering tracking algorithm employing a siamese network 

architecture. This algorithm is built upon the dynamic 

convolution and attention fusion of both shallow and deep 

information. Its aim is to enhance tracking performance by 

accurately extracting image features. To begin, we adopted 

ResNeSt as the foundational network architecture. To enable 

the dynamic adjustment of the network feature layer's weight 

parameters, we replaced the first three traditional convolutional 

layers with dynamic convolutional layers, while leaving the last 

two convolutional layers untouched. Next, we integrated 

channel and spatial attention mechanisms into each 

convolutional layer, and fused the third and fifth convolutional 

layers of the two branch networks to yield a pair of 

complementary feature mappings. Ultimately, we fused the 

resulting score map at the fractional level to produce the 

ultimate score map. This approach effectively mitigates the 

impact of similarity interference, enhancing the tracker's 

robustness. The experimental results from OTB2015 and 

VOT2018 datasets unequivocally demonstrate a notable 

enhancement in the tracking performance of this algorithm. 

 
Index Terms—Dynamic convolution, Attention mechanism, 

Siamese network, Deep learning, Feature fusion 

 

I. INTRODUCTION 

S an important branch of machine vision, visual object 

tracking integrates the related technologies of image 

detection and image processing, which has important research 

significance and great challenge. Target tracking technology 

is widely used in many places, including UAV [1], interaction 

between individuals and computational systems [2], 

simulated reality environments [3], and automatic driving [4], 
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playing an important role in modern social life. Currently, the 

primary challenge in visual target tracking technology is its 

limited ability to extract distinctive features from the target 

object when it closely resembles its surrounding environment. 

Additionally, the technology tends to erroneously capture 

similar features from the background information, and it 

struggles when the target object undergoes deformation. The 

network model cannot extract target features well, and it is 

easy to lose important feature points and bright environment. 

Overexposure can readily obscure the key salient attributes 

within the target image, resulting in the inability of real-time 

tracking to be effective, ultimately leading to the loss of the 

tracking target. 

As visual object tracking has advanced, deep convolutional 

neural network (CNN) have emerged as fundamental tools for 

image processing and classification within the realm of 

computer vision. Convolution serves as a pivotal constituent 

within convolutional neural networks. Networks with 

different convolutional structures have different functions, 

but in essence they are all used for feature extraction. At 

present, there are up to 20 convolution methods commonly 

used in deep learning networks, which are mainly divided into 

classical convolution and convolution variants. Classical 

convolutions include convolutional neural networks, group 

convolutions [5], and depth-separable convolutions [6], etc., 

while convolution variants include dynamic convolutions [7], 

asymmetric convolutions [8], and conditional parametric 

convolutions [9]. Among them, some convolutional blocks 

will increase parameter count and additional operations in the 

process of improving target tracking accuracy, but compared 

with improving target tracking accuracy and feature 

extraction capability, their disadvantages can be ignored. 

To tackle the previously mentioned challenges, this 

research introduces a siamese network-based tracking a 

designated target system that leverages dynamic convolution 

and attention fusion techniques to integrate shallow and deep 

information. The primary division encompasses two principal 

segments: 

1) In traditional target tracking model networks, CNNs are 

employed for the extraction of features from target objects, 

with each convolutional kernel having consistent weights. 

The backbone network, ResNeSt [10], is utilized, and a 

dynamic convolution approach is introduced. This 

substitution involves the replacement of the initial three 

convolutional kernels within the foundational network 

architecture with dynamic convolution, while keeping the 

final two convolutional kernels unaltered. Dynamically 
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regulating the weighting of individual convolution kernels 

through the utilization of dynamic convolution. 

2) In the context of image feature extraction, our approach 

involves enhancing the correlation between channel and 

spatial feature information across convolutional kernels. We 

achieve this by introducing spatial and channel attention 

modules following each feature layer in the fundamental 

network structure. We utilize these attention mechanisms to 

elevate similarity and accuracy during the feature extraction 

phase from target objects. The introduction of these 

mechanisms enables the more effective differentiation 

between target image details, background details, and analog 

interference present in the shallow feature maps generated by 

the network. These enhancements allow for the fusion of 

in-depth attributes to boost target tracking effectiveness. We 

employ a fusion network method with jump connections. 

Initially, the two branches are merged at the feature layer, 

blending both shallow and deep features to produce 

complementary feature representations. Following this, the 

feature representations from individual branches are 

correlated with the output features from the network's final 

layer, yielding a pair of similar score maps. Finally, the 

amalgamation of these score maps results in the production of 

the ultimate score map. 

Extensive experimental results indicate the high 

performance of the presented algorithm in recent benchmark 

experiments. The subsequent sections of this paper are 

organized as follows: Section two discusses related work, 

Section three delves into our methodology, Section four 

provides insights into the network's training process and its 

performance evaluation, and finally, Section five concludes 

the study. 

 

II. RELATED WORK 

J.F. Henriques et al. [11] asserted that KCF method played 

a pioneering role in the evolution of correlation-based 

tracking technology, thereby establishing a benchmark for the 

progress of tracking a designated target methods. D.S. Bleme 

et al. [12] asserted the minimum mean square error filtering 

and pioneered the application of correlation-based tracking 

technology to the domain of target localization and tracking. 

The MOSEE filter tracker ran at a speed of 669 frames per 

second, achieving efficient tracking effect. 

The Siamese network consists of two identical branches 

with a unified weight structure. Due to the inherent 

two-branch nature of the Siamese network, the task of 

tracking a designated target is effectively converted into a 

target matching task. This transformation focuses on the 

similarity mapping between the learning search and the target 

image, leading to a significant acceleration in the model's 

tracking speed. SINT [13] pioneered the utilization of the 

Siamese network for target tracking. Within the course of 

their tracking procedure, they generated multiple candidate 

regions and compared them with the initial frame, ultimately 

selecting the most similar target as the network's output. 

Bertinetto et al. [14] presented SiamFC, an algorithm for 

target tracking that is rooted in a fully-convolutional siamese 

network framework. They integrated AlexNet into the 

network to estimate the location of targets through feature 

representations on both branches. The configuration of 

SiamFC is depicted in Figure. 1. Li Bo et al. [15] put forward 

SiamRPN (Siamese Region Proposal Network), based on the 

Fast-RCNN method for object detection. They augmented the 

original network structure with two branches for classification 

and regression and introduced the region proposal network to 

address adaptive bounding box transformations. Qiang Wang 

et al. [16] introduced a mask segmentation module to propose 

the SiamMask algorithm, enabling the unified execution of 

both target tracking and target segmentation. 

Saining Xie et al. [17] introduced the ResNeXt network 

within the ResNet framework, employing group convolution 

to consolidate the multipath structure into a unified operation. 

Zhang et al. [18] presented the SiamDW algorithm, which 

incorporates the internal clipped residual unit (CIR) module 

to address the issue of network performance degradation as 

the network's depth increases. Chen et al. asserted dynamic 

convolution, a technique that dynamically amalgamates 

several parallel convolution cores kernels based on attention 

mechanisms without augmenting the network's depth and 

width. It further allows for the adaptive adjustment of the 

parameterization of individual convolution kernels in 

response to the feature points of the target object. 
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Fig.1.  The Structure of SiamFC. 

 

III. OUR APPROACH 

A. Dynamic Convolution 

Traditional convolutional neural networks classify input 

information by translation invariants. The feature extraction 

of input information is completed in the convolution layer, the 

scaling modification and dimensionality reduction are 

completed in the pooling layer, and the result classification 

and output are completed in the fully connected layer. The 

whole process is transmitted by neurons, as illustrated in 

Figure. 2. After CNN calculation, feature fusion is carried out 

on the local region of each feature map. As the convolutional 

kernel weights remain consistent across each layer, the feature 

map produced when the surrounding environment closely 

resembles the target object fails to emphasize the target's 

distinctive features adequately. Furthermore, traditional deep 

convolutional neural networks entail relatively low 

computational demands. For networks with too many 

convolutional layers and channels, the expression of feature 

extraction ability in feature layer is limited, which leads to the 
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degradation of target tracking performance. Dynamic 

convolution can change the structure of the convolutional 

model without inflating the network's depth and breadth. It 

dynamically consolidates numerous parallel convolutional 

cores according to attention, and dynamically adjust the 

weights of convolutional cores for different feature graphs to 

generate adaptive convolution, so as to dynamically fine-tune 

the weight parameters for each individual convolutional 

kernel. 

In contrast to CNN, each of its layers has a group of K  

concurrent convolution nuclei, represented as  ,k kW b , and 

these convolution nuclei of each individually input x (such as 

an image) are dynamically aggregated using the input 

attention ( ) ( ) ( ) 1 2, , kx x x   , Figure. 3. illustrates 

the attention module. It dynamically modulates the weight 

parameter  1 2, , , k    for the K  convolutional kernels 

based on the input image to achieve the purpose of adaptive 

dynamic convolution. The configuration of the dynamic 

convolutional network is depicted in Figure. 4., and the 

weights and bias linear functions of K convolutional nuclei 

after aggregation are shown as follows. 

 ( ) ( )
1

K

k k

k

W x x W
=

=   (1) 

 ( ) ( )
1

K

k k

k

b x x b
=

=   (2) 

k  symbolizes the attention weighting, ( )W x  denotes the 

aggregation weight, while ( )b x  symbolizes the bias after 

aggregation. 

Building on the research discussed above, we present a 

method to replace traditional convolutional networks with 

dynamic convolutional networks. Given that the conventional 

foundational network architecture, AlexNet, has a limited 

number of network layers, which restricts the tracker's 

enhancement, we opt for ResNeSt as the foundational 

network architecture. Additionally, We removed the ultimate 

full connection layer from the network, as there is no necessity 

for performing classification operations on the results. In 

contrast to the conventional foundational network 

architecture, ResNeSt boasts a greater number of 

convolutional layers and an increased channel count, enabling 

the comprehensive utilization of deep-level characteristics of 

the network in the tracking process. We replace the first three 

CNN convolution kernels in ResNeSt with dynamic 

convolution, leaving the last two unchanged. The trajectory of 

the target subject is consistent. In traditional convolutional 

kernels, when applied to the feature maps of consecutive 

frames, the resulting feature maps are unable to swiftly and 

precisely pinpoint the score locations of the target object. This 

limitation arises from the minor changes between the two 

frames and the uniform weights of each convolutional kernel. 

This leads to the phenomenon of slow target tracking speed 

and tracking failure. With the integration of dynamic 

convolution, the attention module within dynamic 

convolution dynamically adapts the weights of K convolution 

cores based on the input frames. This dynamic adjustment 

allows for the rapid determination of the target object's 

location and facilitates real-time tracking. 
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Fig. 2.  CNN feature transmission. 
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Fig. 3.  Attention Module. 
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Fig. 4.  Dynamic Convolutional Networks. 

 

B. Attention Multi-level Information Fusion Siamese 

Network Tracker 

Traditional trackers such as SiamFC and SiamRPN do not 

perform fractional fusion except for the last layer of feature 

information after feature extraction. The graph after 

visualization of each CNN layer is shown in Figure. 5. It is 

noticeable that as the quantity of network layers rises and the 

network depth increases, the feature map's resolution 

diminishes. The first three layers can roughly identify the 

appearance of the target, and the last two layers can not 

identify the appearance of the target. Shallow features 

encompass high-resolution appearance details and can 

capture fine spatial information within the target image, 

making them well-suited for target localization. Conversely, 

deep features carry lower-resolution semantic information, 

which renders them more resilient in the face of deformable 

target images and ideal for target classification. To enhance 
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the overall performance of target tracking, we suggest 

integrating both shallow and deep features to address and 

complement their respective limitations. 

In the process of feature extraction in dynamic 

convolutional networks, the channel information of feature 

graphs obtained through the underlying convolution is not 

perfect enough. To enhance the connectivity of feature 

information across channels and spatial dimensions among 

convolutional layers, We propose the incorporation of spatial 

and channel attention modules following every feature layer 

within the foundational network architecture. The attention 

mechanism is employed to enhance the similarity and 

accuracy of feature extraction. To extract features from input 

images, we combine two attention mechanisms of CBAM [19] 

module. This adjustment aims to elevate the importance of 

feature points relevant to target tracking within the network 

model while diminishing the significance of irrelevant feature 

points. Consequently, the tracker focuses more on the image 

features critical for target tracking, resulting in an 

enhancement in tracking accuracy. The two attention models 

are illustrated in Figure. 6. and Figure. 7. respectively. The 

channel weight obtained by the channel attention mechanism 

is: 

 
1 2c cMax cAvgM a a   =   (3) 

The spatial attention mechanism obtains the following 

weights: 

 3 3( ( ([ ( )];[ ( )])))sM h cc AvgPool Y MaxPool Y =  (4) 

  is the sigmoid activation function, 
cMaxa  and 

cAvga  are 

channel feature information obtained from maximum pooling 

and average pooling respectively, 
1  and 

2  are fusion 

weights, both set to 0.5, 
cM  is the learned channel attention 

weight. 3 3h    is the 3×3 convolution, cc  is fully connected, 

and 
sM  represents the weight of spatial attention acquired 

through learning. 

Based on the above research, we propose a Siamese 

network based on dynamic convolution and shallow and deep 

information fusion of attention. The network structure is 

shown in Figure. 8. Set template images to 127×127 and 

search images to 255×255. Firstly, the input image is fused at 

the feature level. The method of jump connection is used to 

fuse Dy_conv3 and conv5 in the two branches after passing 

attention and spatial attention, so as to achieve the effect of 

complementation of deep information and shallow 

information. Given the varying sizes and channel dimensions 

of feature representations at different layers in the network, 

we employ maximum pooling and 1×1 convolution modules 

to standardize the fused feature representations, ensuring their 

uniform size. This approach not only standardizes the images 

but also preserves the original spatial information. Then, after 

the fusion of the image features and the last layer of image 

features, two feature representations are obtained. Finally, 

The 1×1 convolution is used to calculate the correlation 

between the two feature graphs, and the final fraction graph 

with the size of 25×25 is obtained. The network for merging 

shallow and deep information, featuring channel attention and 

spatial attention, effectively filters out minor and long-range 

interferences. Consequently, the peak points in the score map 

become more concentrated, eliminating scattered or subtle 

disturbances and thereby enhancing the tracker's accuracy. 

The algorithm's procedural steps are delineated in TABLE I. 

 

 
 

Fig. 5.  Visual Graphics. 
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Fig. 6.  Channel Attention Mechanism. 
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Fig. 7.  Spatial Attention Mechanism. 

 

IV.  BENCHMARK EXPERIMENTS 

A. Experimental Details 

The system environment used in this experiment is Ubuntu 

16.04LTS, the hardware is NVIDIA 2080Ti GPU and an Intel 

Xeon E5 CPU, while MATLAB 2018b serves as the 

experimental tool. 

The data sets used are GOT-10k [20], ILSVRC [21], 

OTB2015 [22], and VOT2018 [23]. The network's 

hyperparameters are configured as follows: learning rate = 

0.005, individual sample size = 16, and cycle count = 80. 

 

B. Training Details 

Given that this paper replaces the conventional AlexNet

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 30-42

 
______________________________________________________________________________________ 



 

template

search

Dy_Conv2



Max-pooling 1 1

Dy_Conv1

Dy_Conv3
Conv4

Conv5

pool

Dy_Conv2



Max-pooling 1 1

Dy_Conv1

Dy_Conv3
Conv4

Conv5

pool

Channel attention  Mc

Spatial attention  Ms

Conv
Add by element

1 1

Mc Ms Mc Ms
Mc

Ms
Mc Ms

Mc Ms

Mc Ms
Mc Ms

Mc Ms
Mc Ms Mc

Ms

 
 

Fig. 8.  The Framework of Dynamic Convolutional Attention Shallow and Deep Information Fusion Network (Dy_Conv represents  

a dynamic convolutional layer). 

 
TABLE I.  ALGORITHM SUMMARY FRAMEWORK. 

 

Feature fusion network algorithm 

Input: Template image z,  1 2, , , nX x x x= (n represents the number of frames where the target object is moving). 

1. Replace the first three layers of CNN of the foundational network architecture with dynamic convolution. 

2. Feature extraction is carried out after two attention mechanisms for each layer of the foundational network architecture 

convolution. 

3. Extract the features of z from the network. 

4. Extract the features of Dy_Conv1, Dy_Conv2, Dy_Conv3, conv4, and conv5. 

5. while (i<n) { 

6. Generate feature maps by maximizing pooling and 1 × 1 convolution fusing z's Dy_Conv2 and conv5. 

7. Combine a pair of complementary feature representations from two branches to derive the ultimate score map. 

8. Filter is used to obtain the ultimate outcome. 

9. } 

Output: Use the target box to track the target object. 

 

backbone network with ResNeSt, which has already been 

initialized with image labels from the ImageNet dataset, we 

proceed to further train the network using ILSVRC and 

GOT-10k datasets. CNN is utilized for feature extraction 

from search images and template images, with the subsequent 

process of generating the final score map post-extraction 

delineated as follows:  

 ( , ) ( ( ), ( ))S z x f z x =  (5) 

( )z  represents template image features, ( )x  represents 

search image features, ( )f  represents related operations, 

( , )S z x  denotes the similarity measure between search 

images and template images, and the primary objective of the 

network is to maximize the value of ( , )S z x . The logical loss 

function is used to train the network, which is defined as: 

 1
( , ) log(1 exp( [ ] [ ]))

u D

L y v y u v u
D 

= + −  (6) 

u  denotes a score point on the score chart,  v u  signifies the 

similarity score associated with that point, and  y u  denotes 

the actual label of the score point. The optimization of the loss 

function is achieved through the application of the stochastic 

gradient descent (SGD) technique, leading to the update and 

acquisition of the network's weight parameters.  y u  is 

defined by the position of any point on the score chart and the 

target center point: 

 1 || ||
[ ]

1

k u c R
y u

otherwise

+ − 
= 

−

 (7) 

k  denotes the iteration step of the neural network, and c 

signifies the centroid of the target image. 

In training, the image is cropped with the target's position 

as the central point, and the search image and template image 

are resized to dimensions of 127×127 and 255×255, 

respectively. When the image clipping area is insufficient, the 

average RGB is used to fill. 
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(a) Precision.                                                                                                         (b) Succession. 

Fig. 9.  The Precision and Succession Plots on OTB2015 with One Pass Evaluation (OPE). 

 
TABLE II.  TRACKER SUCCESSION AND PRECISION SCORES. “IMPROVE" REPRESENTS THE IMPROVEMENT OF OUR TRACKER OVER OTHER  

TRACKERS, AND "SPEED" REPRESENTS THE TRACKING SPEED. 

 

Tracker Precision score Succession score 
Improve(%) 

Speed(FPS) 
Pre.(%) Succ.(%) 

SiamRPN 0.837 0.759 3.35 1.71 200 

SRDCF 0.806 0.738 7.19 4.61 51 

SiamFC 0.783 0.745 10.47 3.62 89 

SAMF 0.772 0.676 12.05 14.20 27 

KCF 0.756 0.632 14.42 22.15 7 

Ours 0.865 0.772 - - 66 

 

Since the dynamic convolution has K  convolution nuclei 

in each layer, respectively  1 2, , , KW W W , which leads to 

difficult training problems, the attention model is constrained 

to parameters ( )
1

1
K

k

k

x
=

=  and ( )0 1k x   to facilitate 

the learning process of the model ( )k x . 

 

C.  OTB2015 Experiment 

The evaluation metrics employed in the OTB2015 dataset 

comprise Success and Precision. The tracker's performance 

robustness is evaluated using the One Pass Evaluation (OPE) 

criterion. 

1) Precision: Compute the proportion of video frames less 

than a given threshold is calculated based on the Euclidean 

distance by the following formula: 

 2 2( ) ( )u r u rs x x y y= − + −  (8) 

( ),u ux y  represents the central point of the predicted 

bounding box, and ( ),r rx y  represents the central point of 

the ground truth bounding box. A lower value indicates better 

tracking performance. A curve can be generated using various 

thresholds, and higher curve values indicate superior tracker 

performance. 

2) Succession: Target tracking success can be measured by 

an overlap score (OS), expressed as follows: 

 | |

| |

bounding box ground truth box
OS

bounding box ground truth box

       
=

       
 (9) 

| |  denotes the pixel count within the specified area. If the OS 

value of any frame surpasses the predefined threshold, it 

signifies a successfully calibrated for that frame. Otherwise, 

the object fails to be calibrated. The typical threshold is 

established at a value of 0.5. 

3) One Pass Evaluation (OPE): In the assessment of 

tracking performance, the testing process exclusively 

leverages the initial frame within the video sequence to 

establish the true target position. Subsequently, the algorithm 

is executed to compute the metrics for succession and 

precision. 

Experimental trials were conducted on the OTB2015 

dataset to compare and analyze the proposed algorithm with 

the current advanced tracking algorithms, including KCF, 

SAMF [24], SRDCF [25], SiamFC and SiamRPN trackers. 

Among them, KCF, SAMF and SRDCF are related filter type 

trackers, and SiamFC and SiamRPN are siamese network type 

trackers. Figure. 9. depicts a comparative chart showcasing 

the outcomes of the proposed algorithm in contrast to other 

tracking algorithms, with "Ours" denoting our proposed 

algorithm. In Figure. 9(a), the precision chart is presented, 

with the score in the upper right corner indicating the tracker's 

performance at a center error of 20 pixels. In Figure. 9(b), the 

success chart is depicted, and the score in the upper right 

corner represents the area under the curve. It can be seen from 
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Fig. 10.  Precision Plots on OTB2015 Over Six Tracking Scenes of In Plane Rotation, Motion Blur, Background Clutter, Fast Motion, 

Out of Plane Rotation and Occlusion. 

 

the figure that this algorithm is superior to other tracking 

algorithms in terms of precision and success rate. For a 

detailed breakdown of the performance differences across 

various tracking algorithms on these two metrics, please refer 

to TABLE II. 

In contrast to SiamRPN, the proposed algorithm exhibits 

enhancements both performance, with improvements of 

3.35% and 1.71%, respectively. Additionally, compared to
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Fig. 11.  Precision Plots on OTB2015 Over Five Tracking Scenes of Scale Variation, Deformation, Low Resolution,  

Out of View and Illumination Variation. 

 

SRDCF, the algorithm achieves remarkable gains, with 

precision and success rates increasing by 7.19% and 4.61%, 

respectively. Regarding tracking speed, the algorithm 

presented in this paper achieves a frame rate of 66 FPS, which 

is 15FPS, 39FPS and 59FPS faster than that of SRDCF， 

SAMF and KCF trackers, respectively. Due to the addition of 

attention mechanisms in the network, and the integration of 

shallow features and deep features, as the network's 

computational complexity increases, it leads to a reduction in 

the tracking speed of the proposed algorithm, but it still meets 
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Fig. 12.  Succession Pots on OTB2015 Over Six Tracking Scenes of In Plane Rotation, Motion Blur, Background Clutter, Fast Motion,  

Out of Plane Rotation and Occlusion. 

 

the real-time tracking requirements. 

To further investigate the tracking algorithm's performance 

across varying environmental conditions, we conducted tests 

in 11 unconstrained environments. The test environment 

includes "Low Resolution", "Background Clutter", "Out of 

view", "out-of-plane Rotation", "In-Plane Rotation", "Fast 

Motion", "Motion Blur", "Deformation", "Occlusion", "Scale 

variation", "Illumination variation". The precision is 

illustrated in Figure. 10. and Figure. 11., and the succession is 

illustrated in Figure. 12. and Figure. 13. 
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Fig. 13.  Succession Pots on OTB2015 Over Five Tracking Scenes of Scale Variation, Deformation, Low Resolution,  

Out of View and Illumination Variation. 

 

The proposed algorithm integrates attention mechanisms, 

and increases the weight of the target image and diminishing 

the impact of the disturbing object during the feature 

extraction process, thus effectively improving the target 

positioning precision. The fusion of shallow feature and deep 

feature leverages the superficial feature's appearance-related 

information thereby significantly diminishing the center error 

between the object prediction frame and the genuine object 

frame. Evident from Figures 10. and 11., our proposed 

algorithm secures the top position in the ranking across 11 
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TABLE III.  TRACKERS’ SCORES OF FIVE INDICATORS IN VOT2018.FOR EACH INDICATOR, RED AND BOLD  

ARE THE BEST, GREEN AND BOLD ARE THE NEXT BEST. 

 

Tracker SiamFC SiamAN SiamRPN TCNN SAMF KCF DSST ColorKCF ACT Ours 

EAO 0.2597 0.2149 0.3402 0.3171 0.1732 0.1732 0.1654 0.2135 0.1521 0.3894 

Acc. 0.3987 0.3974 0.4601 0.4856 0.3387 0.2963 0.3104 0.3312 0.2735 0.5312 

Fail. 20.4196 31.0820 21.5246 18.3524 37.8454 39.0412 45.8868 26.0937 42.8138 14.8761 

Overlap 0.5312 0.5233 0.5781 0.5392 0.1878 0.1878 0.5166 0.4826 0.4244 0.5912 

FPS 103 12 200 1 5 22 13 111 82 57 

 

TABLE Ⅳ.  TEST RESULTS OF DIFFERENT MODULES IN BENCHMARK EXPERIMENTS. 

 

  Without any modules 
+Dynamic 

Convolution 

+attention 

mechanism 

+Shallow and 

deep fusion 
Ours 

OTB2015 Prec. 0.805 0.816 0.849 0.871 0.885 

 Succ. 0.684 0.693 0.698 0.707 0.725 

VOT2018 Acc. 0.4425 0.4596 0.4719 0.5064 0.5148 

 Fail. 17.5861 17.5374 17.1954 16.6824 15.2489 

 Overlap 0.5027 0.5278 0.5634 0.5721 0.5865 

 EAO 0.3375 0.3443 0.3515 0.3862 0.3957 

 FPS 87 78 69 62 58 

 

TABLE Ⅴ.  EXPERIMENTAL RESULTS OF DIFFERENT HISTORICAL FRAMES ON BENCHMARKS. 

 

 1 frame 2 frames 4 frames 5 frames 7 frames 8 frames 9 frames 10 frames 

Prec. 0.892 0.886 0.881 0.873 0.864 0.851 0.847 0.837 

Succ. 0.766 0.759 0.752 0.741 0.736 0.733 0.729 0.725 

EAO 0.3954 0.3924 0.3885 0.3826 0.3778 0.3714 0.3689 0.3613 

FPS 71 68 64 59 52 47 44 42 

 

unconstrained environments. Background Clutter and 

Occlusion are the two scenarios with the most significant 

improvement. The precision is 1.87% and 9.17% higher than 

SiamRPN respectively. It was 24.70% higher than SRDCF 

and 17.19% higher than SiamFC, which ranked third. As can 

be seen from Figure. 12. and Figure. 13., our proposed 

algorithm secures the top position in the ranking across eleven 

unconstrained environments, and the improvement is most 

obvious in Scale variation and Out of view scenarios, with a 

succession 0.79% and 3.42% higher than that of SiamRPN 

ranked second, respectively. It was 2.56% and 15.26% higher 

than SiamFC, which ranked third. 

 

 
 

Fig. 14.  The Robustness-Accuracy Ranking of Ten Trackers on VOT2018. 

The Closer The Location is to The Upper Right Corner, The Better The 

Performance. 

 

D.  VOT2018 Experiment 

VOT2018 uses robustness, overlap, and Expected Average 

Overlap (EAO) to evaluate the tracker's performance. 

1) Robustness: Robustness is assessed by measuring the 

count of unsuccessful frames that were tracked, hence, a 

lower value indicates improved tracker robustness. 

2)EAO: The tracker's robustness and accuracy are assessed, 

with superior performance indicated by higher values. 

On VOT2018, the proposed algorithm was tested and 

compared with KCF, DSST [26], SAMF, ACT [23], 

ColorKCF [27], TCNN [28], SiamAN [23], SiamFC and 

SiamRPN. Figure. 14. is a comparison chart of robustness and 

accuracy in the VOT2018 dataset. The proximity of a 

tracker's performance to the chart's upper-right corner 

indicates its superiority in both aspects. The figure suggests 

that the proposed algorithm exhibits elevated performance in 

both robustness and accuracy. 

TABLE III details the tracking performance of the 10 

trackers in terms of EAO, Accuracy, Failures (Robustness), 

Overlap and FPS. Based on the data presented in the table, it 

can be deduced that the algorithm introduced in this research 

attains the highest performance across the four metrics of 

EAO, Accuracy, Failures (Robustness) and Overlap. Among 

them, EAO was 14.46% higher than the second-ranked 

SiamRPN, Accuracy was 9.39% higher than the 

second-ranked TCNN, Failures was 18.94% higher than the 

second-ranked TCNN, Overlap was 2.27% higher than the 

second-ranked SiamRPN. 

 

E.  Ablation Study 

1) Different Modules: A series of ablation experiments 

were devised to assess the impact of different functional 

modules on tracking performance. The results of these 

experiments are presented in TABLE IV for further analysis. 

The term "Without any modules" signifies that the sole 

mechanism employed for target tracking is the ResNeSt 

backbone network, and "+" means that relevant functional 

modules are added on the basis of ResNeSt. 

TABLE Ⅳ Results show that using ResNeSt for target 
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tracking within the network enhances the tracker's 

performance. Because of the distinct characteristics exhibited 

by various layers, replacing traditional deep convolutional 

networks with dynamic convolutional networks, the 

performance of the network can be improved by adding 

attention mechanism on each feature layer of the network and 

integrating shallow and deep features. Nevertheless, as the 

network's layer count increases and more modules are 

incorporated, the amount of network computation increases, 

resulting in a significant decrease in tracking speed. The 

module performance variation showed the same trend on both 

data sets. 

2) Historical Frames: To further assess the impact of 

historical frames on tracking outcomes, we selected different 

history frames to conduct relevant ablation experiments, as 

shown in TABLE Ⅴ. Upon reviewing the table, we can 

discern that, as a greater number of image frames are utilized, 

the tracking performance of the network gradually diminishes, 

and the tracker's speed decreases as well. This occurrence can 

be ascribed to the existence of preceding motion data within 

the archival frames, wherein the images have been in motion, 

but the recorded data isn't entirely precise and contains some 

errors. The continued accumulation of historical frames does 

not yield improved target tracking performance but, rather, 

results in a decline in tracking performance. 

 

V.   CONCLUSION 

In traditional deep convolutional neural networks, 

convolution nuclei of the same feature layer have the same 

weight when generating feature maps. When the number of 

convolutional layers and convolutional channels is too large, 

the target tracking performance deteriorates due to the small 

computation. Furthermore, disregarding the impact of 

shallow features on tracking performance. This neglect of 

shallow features contributes to the tracker's diminished 

robustness when dealing with similar targets. We propose a 

siamese network based on dynamic convolution and shallow 

and deep information fusion is proposed. Firstly, the 

traditional AlexNet backbone network has been substituted 

with ResNeSt, with the initial three layers of the network 

being replaced by dynamic convolution, while the 

convolutional kernels in the final two layers remain 

unchanged. The weights of feature points within the 

representations of the initial three network layers are 

dynamically fine-tuned, facilitating the expeditious 

determination of the target object's location within the image. 

Then, channels and spatial attention mechanisms are 

incorporated into each convolutional layer to enhance the 

likeness and precision of target feature extraction. Secondly, 

the convolution results from the third and fifth layers of both 

network branches are merged following the convolution 

process. This merger yields a pair of complementary fraction 

graphs, enhancing the tracker's discriminative ability at a 

sub-pixel level for target-background differentiation. Finally, 

the proposed algorithm, along with several other 

state-of-the-art algorithms, is evaluated using OTB2015 and 

VOT2018 datasets. Experimental results indicate that the 

proposed algorithm outperforms in terms of tracking speed, 

accuracy and robustness, and achieves real-time tracking 

effect. 
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