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Abstract—This paper highlights the impact of specific struc-
tural parameters of an LSTM network on the relevance of the
prediction results obtained based on the temporal physical data
of a polymer material subjected to aging. Several parameters
are compared in this study, such as the type of interpolation
functions, the number of hidden layers, the number of units per
hidden layer, and the activation function used within the LSTM
network. The dataset is based on experimental data derived
from gravimetric measurements of an epoxy adhesive subjected
to hygrothermal aging for three different temperatures (50°C,
70°C, and 90°C) and relative humidity by 95%. It is possible to
use interpolation functions to fill the missing data specific to this
type of experimental data. Using a single hidden layer of 150
units with a hyperbolic tangent type activation function leads
to the best results. The results are less sensitive to the change
of interpolation functions. This work first showed the relevance
of using LSTM to predict the evolution of an irregular physical
parameter over time, such as gravimetry. This article also
highlights that the choice-specific parameters will significantly
influence the results and the stability of the model.

Index Terms—Artificial Neural Network, LSTM parameters,
small dataset, prediction, adhesive.

I. INTRODUCTION

ARTIFICIAL neural networks (ANN) are increasingly
used in materials to meet the needs of extensive

calculations and deepen knowledge of engineering
materials, processes, and structures [1], [2]. Integrating many
parameters without determining the exact physical law or
the mathematical model associated with a physicochemical
mechanism is possible. Indeed, the prediction method based
on neural networks does not need to rely on models (that for
some processes are quite complex) and has the advantage of
solving nonlinear problems [3], which facilitates modeling or
prediction issues, for example. Furthermore, a network can
be used for different applications because it demonstrates a
certain “universality.” The structure of the neural networks
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and the notation used are the same regardless of the field of
use of this tool.

Different approaches of ANN have proven to be suitable
for predicting the behavior of different materials. For
instance, authors in [4] have used active learning to predict
the strength of epoxy from a small dataset. Moreover, neural
networks have been used to predict the fatigue life of natural
rubber composites [5]. At the same time, the prediction of
Young’s modulus for silicate glasses has been made with
sparse datasets using Gaussian process regression for ANN
[6]. Recently, the determination of aging conditions by
analysis of infrared spectra using ANN has been done in [7].

Different types of ANNs exist and are used in materials
science, such as MLP (for MultiLayer Perceptron) networks.
A multilayer perceptron is a type of neural network most
used in supervised and unsupervised learning, consisting
of several layers of interconnected neurons. It is used for
classification and regression problems [8]. For example, Zhu
et al. [9] rely on a small dataset to predict the lifetime of
an epoxy resin. Ding et al. [10] rely on neural networks
to predict the macroscopic mechanical properties (such as
Young’s modulus) and the appearance of microscopic cracks
in polymer composites reinforced with unidirectional fibers.

Other authors rely on convolutional neural networks
(CNN) for image recognition. Indeed, a convolutional
neural network (CNN) is a neural network designed to
process images or signals. It is, therefore, used for problems
of image classification and object detection. It relies on
convolution filters to extract features from input data and
pooling layers to reduce its dimensionality [8]. For example,
Hsu et al. [11] use modeling of crack propagation within
a material that a CNN will analyze and then transmit
to a recurrent network (RNN) to predict the evolution
of the crack. MLPs and CNNs are potent tools to make
configurational predictions by the association of parameters
or classifications of data.

Previous studies show consistency between experimental
values and values calculated by neural networks [7], [9].
Predictive modeling by neural network seems suitable for
predicting a parameter related to the aging of a material as
faithfully as possible.

RNNs predict the evolution of parameters over time
in a wide variety of fields, such as soil geotechnics
[12], voice recognition [13], spread of COVID-19 disease
worldwide [14], or prediction of the autonomy of lithium-ion
batteries in electric cars [15]. In the case of materials, they
are increasingly used to predict, for example, the glass
transition temperature of polymers [16], the laser cutting
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parameters of basalt fibers [17], or even tear propagation on
textiles, intended for spatial purposes [18].

Based on these state-of-the-art results, RNNs are the
most suitable for predicting the evolution of a parameter
over time, in other words, the evolution of a time series.
Among the category of RNNs, LSTMs (for Long Short
Term Memory) are suitable tools for time series. LSTMs
were proposed in 1997 by Hochreiter and Schmidhuber [19]
to learn dependencies and retain information over the long
term. This network, therefore, has a larger memory capacity
and additional stability, avoiding the problems of gradient
explosion [20].

A major constraint in materials science is that, in general,
experimental datasets are limited and expensive to build.
Datasets present in the literature can be either scattered or
noisy and inconsistent. For these reasons, it is challenging to
obtain a consistent and complete source of information on
the properties of polymeric materials. It can, therefore, be
challenging to use AI tools on materials science applications
as the lack of data can lead to over-fitting issues and,
consequently, to a loss of reliability regarding the predic-
tions made. Over-fitting appears when the network learns
the training dataset “too” well and cannot adapt to new
data. In addition, other essential issues are applicability and
feasibility in LSTMs with small datasets. Indeed, the LSTM,
by its structure and operation, requires that the data respect
the periodicity principle, meaning that the time step between
two samples does not change. Therefore, this constraint
will inevitably lead to missing data problems since it is
impossible to carry out tests with the same time difference
of the order of an hour. Thus, assigning missing data is the
priority step of data preprocessing.

However, there are different ways to circumvent this
experimental problem to obtain sufficiently reliable results.
Authors in [4] have used, for example, an active learning
“pipeline” (otherwise called “optimal experimental design”).
Zhu et al. rely on physical material degradation models to
increase the data [9]. To analyze crack propagation within a
material, Hsu et al. use numerical crack simulations to feed
their LSTM network [11]. Thus, to circumvent this missing
data problem, relying on physical laws [9], numerical
simulation tools [11], or modules directly integrated within
the network is possible [4]. Our study is based on another
method to limit the problems related to a restricted dataset:
interpolation functions, which are mathematical tools that
recreate all the data between two experimental points.

Another problem related to the neural network, in general,
appears in the choice of network parameters. Indeed, in
many articles, the choice of parameters is not discussed in
depth because there is no absolute rule to determine the
network parameters. Often, the programming experience
makes it possible to choose one parameter or another. This
study compares the impact of different parameters to justify
the choice of specific parameters (like time step, number of
layers, or number of nodes) and to determine, to a certain
extent, the best combination for the dataset transmitted to
the LSTM.

To test the prediction abilities of the LSTM on exclusively
experimental data, we used a dataset based on mass intakes
of epoxy-type adhesive samples subjected to hygrothermal
aging at 50°C, 70°C, and 90°C with a high relative humidity
of 95% for each temperature.

In this article, the first part will explain the dataset used
and the state of the art about the aging phenomena of the ad-
hesive. A second part will present the interpolation functions
compared, and a third part will focus on the parameters of
the LSTM at different structural levels. Finally, the last part
will present the results and the associated discussion.

II. EXPERIMENTAL DATASET
The dataset relates to a two-component adhesive from

the mixing, in stoichiometric proportions, of an epoxy
resin DGEBA (Diglycidyl ether of bisphenol A) and a
polyamidoamine hardener. The formulation contains 40%
w/w fillers (mainly kaolin) [21], [22]. Epoxy resins are
widely used as an adhesive for bonded assemblies thanks to
their excellent ability to adhere to substrates, low shrinkage
after polymerization, and good mechanical and fatigue
resistance. The adhesive studied here is flexible at room
temperature because its glassy transition (Tg) is 31,8 ±
0,4°C, allowing good impact resistance. If the adhesive is
subjected to accelerated and relatively violent aging, it can
see a visible and measurable change in its water uptake.
Therefore, there is an apparent evolution of the physical
parameter, resulting in a more conducive dataset for use in
a neural network. Samples were weighed using a 0.1 mg
resolution Mettler AE 200 electronic balance. Mass uptakes
are carried out on four rectangular samples of 10 mm x 10
mm x 2 mm for each wet aging temperature to ensure the
reproducibility of the results.

When the epoxy adhesive is exposed to an aggressive
environment, such as high humidity and aging temperatures,
changes in its mechanical, physical, and chemical properties
may occur [23], [24], [25]. The water will first act at the
adhesive/external environment interface level. It will then be
able to diffuse towards the core of the material that will
be more or less hydrophobic [26], depending on the aging
conditions (due to chemical and physical evolutions of the
polymer network).

This water diffusion will lead to short-term changes,
such as lattice plasticizing [27], [28], irreversible long-term
changes, such as swelling (which can lead to the appearance
of cracks) [27], [29] or hydrolysis (which can trigger
leaching phenomena) [30].

Figure 1 shows the sorption curves obtained by gravimetry
in immersion at 50°C, 70°C and 90°C in 95° HR. Kaolin
particles being impermeable, the adhesive mass variations
in percentage are reduced to the matrix mass fraction. The
square root of time in seconds is divided by the thickness in
millimeters to overcome thickness shifts.

As shown in Figure 1, from the beginning of hygrothermal
aging, the mass of the adhesive samples increases signifi-
cantly until reaching a stabilization phase that depends on
the aging temperature. Indeed, for aging at 50°C, the water
uptake of the material is relatively stable, around 4%, and
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Fig. 1: Water sorption curves in 95° HR at 50°C, 70°C and 90°C reduced to the matrix mass fraction.

seems to reach saturation. For 70°C, after a first fast water
intake, a slow increase appears from 250

√
s/mm without

stabilization. For 90°C, the water sorption curve is more
fragmented, and a sudden increase in the mass of the samples
appears towards the end of aging. Uncertainties are also more
significant for this curve area than 50°C and 70°C aging. The
three curves show different changes in water gain, which
correspond to the following phenomena [31], [32]:

• At 50°C, the diffusion kinetics of the adhesive is close
to a Fickian behavior despite the noisy mass variation
on the plateau. We can assume that, preferably, water
diffusion occurs at the level of the “free volume” of the
material without interacting directly with the polymer
[31], [33].

• At 70°C, the progress in water absorption in the second
phase may be due to a change in hydrophily and pos-
sible chemical interaction between polymer and water.

• At 90°C, the loss of mass observed from 1520
√
s/mm

of aging is characteristic of a chemical interaction
between water and the polymer, i.e., hydrolysis, which
will lead to oligomer leaching and filler exudation [30].
This last phenomenon can also be seen through the
significant increase in measurement uncertainties. We
can explain it because each sample’s exudation amount
of filler or chain leakage may differ.

Experimental data was collected to train the LSTM net-
work and build the model. Thirty-eight measurements were
taken for each temperature during a hygrothermal aging
period of 203 days. The data was collected regularly, except
for a gap between the penultimate and last data, to provide an
ideal dataset for use in an LSTM. However, the discontinuity
at the end of the dataset can be seen as a disadvantage
that could affect the network’s results. Nevertheless, it was
essential to use a realistic experimental setup to demonstrate
the network’s adaptability in the face of an imperfect dataset.
Experimental tests are prone to many unforeseeable factors,
especially during an aging campaign.

III. MISSING DATA PROBLEM

The treatment of missing data during the time series
analysis is crucial because of the temporal periodicity
constraint of the LSTM. In order to overcome this problem,
we use the interpolation functions in this study. It allows
us to fit a function to our experimental points and uses
this function to interpolate the missing data. It makes it
possible to go from a dataset composed of 38 experimental
samples to a complete dataset of 814 samples with a
constant 6-hour time step. The choice of experimental
data is essential because it will partly condition the results
of the interpolation functions and the prediction results
of the LSTM network. Using the interpolation function
makes it possible to reduce the time step between samples
when it is impossible to do it experimentally. In this way,
the total number of samples can be increased, as well as
reconstructing some possible missing data.

After testing different interpolation functions (such as the
polynomial of order 2, the cubic spline [34] or the akima
[35] functions), two of them were chosen to be compared
in this study: the “pchip” function (for Piecewise Cubic
Hermite Interpolating Polynomial) and the piecewise poly-
nomial function (see Figure 2). Indeed, these two functions
make it possible to avoid the Runge phenomenon, which
consists of a divergence in the form of undulation between
the experimental points and the interpolation function.

Hermite’s interpolation consists of passing through the
experimental points and ensuring that the slope of the curve
at each point, in other words, the derivative, is an imposed
value. In this study, the pchip function is used. It is built on
the linear combination of four unit polynomials of degree
three. In the case of an experimental evolution that can
be noisy or fragmented, the pchip function seems well-
suited [36]. It makes it possible not to exceed the given
experimental points because the interpolation is monotonous
and imposes the continuity of the first derivatives.

The piecewise polynomial method divides the dataset
points into several intervals, determining each segment’s
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Fig. 2: Comparison of interpolation functions for water
absorption at 90°C.

most appropriate polynomial function. This function, there-
fore, makes it possible to model more complex datasets with
sudden or discontinuous evolution. However, if the size of the
intervals is not regular, it can eventually lead to over-fitting.

IV. LSTM PARAMETERS

An LSTM layer consists of a set of recursively connected
memory blocks. Each block comprises one or more memory
cells and three multiplication units [13]. An LSTM cell is
a succession of activation, product, and addition functions
that filter the data transmitted to the network. The goal is
to keep only the valuable data for prediction. An LSTM
cell uses three distinct gates, similar to valves transmitting
more or less information, and can write, read information,
or reinitialize the cells (Figure 3).

Hadamard product (X)

X

X

+
LSTM cell

y(t)x(t)

h(t)

c(t)c(t-1)

h(t-1)

FORGET 
GATE

INPUT 
GATE

OUTPUT 
GATE

Wf, bf Wi, bi Wo, boWg, bg

f(t) i(t) g(t)

o(t)

Fig. 3: Structure of an LSTM network (with x(t) as the input
vector, h(t) the hidden state vector (short memory), c(t) the
cell state vector (extended memory), y(t) the output vector,
W(k) the weight matrix and b(k) the biases).

Weight matrices and biases are defined during the learning
process. A bias is an additional parameter associated with
each neuron, making it possible to determine the sensitivity
of a neuron to its input. This parameter is taken into account
in the same way as the interconnection weights for each
input value and will, therefore, influence the behavior of the
activation function [37].

LSTM cell is defined by nonlinear equations that integrate
current and previous time inputs, cell outputs, and model
parameters :

• Input gate: it allows information to be filtered and
decides whether the latter should modify the content
of the memory cell.

it = σ(Wi.[ht−1, xt] + bi) (1)

• Forget gate: based on the Hadamard product, it makes
it possible to recover the long-term memory c(t-1) and
to be able to forget or not certain information from the
cell state c(t -1).

ft = σ(Wf .[ht−1, xt] + bf ) (2)

• Output gate: it allows us to define if the contents of the
memory cell must influence the output of the cell and
the hidden state h(t).

ot = σ(Wo.[ht−1, xt] + bo) (3)

Once these gates are defined, the cell state (memory) and
the candidate state, which represents candidate values for cell
state at time (t), are computed :

• Cell state
ct = it ∗ gt + ft ∗ ct−1 (4)

• Candidate state

gt = tanh(Wg.[ht−1, xt] + bg) (5)

• Output
yt = ht = ot ∗ tanh(ct) (6)

With σ the sigmoid function, Wi, Wf , Wo, Wg the
weights of the corresponding matrices for the input, forget,
and output gates, and the candidate state, while bi, bf , bo,
bg are the corresponding biases for the input, forget and
output gates, and the candidate state.

Before presenting the parameters of the LSTM network, it
is essential to explain the preparation of the dataset so that
they can feed the LSTM.

A. Preparation of the dataset

The first step is to define the time step between each
data in the dataset. Once we have figured out the best time
interval for our research based on our experimental data,
preparing the data before sending it to the network becomes
crucial. Standardizing and dividing the data into smaller
groups are essential steps in this preparation.

The dataset consists of a gravimetric follow-up over time
for each hygrothermal aging temperature of the adhesive.
Various tests were carried out to determine which was the
optimal time step for this study, i.e., the one that makes
it possible to achieve reliable prediction results without
weighing down the calculations. Generally, to evaluate the
performance of the model, several performance indicators
can represent the difference between reality and prediction
[7], [9], [11], [38]. In our study, we chose to use MSE
because it makes it possible to consider the differences
between reality and prediction more critically and thus to
“sanction” the most significant errors in predictions. The
following equation gives the MSE expression:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (7)
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With yi the predicted value and ŷi the observed value.
During the learning process, we will follow the evolution of
several MSEs, such as the Train MSE (for learning) and the
Valid MSE (for validation). For these two parameters, we
will rely not only on the final value at the end of the epochs
but on an average of the last ten values. Indeed, this makes
it possible to consider variations that may appear during
learning and penalize models with instability during learning.
The Test MSE parameter is used to evaluate the prediction
reliability of the model by giving an average value of the
MSEs calculated at each point between the value predicted
by the network and that of the test dataset.

Time steps of 48h, 24h, 12h, 6h, and 3h were tested
with the dataset at 70°c (Figure 4). The neural network
parameters were fixed following preliminary results to test
these different time step values and see their influence
on the prediction results. The values of the performance
indicators (Train MSE, Valid MSE, and Test MSE) are low
for the different configurations. Qu et al.’s work [39] also
showed that the lowest time step did not necessarily deliver
the best results. Thanks to the results, the 6h time step
seemed the most suitable and was therefore chosen for the
rest of this study.

48h 24h 12h 6h 3h
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

Fig. 4: Comparison of Train MSE, Valid MSE, and Test MSE
performance indicators for 48h, 24h, 12h, 6h and 3h time
steps.

After adjusting the initial dataset to obtain periodic data,
it is necessary to scale the data to lighten the matrix com-
putations carried out by the neural network. Scaling helps
avoid premature saturation of hidden layer nodes by avoid-
ing overlapping different number scales [40]. Normalization
and standardization are the two most common methods for
scaling data. For normalization and standardization, we rely
on, respectively, the min and max values of the dataset and
the mean and the standard deviation of the data. However,
normalization disturbed the convergence of the results, which
is visible thanks to the Test MSE of the MinMax function
(Figure 5). It could appear because the predicted data values
are higher than the initial set. Therefore, they would be
outside the scaling range, which is based on our dataset’s
min and max values. The standardization (noted “Standard”
on Figure 5) shows better results than normalization, mainly
for Test MSE.

Another data scaling module exists, the RobustScaler.
Instead of relying on the mean and scaling the unit variance,

it relies on the median and interquartile range (between the
first and third quartile of the data). This model makes it
possible to take less into account the aberrant values which
could disturb the results. As shown in Figure 5 (for the 70°C
dataset), RobustScaler presents the most relevant results. For
this reason, it was chosen as the method to scale the whole
experimental dataset.

Robust Standard MinMax
0,00

0,02

0,04

0,06

0,08

Fig. 5: Comparison of Train MSE, Valid MSE, and Test MSE
for Robust, Standard, and MinMax scaling methods for the
70°C dataset.

The overall dataset is separated into a training set
(representing 80% of the data), a validation set (10%),
and a test set (10%). The learning dataset is used to build
the model, the validation dataset is used to adjust the
parameters, and the test dataset is used to compare network
predictions with experimental data.

In general, samples should be randomly mixed to give
the network a better learning phase. In the case of LSTM,
this is not directly possible as the network would lose
the temporal logic. Therefore, the dataset was divided into
several subgroups, where samples in each group respect the
chronological order. That makes it possible to mix the groups
of data and not the data directly.

A time-series generator module from Tensorflow is used
for training and testing datasets to create the necessary
batches and sequences for training the network. Thanks to
the time-series generator module, it is possible to dissociate
the values of an input matrix X and an output matrix
Y step by step. The matrix X corresponds to a batch of
several temporal sequences with several temporal data. On
the other hand, the Y matrix corresponds to the following
time values for each defined time sequence so that the
model can subsequently predict the values of Y. Figure 6
schematically presents the X and Y matrices. The batch size
is an important parameter impacting the network prediction
results.

The experimental data can now be integrated into the
neural network characterized and adapted according to the
hyperparameters. Hyperparameters will impact the perfor-
mance of the LSTM network. They are divided into two
categories according to their nature.
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Fig. 6: Diagram of the division of data into sequence and
batch.

B. Layer hyperparameters

In an LSTM network, it is possible to add several
hidden layers to increase the network’s complexity to
cope with extensive data. It is also possible to define the
number of associated nodes in each of these hidden layers.
However, the more nodes per layer, the larger the number
of parameters that will have to be computed by the network
in order to operate and provide a reliable result.

The dropout is a parameter that makes it possible to
deactivate, during the learning phase, specific neurons in
order to improve the performance of the model by soliciting
exclusively some neurons. It is a parameter that partially
solves over-fitting. Generally, the dropout is between 0.2
and 0.5 (i.e., between 20% and 50% of the neurons are
randomly deactivated).

Another hyperparameter is the activation function. It al-
lows most of the time to mathematically define a nonlinear
relationship between the inputs and outputs of a neuron in
order to transfer or not input data to the next layer. Several
activation functions exist, such as sigmoid, hyperbolic tan-
gent, ReLU, ELU, or SELU. In our study, we chose the ELU
and hyperbolic tangent (“tanh”) functions as they provided
the best preliminary results.

The ReLU (for Rectified Linear Unit) function only allows
positive values to be transmitted, which can give inaccurate
results. The ELU function (for Exponential Linear Unit) is
an improvement of ReLU. Indeed, it smooths the function’s
output values when the input values are negative by relying
on an exponential function that returns negative values. The
following equation defines it.

f(x) =

{
α(ex − 1) if x strictly less than 0
x otherwise (8)

The parameter α is a variable that makes it possible to
control the slope of ELU when x is negative (the larger α, the
steeper the curve). The mean of the function will, therefore,
be closer to 0, and learning will be faster (because it is closer
to the natural gradient of the function). The more the input
value decreases, the more ELU saturates at a negative value,
which induces a weak derivative and, therefore, more robust
result stability.

C. Compilation hyperparameters

The compilation parameters are specific to the learning
phase and this step’s optimization. In particular, the following
parameters can be defined:

• The Adam (for Adaptive Moment Estimation) opti-
mization function is used for this model because it
is currently the most efficient. It is an extension of
stochastic gradient descent and was first proposed in
2015 by Kingma [41], based on adaptive learning rates
[20].

• The learning rate indicates the speed at which the
coefficients are updated. It can be fixed or variable; by
default, it is set to 0.01.

• During the learning phase, the number of epochs makes
it possible to define the number of iterations for which
the training dataset will be transmitted to the network
so that the latter gradually adjusts its weight and biases.
Having many epochs to achieve a stable output result is
not helpful, as Sen [42] had shown in his work.

V. DATABASE PRESENTATION

To train the LSTM and estimate which combinations
of parameters give the best results, we have chosen to
use the results of the three aging temperatures: 50°C,
70°C, and 90°C. As was shown previously, the evolutions
of gravimetry for the three temperatures are different;
therefore, the objective is, among others, to highlight a
combination of parameters that makes it possible to obtain
the best results, whatever the evolution of the data.

As it is impossible to test all the different combinations
of parameters, some have been fixed in order to reduce the
number of combinations tested, such as:

• Data scaling: Robust
• Batch size: 5% of the training dataset
• Loss: MSE
• Dropout: 0.2
• Optimization function: Adam
• Learning rate: 0.01
• Number of epoch: 30
However, we tested 16 different combinations for each

aging temperature to show the impact of the different criteria
chosen, such as:

• Interpolation function of experimental data: pchip or
piecewise

• Number of layers: 1 or 2
• Number of neurons per layer: 50 or 150
• Activation function: ELU or hyperbolic tangent (tanh)
The impact of interpolation functions has been explained

previously. Depending on the number of associated nodes,
hidden layers can be more or less critical. The choice to test
1 or 2 layers was made based on examples in the literature
[11], [13], [43]. So, testing the impact of the number of layers
and associated nodes is essential.

VI. RESULT AND DISCUSSION

A. Comparison of different configurations

The network implementation was done using the Keras
library, which includes a set of already coded functions that
we can use directly. The architecture and construction of
our network were also based on the work of Parouty [44]
and Chollet [8].
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For each combination, a repetition of 5 learning sessions
was carried out in order to ensure the repeatability of the
results. The results of the 16 combinations by temperature
are shown in Figure 7, Figure 8, and Figure 9 for 50°C,
70°C and 90°C respectively. For each temperature, the
results of the 3 MSEs are presented for the training phase,
validation, and testing. To simplify the understanding
of the different configurations, those carried out with
the interpolation function pchip (denoted pch) appear in
black, while those with piecewise (designated pi) appear
in green. The configurations shown with hatching use the
ELU activation function. Each combination is numbered
depending on the number of layers (1 layer “1l” or 2 layers
“2l”) and knots (50 or 150).

A ranking of the best results for each of the datasets
and the three best configurations by temperature is shown
in Table I, Table II, and Table III:

TABLE I: MSE values for 50°C.

Configuration Train MSE Valid MSE Test MSE

1st pi tanh 1l 150 0,015918 0,000157 0,000025
2nd pi tanh 1l 50 0,024822 0,000069 0,000084
3rd pi tanh 2l 50 0,034872 0,000465 0,000403

TABLE II: MSE values for 70°C.

Configuration Train MSE Valid MSE Test MSE

1st pi tanh 1l 150 0,000988 0,001457 0,000995
2nd pch tanh 1l 150 0,001167 0,001408 0,001447
3rd pi tanh 2l 150 0,001388 0,002026 0,000127

TABLE III: MSE values for 90°C.

Configuration Train MSE Valid MSE Test MSE

1st pch tanh 1l 150 0,002614 0,000090 0,000151
2nd pi tanh 1l 150 0,00228 0,000141 0,000643
3rd pch elu 1l 150 0,002876 0,000166 0,000232

Given this ranking, the best combinations could be high-
lighted for the three temperatures:

• 50°C: the 1l/150/tanh/piecewise configuration
• 70°C: the 1l/150/tanh/piecewise configuration
• 90°C: the 1l/150/tanh/pchip configuration

B. Prediction analyze
We obtain two configurations that give the best re-

sults for the three temperatures: 1l/150/tanh/piecewise and
1l/150/tanh/pchip. The model parameters appear more dis-
criminating than the interpolation function to prepare ex-
perimental input data. Indeed, given the graphs presented
previously for the three datasets, it is difficult to conclude
the most convincing interpolation function to obtain the best
results. As long as the interpolation function is consistent
with the evolution of the experimental data and avoids the
appearance of Runge’s phenomenon, then it has little impact
on the prediction results.

However, these results make it possible to highlight other
conclusions on the impact of the choice of other parameters:
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Fig. 7: 50°C dataset: with a) train MSE, b) validation MSE,
and c) test MSE.
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Fig. 8: 70°C dataset: with a) train MSE, b) validation MSE,
and c) test MSE.
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Fig. 9: 90°C dataset: with a) train MSE, b) validation MSE,
and c) test MSE.
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Layers number influence
• A too-complex network with too many layers does not

provide better results.
Indeed, almost no 2-layer configuration appears among the
top three configurations. Compared to the input data, a
too-complex network would result in more difficult network
convergence. Indeed, a relatively light network can process
the information and provide relevant results for input
data with a single parameter. For all the analyzed cases,
for identical parameters, the Train MSE is always more
important for a 2-layer network. For Valid MSE and Test
MSE, overall, the same trends appear. This result highlights
that an excess of comparable data does not provide more
information. In the literature, some authors have also tested
the impact of the number of layers on their network.
Salman’s article [45] shows that a multilayer network
provides better results than a single-layer network. However,
their dataset consists of 4 different parameters for more
than 40,000 meteorological data, so it is a very different
configuration from ours. That can explain the differences in
results. For its part, Halpern-Wight’s paper [46] presents an
LSTM network working on a more restricted number of data
(less than 300). It also highlighted that a 5-layer network
did not make it possible to achieve better performance than
a single-layer network. Another authors [47] also showed
that a 2-layer LSTM achieves better results than a 3- and
4-layer network. According to our observations, this excess
of data might prevent the network from converging to the
expected results. Another issue is that the more layers there
are, the more the number of parameters increases, raising
the computation times without ultimately leading to better
results.

Nodes influence
• 150 nodes per layer provide more relevant results than

50 nodes.
In the previous graphs, increasing the number of

nodes makes it possible to decrease the values of the
different MSEs compared to the 50-node configurations,
independently of the number of layers used (mainly for 70°C
and 90°C). Indeed, going from 50 to 150 nodes multiplies
by more than eight times the number of parameters. For
one layer, 50 nodes give 10,451 parameters, and 150 nodes
correspond to 91,351 parameters, and for two layers, there
is the same ratio (50 nodes: 30,651 parameters and 150
nodes 271,951 parameters). On average, 150 nodes instead
of 50 allow us to reduce the MSE values by 0.011942 for
the learning step, 0.000645 for the validation step, and
0.006292 for the test step.

Activation function influence
• The hyperbolic tangent activation function provides

better results than the ELU function.
Eight of the nine best configurations presented for the

three temperatures are realized with the hyperbolic tangent
activation function, allowing us to obtain good results.
In addition, for the dataset at 50°C, the impact of the
activation function is very marked because much larger
Train and Valid MSEs are to be noted when using the ELU
function. For the configuration with two layers and 150

nodes, converging and obtaining a result during learning is
impossible. In contrast, for the hyperbolic tangent function,
the results obtained are of the same order of magnitude
as the other configurations with this function. Dubey [48]
and Kim [49] also compared different activation functions
using an LSTM network. They report a better result for the
hyperbolic tangent. For its part, the ELU function would
be more appropriate for classification issues, according to
Dubey.

The objective of using a neural network is to predict
unknown future data, which makes it possible to anticipate
the aging of materials in the case of our study. Contrary to the
majority of the articles in the literature, we judged it essential
to present the results of this prediction to show the relevance
of using such a network. After determining the best com-
bination of parameters, the model “piecewise tanh 1l 150”
was chosen to apply to our experimental dataset.

To apply the LSTM model to our datasets, we created a
matrix to save each data resulting from the prediction from a
data sequence. Our data sequence matches the size of our test
dataset. In the case of this study, it is composed of the last 80
data, and each time, we will ask the network to predict the
next unknown future value noted xnewi

. This value xnewi

will be added to the previously created matrix and the data
sequence. The prediction process is restarted several times.
The prediction results are therefore presented in Figure 10,
Figure 11, and Figure 12. In each figure, we find the raw
experimental data in black points and the interpolated data in
solid orange lines, which are used to train the network. In the
“test” area, we find the comparison between the test dataset’s
known values and the LSTM network’s prediction results (in
the dash on the graph). A zoom of this area is also shown on
the graphs. The prediction made beyond the known values
is represented with dots and is compared with an additional
known experimental value (a cross). Therefore, it is possible
to see the gap between the prediction and experimental
reality, accompanied by measurement uncertainties. In the
zoomed comparison area, the difference between the last
value predicted by the network and the last value of the test
dataset, which is also a known experimental value, has been
compared in Table IV (for an aging time of 4878h).

TABLE IV: Comparison of MSE values for the last experi-
mental point at 50°C, 70°C, and 90°C.

Temperature MSE

50°C 5,05592E-06
70°C 0,002467271
90°C 0,0012436

These results are relevant and promising. Indeed, despite
changes in the kinetic of water intake, therefore, changes in
the gravimetric curve shape, the prediction results provided
by the neural network are reliable. It is highlighted, on the
one hand, by the results of the MSE test and, on the other
hand, by the difference in the prediction between the future
data and the last experimental data (the cross). The model,
therefore, makes it possible to adapt to these various changes
and evolutions. The prediction deviations measured for the
last experimental point of the dataset supplied to the LSTM
show a slight deviation for 70°C and 90°C. This deviation is
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Fig. 10: Future prediction for gravimetry at 50°C with comparison of test prediction.
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Fig. 11: Future prediction for gravimetry at 70°C with comparison of test prediction.

likely to be reflected in future predictions. The prediction
results for 90°C seem to be further from experimental
reality than 50°C and 70°C, which are very close. However,
looking at the last aging times, the experimental point and
the measurement uncertainty associated with this value are
considerable. At 90°C, the aging conditions are more violent,
leading to a more critical diffusion of water and new physical
and chemical phenomena, such as hydrolysis and exudation.
In the long term, this will damage the material and impact its
properties. Under these conditions, the uncertainties are more
significant because the samples are more damaged and do not
all respond similarly to this aging at a time t. Consequently,
it is consistent that the neural network, which relies on much
noisier data for 90°C, gives a result that corresponds less to
experimental reality. Despite this discrepancy, the prediction
remains within the uncertainty range of the experimental
point. Beyond the network parameters, it is, therefore, es-
sential to choose the correct experimental data representative
of the evolution of the chosen parameter. Moreover, the
stable evolution of the parameters of Train MSE and Valid

MSE (shown in Figure 13 for each temperature) ensures
that no over-fitting phenomenon appears, especially when the
datasets are small.

For this dataset and network configuration, predicting up
to 40 days of aging into the future with relatively low error
rates, compared to six months of hygrothermal aging, is
possible. Indeed, this possibility of prediction, taking into
account the architecture we used in the code, is based on the
size of the dataset of the test phase. It corresponds to 10% of
the 4878h of aging, i.e., approximately 480h. That is one of
the limits of this tool because it cannot, from a small dataset,
predict data over a very long time.

VII. CONCLUSION

In this work, we studied an LSTM-type neural network
to predict the evolution of the mass setting of an epoxy
adhesive during hygrothermal aging. The data collected for
three aging temperatures were used as training, validation,
and testing data for the network. The steps were presented
to collect the data, interpolate the samples to fill in missing
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Fig. 12: Future prediction for gravimetry at 90°C with comparison of test prediction.

data and train an LSTM network. A large combination of
parameters was tested for the LSTM network to highlight
their influence on the training and predictions. This study
showed the importance of specific parameters in improving
the prediction results, such as the number of hidden layers,
the number of nodes, and the activation function.

This study showed that using AI tools to predict the
evolution of a physical parameter could be relevant. It was
shown that a too-complex network may weigh down the
calculations and will not allow better results. It was also
pointed out that a complex multilayered network is not
helpful or even counterproductive when faced with a simple,
single-parameter dataset.

In this study, the optimal combination that achieved
excellent results considering the performance indicators
Train MSE, Valid MSE, and Test MSE against the
experimental data of the three aging temperatures is as
follows.

Fixed parameters:
• Learning/validation/test split: 80% / 10% / 10%
• Time step: 6h
• Data scaling: RobustScaler
• Batch size: 5% dataset of the training dataset
• Number of epochs: 30
• Loss: MSE
• Dropout: 0.2
• Optimization function: Adam
• Learning rate: 0.01
Best parameters compared:
• Interpolation function: pchip or piecewise
• Number of layers: 1
• Number of nodes/layer: 150
• Activation function: hyperbolic tangent

However, one drawback of this method is that a neural
network cannot predict something it has not learned dur-
ing its training. The network does not know the physical

phenomena that may occur during hygrothermal aging and
could generate new degradation kinetics. Therefore, it will
deviate from experimental reality, such as during aging at
90°C. It allows us to have a vision of the evolution of the
parameters only if it has already been confronted with this
trend. It is, therefore, essential to have a relatively complete
dataset that provides enough information to the network.
Our next objective is to use this neural network on more
chaotic experimental data from distinct characterization tests,
such as infrared spectroscopy and rheology, to highlight
the importance of data selection and the limitations of this
network. For instance, seeing the influence of other neural
network parameters, such as learning rate or batch size, could
also be interesting for an application with noisier data. The
prediction gap in the test phase could be reduced and thus
allow us to refine the network’s prediction results.
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