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Abstract—Although factor model can extract effective com-
mon factors from a large number of data variables, it also
meets several concerns in different datasets. For example, its
estimation accuracy is not high, and the relationship between
the variables and the common factors are difficult to explain. In
this paper, a general unilateral loading method is proposed to
solve the estimation problems of variance matrix and common
factor in general factor model. It can not only explain the
relationship between the original variables and the common
factors, but also improve the precision of parameter estimation
and shorten the estimation time. To evaluate the stability and
sensitivity of the proposed method, simulation studies have been
conducted. Furthermore, the method has also been applied to
real data analysis.

Index Terms—General factor model, parameter estimation,
principal component method, unilateral loading.

I. INTRODUCTION

FACTOR model has significant advantages in big data
analysis and is widely used in the fields of social sci-

ences and physical sciences. However, when facing financial
investment and prediction datasets evenly distributed at the
same level, there are still several concerns: the estimation
accuracy may be limited, and the time cost of processing fi-
nancial investment, and prediction datasets are also relatively
large.

Due to the complexity of data, as the dimension of the
variables increases, the relationship between the original
variables and common factors becomes challenging to inter-
pret, and finding meaningful common factors among many
variables also becomes difficult. Furthermore, for different
types of datasets, using only a single method will reduce the
efficiency and accuracy of parameter estimation. Therefore, it
is crucial to synthesize the characteristics of different meth-
ods and different data sets that are suitable for processing.

This paper proposes a unilateral loading method for gen-
eral factor model. Firstly, the proposed method has a two-
layer structure, and the double loadings are obtained through
matrix decomposition, cf. Gao and Tsay. [6] (2021a). It can
effectively reduce the difference in the estimation process
and improve the estimation accuracy. The advantage of this
method is in that case that both the error term and the
expected value of the common factor are zero in prediction
datasets with the same level of uniform distribution. The pro-
posed method not only helps to gain a deeper understanding
of the relationship between the original variables and the
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extracted common factors, but also offers solid backing for
solving real-world problems.

A. General factor model

Assuming that the matrix X0 ∈ Rn×p is observed, we
standardize the data matrix X0, and obtain

X =
√
n− 1(X0 − X̄0)[diag((X0 − X̄0)

⊤(X0 − X̄0))]
−1
2 ,
(1)

where

X̄0 =
enen

⊤X0

n
, en = (1, · · · , 1)⊤,

the standardized matrix is

X = (X⊤
1· , X

⊤
2· , · · · , X⊤

n·)
⊤ = (X·1, X·2, · · · , X·p) ∈ Rn×p.

Assuming that general smooth function g(·) on common
factor matrix (n < m)

F1 = (F1,·1, F1,·2, · · · , F1,·m) ∈ Rn×m

is g(F1), the general factor model is expressed as

X = g(F1)A
⊤
1 + V1, (2)

where A1 = (aij) ∈ Rp×m is the factor loading array, aij
are factor loadings;

V1 = (V1·1, V1·2, · · · , V1·p)

is a special factor of X and g(·) is a known smooth function.
For example g(F1) can be equivalent to F1, F 2

1 , log(F1) or
exp{F1}, and meet for jm = 1, . . . ,m and j = 1, . . . , p, an
n-by-n unit matrix In×n,

E(g(F1),·jm) = E(V1,·j) = 0, cov(g(F1),·jm , V1,·j) = 0,

var(g(F1),·jm) = Im×m, var(V1,·j) = diag(σ11, . . . , σ1p),

cf. Bai [10] (2003), Bai and Li [11] (2012) and Gao et al. [8]
(2020), for other conditions. The general factor model differs
from the factor model in that it makes F1 and V1 meet the
expectation equal to 0, while the covariance is equal to the
condition of the unit array, and the common factor and the
error term are uncorrelated, cf. Bai et al. [12] (2013). Then
AT

1 A1 = Im×m, cf. Gao et al. [7] (2021b). Here we constrain
not only the load, but also the error term, which makes the
general factor model more applicable and more stable than
the factor model, and the estimation is also more accurate.

For the problem of dimensionality reduction in factor
models, the classical principal component analysis has some
drawbacks. For example, it isn’t easy to interpret the results
of PCA in factor models. and the accuracy of estimation
is not high. Fan et al. [3] (2016) proposed a projection
principal component (PPCA) method in factor models which
eliminates the noise component and can estimate unknown
latent factors more accurately. For large datasets updated in
real-time, Guo et al. [16] (2023) proposed a new sparse on-
line principal component (SOPC) method for factor models
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that can identify sparse solutions by iterative online updating
to obtain a consistent and easily interpretable solution. Bai
and Ng [9] (2002) proposed a factor model-based principal
component method to estimate the number of factors. As the
data dimension increases and the cost increases, Fan et al. [1]
(2013) proposed a sparse principal component method based
on an approximate factor model to study the convergence
rate, and Fan et al. [4] (2019) proposed a distributed princi-
pal component (FanPC) algorithm based on Heterogeneous
factor models, effectively reduce the computing cost of
large datasets. Gao and Tsay [6] (2021) proposed a special
unilateral loading distributed principal component(GaoPC)
method based on a distributed factor model to analyze time
series data, and to estimate the load and common factors.

The concerns with the above methods are as follows. First,
the maximum eigenvalue of the load is no longer a consistent
estimator when the feature dimension of the dataset grows
at the same rate or larger than the sample size. Second, in
high-frequency datasets, it is very important to increase the
constraints on the load. Otherwise, the error of the load
estimation will become large. The estimation of loadings
in Gao and Tsay [6] (2021) is obtained by selecting the
eigenvectors corresponding to the first K eigenvalues of the
sample covariance, ignoring the influence of the error terms
V1t and V2t on the estimation process. When estimating the
load in Fan et al. [4] (2019), it is unnecessary to satisfy the
identification conditions.

B. Our work

The main work of this paper is as follows.
Firstly, based on the above concerns, we propose a GulPC

method for general factor model. The proposed method
focuses on processing i.i.d. non-time series data when con-
sidering the impact of error terms on the estimation pro-
cess to address estimation problems in factor models. The
application of this method can provide effective support
for improving the estimation accuracy and solving practical
problems

Secondly, we investigate the impact of explanatory vari-
ables, sample size, and dimensionality on the GulPC. The
study found that the estimation accuracy of the GulPC
method increased with the increase in sample size; as the
dimensions increased, the estimation accuracy of the GulPC
also increased. Additionally, we compared the effectiveness
of the GulPC with other methods (PCA, PPC, SOPC, FanPC,
and GaoPC). Through comparison with other methods, we
further verified the effectiveness and advantages of the
GulPC.

Ultimately, we found that the proposed method not only
improves the efficiency of dimensionality reduction, but also
improves the estimation accuracy and significantly reduces
the amount of calculation.

II. GENERAL UNILATERAL LOADING IN GENERAL
FACTOR MODEL

A. General unilateral load decomposition

In Equation (2), assuming that there are two layers de-
composed, X allows the existence of an underlying factor

structure g(F1), cf. Gao and Tsay. [6] (2021a). First, the
second layer factor structure of g(F1) can be expressed as

g(F1) = g(F )A2
⊤ + V2. (3)

then

X = g(F )Ag + E,Ag = A2
⊤A1

⊤, E = V2A1
⊤ + V1. (4)

Here g(F ) = (F·1, F·2, · · · , F·pc
) ∈ Rn×pc is the general

term for the common factor, Ag ∈ Rpc×p is the loading of
second layer in Equation (4), and

V2 = (V2,·1, V2,·2, · · · , V2,·m) ∈ Rn×m

is the special factor of the second layer in Equation (4). The
above steps constitute the decomposition process for general
unilateral loading. And it is necessary to meet the following
conditions.

E(g(F )·im) = E(V2,·i) = 0, cov(g(F )·im , V2,·i) = 0,

var(g(F )·im) = Ipc×pc
, var(V2,·i) = diag(σ21, . . . , σ2m),

for im = 1, . . . , pc and i = 1, . . . ,m.

B. Estimation of the load and the common composition

Firstly, for loadings A1 and A2, we need to meet A1A
⊤
1 =

Ip×p and A2A
⊤
2 = Im×m. Assuming that the sample

covariance matrix

Σ̂1 =
1

np

∑n

i=1
(X − X̄i·)

⊤(X − X̄i·),

there are eigenvalue-eigenvector pairs (λi, Qi) for i =
1, 2, · · · , p with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. We extract
the first m, m is determined according to the cumulative
contribution rate, when the p−m eigenvalues are very small.
This matrix Σ̂1 can be approximately decomposed, and based
on the sample covariance, we can obtain estimates of the load
Â1

Σ̂1 = λ1·1Q1·1Q1·1
⊤ + · · ·+ λ1·mQ1·mQ1·m

⊤

+ λ1·m+1V1·m+1Q1·m+1
⊤ + · · ·+ λ1·pQ1·pQ1·p

⊤

= λ1·1Q1·1Q1·1
⊤ + · · ·+ λ1·mQ1·mQ1·m

⊤ +D1

≈ Â1Â
⊤
1 + D̂1.

(5)

Here X̄i· =
∑n

i=1 Xi·/n, the expression of the mean has
two forms

X̄i· = (X̄·1, X̄·2, . . . , X̄·p), X̄·j = (X̄1·, X̄2·, . . . , X̄n·)
⊤.

Here Σ̂1 is approximated by S2
1 = Â1Â

⊤
1 + D̂1, see Fan et

al. [2] (2015). Here m is known. Similar to the arguments
of Harris [5] (1997).

Thus, the estimated loading matrix Â1 consists of the first
m eigenvalues with the first m eigenvectors.

Λ̂1 = diag(λ̂1·1, · · · , λ̂1·k1
, · · · , λ̂1·m),

and Q̂1 = Q⊤ = (Q̂1·1, · · · , Q̂1·m), can be obtained through
the eigenvalue decomposition Σ̂Xi· = QΛQ−1, and so to

Â1 = Λ̂
1/2
1 Q̂1 = (Λ̂

1/2
1·1 Q̂1·1, · · · , Λ̂1/2

1·mQ̂1·m),

D̂1 = diag(σ̂2
1 , σ̂

2
2 , . . . , σ̂

2
m),

σ̂2
i = 1−

m∑
j=1

â2ij , i = 1, 2, · · · , p.
(6)
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The first layer common factor g(F̂1) is then obtained by least
squares estimation and can be expressed as

g(F̂1) = XÂ1(Â1Â
⊤
1 )

−1. (7)

Next, we define the normalized first-layer common factor
g(F̂1)

∗
= g(F̂1)/

√
m, and

g(F̂1)
∗
= (F̂ ∗

1,·1, F̂
∗
1,·2, · · · , F̂ ∗

1,·m).

The same method was then used to estimate the load A2

based on

E(g(F̂1)
∗
i ) = 0, cov(g(F̂1)

∗
i ) = Σg(F̂1)∗

,

Σ̂2 =
1

n

∑n

i=1
(g(F̂1)

∗
i − g(

¯̂
F1)

∗
i )

⊤(g(F̂1)
∗
i − g(

¯̂
F1)

∗
i ). (8)

Similarly, we can get that Σ̂2 is approximated by

S2
1 = Â1Â

⊤
1 + D̂1,

where g(
¯̂
F1)

∗
,i· = 1

m

∑m
i=1 g(F̂1)

∗
,i·, and write this here

because the expression of the mean has two forms

g(
¯̂
F1)

∗
,i· = (

¯̂
F ∗
1,·1, . . . ,

¯̂
F ∗
1,·m)

and g(
¯̂
F1)

∗
,·j = (

¯̂
F ∗⊤
1,1·, . . . ,

¯̂
F ∗⊤
1,n·)

⊤.

Let E(Σ̂g(F̂1)∗
) = Σg(F1), the estimator Â2 consists of

the first pc maximum eigenvalues and the corresponding pc
eigenvectors, which can be obtained by eigenvalue decom-
position Λ̂2, Q̂2, then

Â2 = Λ̂
1/2
2 Q̂2 = (Λ̂

1/2
2·1 Q̂2·1, · · · , Λ̂1/2

2·mQ̂2·m),

D̂2 = diag(σ̂2
1 , σ̂

2
2 , . . . , σ̂

2
pc
).

(9)

For σ̂2
i = 1−

∑pc

j=1 â
2
ij , i = 1, 2, · · · ,m. Then

Âg = Â⊤
2 Â

⊤
1 .

Firstly, in the process of estimating the loadings by adding
constraints on the error terms such that

var(Vl,·j) = diag(σl1, . . . , σlp), E(Vl,·j) = 0

for j = 1, . . . , p; l = 1, 2.
We use the principal component method to estimate D̂1

and D̂2, and the loading matrix Â1 and Â2, and get the
Âg ∈ Rpc×p and the common factors g(F̂1) and g(F̂ ) are
estimated by the least squares method.

III. NUMERICAL ANALYSIS

A. Preparation
Mean squared error (MSE) is considered in simulation to

evaluate the deviation of the true value from the estimators

MSEΣ̂ =
1

p2
∥Σ̂ − S2∥2F ,MSEÂg

=
1

pcp
∥Ag − Âg∥2F .

MSED̂ =
1

p2
∥D − D̂∥2F .

(10)
Let Ag and Âg be the real loading matrix and the loading
matrix estimator. Both of them satisfy AgA

⊤
g = Ipc×pc

. We
define the distance between loading spaces as

D(Ag, Âg) =

√
1− 1

pp2c
tr(Â⊤

g AgA⊤
g Âg). (11)

It is easy to see that D(Ag, Âg) always takes values in the
interval [0, 1]. The smaller the value of D(Ag, Âg), the more
accurate the estimated load is.

B. Simulation

In this subsection, we verify the stability and sensitivity
of the GulPC in general factor models.

1) Stability analysis: We now explore the sample size
effect of the proposed method. Fixing (p,m) = (15, 3)
and generating X , A = (aij) ∈ Rp×m, g(F ) ∈ Rn×m,
E ∈ Rn×p according to Equation (2), such that n = (800,
1000, 1200, 1400, 1600, 1800, 2000, 2400, 2800, 3000), we
examine the trend of the performance of six methods with
n, and the line chart of the comparison results is as follows.
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Fig. 1. The performance of the GulPC under different n in simulation

Figure 1 summarizes the comparison results of MSEΣ̂,
load space distance, MSEÂ and MSED̂ of the six methods
at different n. From Fig. 1(a), we can see that the MSEΣ̂

values of six methods tend to decrease as n increases, which
indicates that the estimation accuracy of them is increasing as
the sample size increases; from Fig. 1(b), the spatial distance
between the true and estimated load values of the PCA and
SOPC fluctuates greatly, while the fluctuation range of the
other four methods is relatively small, indicating a certain
degree of stability; from Fig. 1(c), the MSEÂ values of the
six algorithms fluctuate to some extent, but they generally
show a downward trend; from Fig. 1(d), for the MSED̂

values of the six methods, the estimation accuracy value of
FanPC is always the highest, while the estimation accuracy
values of PCA, PPCA, and SOPC fluctuate greatly. Only the
estimation value of GulPC remains relatively small, with a
small variation range and a stable trend.

We also explore the effect of dimension size p on the
proposed method. Fixing (n,m) = (1000, 3) and generating
X , A = (aij) ∈ Rp×m, g(F ) ∈ Rn×m, E ∈ Rn×p

according to Equation (2), such that p = (7, 9, 11, 13, 15,
17, 19, 21, 23, 25), We test the trend of the performance of
six methods with p, and the line chart of the test results is
as follows.

Figure 2 summarizes the comparative results of MSEΣ̂,
load space distance, MSEÂ and MSED̂ of six methods in
different dimensions p. From Panel (a) of Fig. 2, the MSEΣ̂
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values of the FanPC, PPCA, PCA, and SOPCA increase with
the increase of p, while GaoPC and GulPC show a down-
ward trend overall, indicating that the estimation accuracy
continues to improve with the increase of dimension p; from
Fig. 2(b), the spatial distance between the true and estimated
load values of the PCA and SOPC fluctuates greatly, while
the fluctuation range of the other four methods is relatively
small, indicating change relatively smoothly; from Fig. 2(c),
the MSEÂ values of the six methods. Although the MSEÂ

values of the six methods fluctuate greatly, except for the
PPCA which has an increasing trend, the estimated values
of the other five methods still tend to decrease. From Figure
2(d), for the MSED̂ values of six methods, the estimates of
the FanPC are in an upward trend, and the rest of the methods
are in a downward trend as a whole, and the estimation of
the GulPC is the smallest.
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Fig. 2. The performance of the GulPC under different p in simulation

2) Sensibility analysis: We explore the effect of the pro-
posed method. Fixing (n, p) = (1000, 15) and generating X ,
A = (aij) ∈ Rp×m, g(F ) ∈ Rn×m, E ∈ Rn×p in (2), for
m = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12), we examine the trend of
the performance of six methods with m, and the line chart
of the examined results is as follows.

Figure 3 summarizes the comparison results of MSEΣ̂,
load space distance, MSEÂ and MSED̂ for the six algorithms
under different m. From Fig. 3(a), the MSEΣ̂ values of the
six methods gradually decrease as m increases, indicating
that the estimation accuracy is increasing; from Fig. 3(b), the
spatial distance between the true and estimated load values of
the PCA and SOPC fluctuates greatly, while the fluctuation
range of the other four methods is relatively small, indicating
change relatively smoothly; from Fig. 3(c), the values of
MSEÂ of the six methods fluctuate a lot, but the overall
trend is still decreasing; from Fig. 3(d), the values of MSED̂

of the six methods, of which the FanPC fluctuates more,
and the other methods fluctuate very little and tend to be
stable. In general, The estimation accuracy of the six methods
increases with the increase of m, with GulPC having the best
estimation accuracy.
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)

(b)distances of A(10−1)

● ● ●

●

●
● ● ●

● ●●

● ●
●

● ●

●

●
●

●

0

5

10

15

2.5 5.0 7.5 10.0
m

M
S

E
Â
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Fig. 3. Sensitivity line graph of GulPC in simulation

C. Real data analysis

In this section, we analyze real datasets to examine the
performance of the GulPC by using MSEΣ̂ and MAEΣ̂. The
datasets are as follows.

(1) Riboflavin (RIB) production with the B. subtilis
datasets. DSM (Kaiseraugst, Switzerland) (see also Lee et
al. [17] (2001) and Zamboni et al. [18] (2005)) has kindly
provided these data.

(2) Istanbul Stock Exchange (ISE) datasets. The dataset
consists of data for eight complete indices of the Istanbul
Slok Exchange from 2009 to 2011.

(3) Stock Portfolio Performance (SPP) datasets. This
dataset includes data on the performance of weighted
score stock portfolios from the U.S. stock market historical
database for the period from 1990 to 2010.

1) RIB datasets: First, we fit the RIB datasets (n, p, m) =
(4088, 71, 3) to examine the trends of six methods. Figure4
(a)–(b) summarizes the results of the numerical comparison
of MSEΣ̂ and MAEΣ̂, for the GulPC under RIB datasets.
From Panels (a)–(b) of Figure4, the GulPC has the best
performance results, GaoPC has the second best performance
results, and PCA, PPCA, and FanPC have average estimation
accuracy in the medium range, while SOPC has the worst
performance results.

2) ISE datasets: Next, we fit the ISE datasets, where
(n, p, m) = (536, 8, 5) to test the trend of these six
methods. Figure 4(c)–(d), summarizes the comparison results
of MSEΣ̂ and MAEΣ̂, for the GulPC. From Figure 4(c)–(d),
GulPC still has the best performance results, followed by
PCA, PPCA, SOPC, GaoPC has a medium range of average
estimation accuracy, and FanPC has the worst performance
results.

3) SPP datasets: Next, we fit the SPP datasets here (n,
p, m) = (126, 10, 4) to test the trend of these six methods.
Figure 4(e)–(f), summarizes the comparison results of MSEΣ̂

and MAEΣ̂, for the GulPC. From Figure 4(e)–(f), GulPC
still has the best performance results, PCA, PPCA, and
GaoPC have the second best performance results, FanPC has
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Fig. 4. Line graph comparing the stability of six methods under RIB, ISE,
and SPP data

a medium range of average estimation accuracy, and SOPC
still has the worst performance results.

IV. SUMMARY AND OUTLOOK

With the rapid development of technology and networks,
data are becoming more and more diverse. How to ef-
fectively deal with these large-scale datasets has attracted
extensive attention from researchers. We propose a parameter
estimation method for general factor model, to reduce the
dimensionality of data and improve the estimation accuracy.

Simulation studies show that the GulPC is more sensi-
tive and stable for estimation, and real data analysis also
demonstrates its excellent performance. It is also found in the
research that it has higher estimation accuracy and excellent
performance. In the future, we will pay more attention to
theoretical support and conduct in-depth research on the
convergence theories of it.
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