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Abstract—We analyze the affect of server breakdowns and
negative customers on queueing systems. Using the quasi-brith-
and-death (QBD) process and matrix geometry solution method,
the M/M/1 repairable queueing system with two types of server
breakdowns and negative customers was studied. In the model,
arriving at a negative customer will offset one positive customer,
simultaneously, it may reduce the service rate or stop working
of the system. The stationary conditions are given, the steady-
state probability vectors are obtained, and some steady-state
queueing and reliable measures are calculated. The results
suggest that the system’s mean queue length decreases as
the increase of the negative customers arrival rate. Finally,
the affect of parameter changes on the system performance
measures are shown by graphs, which can provide an actual
reference for practical applications.

Index Terms—two types of server breakdowns, negative cus-
tomers, repairable queueing system, matrix geometry solution.

I. INTRODUCTION

IN queueing theory, considering negative customers is an
important research director. In 1991, Gelenbe et al. [1]

firstly introduced a queueing strategy with negative cus-
tomers in queueing system. Negative customers were usually
considered as a virus of the system. Their impact is produc-
ing different offsetting effects in the normal service period.
The offsetting rule was generally that negative customers
offset the first customer or the last customer in the queueing
system. Zhang and Niu [2] analyzed the M/G/1 system with
negative customers and a single working vacation strategy.
They gave the distribution of queue length, the probability of
the system being in each state and mathematical expectation
under stationary conditions by the matrix analysis method.
Yan and Yang [3] derived infinitesimal generating elements
of Markov chains by establishing a QBD process.They
derived the steady-state measures using the matrix geometric
solution. Finally, the results were verified by numerical
simulations. Atencia and Moreno [4] discussed a Geo/Geo/1
model with negative customers’ strategy. They used state
transfer to get the PGF of the system waiting queue length.
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Xu et al. [5] discussed the M/M/1 fluid model with negative
customers and working vacation. They used the Laplace
transform method to get the probability of the two buffers of
the queue respectively.

The negative customer queueing model has been further
extended after extensive research. Wang and Zhang [6]
analyzed the queueing model with negative customers in
discrete time. In the model, negative customer arrival can
cause the server to breakdown during normal service periods,
with no impact during repairs. Zhou [7] studied the pre-
emptive feedback M/G/1 retrial model with N-strategy. Pan
[8] analyzed a priority queueing model with variable input
rate, feedback, negative customers, and service time obeying
general distribution. They pointed out the matters needing
attention in the application of the model and the problems to
be further solved. Yang et al. [9] have introduced setup time,
working vacation and working breakdown into the M/M/1/N
model. They established the finite state QBD process of the
model. The system performance measures were calculated,
such as steady-state availability, system variance, throughput
rate of the system. Using embedded Markov chain and PGF
methods, Chen and Jia [10] derived the steady-state mean
queue length of the system during departure periods. He also
obtained the probability of the server in each state. Qu et
al. [11] firstly combined negative customers and repairable
systems. The model was analyzed using the state transfer
equation, and the queueing and reliability measures of this
model were obtained. The above has greatly enriched the
theoretical system of negative customer queueing models.

In telecommunication and computer network systems, a
virus invasion damage the system files, the system will be
back as new after the repair of the damaged files is com-
pleted. Kalidass and Kasturi [12] first analyzed the working
breakdown strategy in M/M/1 queueing model. Prevalent
in many practical queueing systems, working breakdown
strategy means that the system continued to provide service at
a lower service rate during a breakdown period. For example,
a virus in computer systems may degrade the performance
of the system rather than cause it to stop completely. Kim
and Lee [13] introduced the M/M/1 queueing model with
working breakdown to the M/G/1 model. They studied
queueing systems with standby servers and obtained the
queue length. Liu and Song [14] introduced the working
breakdown strategy in the M/M/1 model with batch arrivals.
They analyzed the PGF of the steady-state queue length and
its random decomposition. Li and Zhang [15] considered
working breakdown in the M/G/1 retrial model with negative
customers. They get the probability distribution of the retrial
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queue length. Li and Li [16] analyzed an M/G/1 G-queue
with working vacations and Bernoulli vacation interruption,
server breakdown, and negative customers. They calculate the
PGF of the queue length and the server state using matrix
geometry solutions and supplementary variable methods.
Tsai et al. [17] studied the open queueing network with server
breakdown and verified the correctness of the method and the
validity of the model. Lv [18] studies a repairable queuing
system with two repairmen and limited space, and deduces
the main system performance indicators. Li and Li [19]
studied the retrial queuing system and calculated the steady-
state conditions and probability distribution. Ramasamy et al.
[20] analyzed discrete time Geo/G/2 queue under a serial and
parallel queue disciplines and obtained steady state results.

In real life, the queueing system will be affected inevitably
by information interference. For instance, virus intrusion
in computer systems leading to system crashes, the de-
terioration of computer hardware results in computer lag.
Further, the cancellation of orders has an impact on inven-
tory levels, the malfunction of production systems restricts
production schedules and so on. Those similar interference
phenomenons in the aforementioned examples are known
as "negative customers". Their major impact is to produce
various offsetting effects during normal service periods, or
lead to system breakdown and lower service rate of the
system. System breakdowns are further divided into working
breakdown (or called as incomplete breakdown) and com-
plete breakdown.

This paper was to study various system measures of the
M/M/1 model with two types of server breakdowns and
negative customers. It provided theoretical references for
practical applications. The queueing model was that two
types of server breakdowns and negative customers were con-
sidered comprehensively. Then, the system measures of the
model were calculated. Afterwards, numerical examples were
given, the characters of the system measures of the model
was verified by numerical examples. Finally, the MATLAB
software was used to analyze the model numerically, and
the affect of parameter changes on the system performance
measures was showed.

II. MODEL DESCRIPTION

The queueing system that is studied in this paper has one
server that may breakdown incompletely or completely at
any time. Customers are divided into two types.

1) Customer arrival: the customers includes positive cus-
tomers and negative customers. The arrival rate of positive
customers is λ+. The arrival rate of negative customers is
λ−. Positive customers form a waiting queue, but negative
customers do not form a waiting queue.

2) If there are positive customers in the system during the
normal service period, the arriving negative customers will
offset the positive customers receiving service one by one.
Meanwhile, the server will be working under an incomplete
breakdown state with probability α, and the server will
be breakdown completely with probability 1 − α. When
the system is in incomplete breakdown state, the arrival
of negative customers will cause the server to breakdown
completely. If there are no positive customers in the system,
the negative customers will automatically disappear, and the
negative customers does not accept the service.

3) The service time of a positive customer obeys the neg-
ative exponential distribution of µ during the normal service
period. The service time of a customer obeys the negative
exponential distribution of µ0 during incomplete breakdown
state. During complete breakdown state, the server stops the
service completely.

4) The server may breakdown with no negative customers.
The arrival of the breakdowns obey Poisson process. The
incomplete breakdown rate is ε1. The complete breakdown
rate is ε2.

5) When the server is in breakdown state, the server is
repaired immediately and the server is repaired as well as
new. During incomplete breakdown state, the repair time
is an exponential distribution with parameter ξ1. During
complete breakdown state, the service time of a customer
is an exponential distribution with parameter ξ2.

6) The service rule of the server to customers in the
system is first-come-first-served (FCFS). Assuming the
customers waiting in line will not leave the system without
serviced. The arrival interval, service time and repair time
are independent of each other.

Let L(t) be the number of customers in the queueing
system at moment t, and J(t) be the state of the sever at
moment t:

J(t) =

 0, in the normal service period at time t,
1, in the incomplete failure period at time t,
2, in the complete failure period at time t.

Then {L(t), J(t), t ≥ 0} is a Markov process whose
state space is Ω = {(k, j), k = 0, 1, 2, · · · ; j = 0, 1, 2}.
Figure 1 shows the state transition diagram of the three-
dimensional Markov chain.

Q is the following matrix:

Q =


A0 C
B A C

B A C
. . . . . . . . .

 ,

where

A0 =

 −λ+ − ε1 − ε2 ε1 ε2
ξ1 −λ+ − ξ1 0
ξ2 0 −λ+ − ξ2

 ,

C =

 λ+ 0 0
0 λ+ 0
0 0 λ+

 ,A =

 A11 ε1 ε2
ξ1 A22 0
ξ2 0 A33

 ,

B =

 µ αλ− (1− α)λ−

0 µ0 λ−

0 0 λ−

 ,

A11 = −λ+−λ−−µ−ε1−ε2, A22 = −λ+−λ−−µ0−ξ1,
A33 = −λ+ − λ− − ξ2.

The matrix Q shows that {L(t), J(t), t ≥ 0} is a QBD
process.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 77-83

 
______________________________________________________________________________________ 



III. STEADY-STATE CONDITIONS

According to the related theory of the QBD process,
a sufficient and necessary condition to ensure the exis-
tence of the steady-state probability distribution of X(t) =
{L(t), J(t), t ≥ 0} is PCe < PBe, where P =
( P0 P1 P2 ) is the steady-state probability vector of H ,
and
H = B +A+C = −(λ− + ε1 + ε2) αλ− + ε1 (1− α)λ− + ε2

ξ1 −(λ− + ξ1) λ−

ξ2 0 −ξ2

 .

H is an irreducible generating element, substituting P
and H into the normalization condition yields the following
results: {

PH = 0,

Pe = 1,
(1)

where e =
[
1, 1, 1

]⊤
.

Substituting P , e and H into Eq. (1) obtain:
−(λ− + ε1 + ε2)P0 + ξ1P1 + ξ2P2 = 0,

(αλ− + ε1)P0 − (λ− + ξ1)P1 = 0,

[(1− α)λ− + ε2]P0 + λ−P1 − ξ2P2 = 0,

P0 + P1 + P2 = 1.

(2)

Solving Eq. (2) yields the following results:
P0 = 1

ϕ (λ
− + ξ1)ξ2,

P1 = 1
ϕ (αλ

− + ε1)ξ2,

P2 = 1− 1
ϕ (λ

− + ξ1 + αλ− + ε1)ξ2,

where ϕ = λ−
2
+ λ−ε1 + λ−ε2 + λ−ξ1 + ε2ξ1 + λ−ξ2 +

ε1ξ2 + ξ1ξ2 − λ−ξ1α+ λ−ξ2α.

Theorem 1. If and only if ρ < 1, the system is stationary,
where

ρ =
λ+[λ−

2
+ ε2ξ1 + (ε1 + ξ1)ξ2 + λ−(ψ + ξ22 − ξ2α)]

λ−[λ−2 + ε2ξ1 + λ−ψ + ξ2(ε1 + ξ1 + µ+ αµ0)] + ξ2(ξ1µ+ ε1µ0)
,

ψ = ε1 + ε2 + ξ1 + ξ2 − ξ22 − ξ1α+ 2ξ2α.

Proof The positive recurrent of the QBD processes
{L(t), J(t), t ≥ 0} means PCe < PBe, where e =

( 1, 1, 1 )⊤, then

(
P0 P1 P2

) λ+ 0 0
0 λ+ 0
0 0 λ+

 1
1
1


<

(
P0 P1 P2

) µ αλ− (1− α)λ−

0 µ0 λ−

0 0 λ−

 1
1
1

 .

Equivalent to

ρ =
λ+[λ−2

+ ε2ξ1 + (ε1 + ξ1)ξ2 + λ−(ψ + ξ22 − ξ2α)]

λ−[λ−2 + ε2ξ1 + λ−ψ + ξ2(ε1 + ξ1 + µ+ αµ0)] + ξ2(ξ1µ+ ε1µ0)
,

where ψ = ε1 + ε2 + ξ1 + ξ2 − ξ22 − ξ1α+ 2ξ2α.

IV. STEADY-STATE PROBABILITY

Define the steady-state probability vector as follows:

Π = (π0, π1, π2, · · · ),

where πk = (πk0, πk1, πk2), k = 0, 1, 2, · · · ,
the stead-state distribution is

πk, j = limP {L(t) = k, J(t) = j} , (k, j) ∈ Ω.

Theorem 2. The stochastic matrix B[R] is

B[R] =

(
A0 C
B A+RB

)
,

then: 
(π0,π1)B[R] = 0,

π0e+ π1(I −R)−1e = 1,

πk = π1R
k−1, k ≥ 1,

(3)

where R is the minimal non-negative solution of the equation
R2B+RA+C = 0, and SP (R) < 1, I is a 3-dimensional
unit matrix, e = ( 1, 1, 1 )⊤.

Proof 1) Verifing that πk = π1R
k−1, k ≥ 1 holds.

Expanding the equilibrium equation ΠQ = 0 yields{
π0A0 + π1B = 0,

πk−1C + πkA+ πk+1B = 0, k ≥ 1.
(4)

When k = 1, πk = π1R
k−1 clearly holds, and it is only

necessary to prove whether πk = π1R
k−1 holds when k ≥

2. Substituting πk = π1R
k−1 into Eq. (4) gives:

πk−1C + πkA+ πk+1B

= π1R
k−2C + π1R

k−1A+ π1R
kB

= π1R
k−2(C +RA+R2B)

= 0,

0, 1 1, 1 2, 1 k, 1

0, 0 1, 0 2, 0 k, 0

0, 2 1, 2 2, 2 k, 2

      
    

…

…

 
 

…


0 0 0 0

  

1 1 1 11 1 1 1
         

    

2 2 2 2

    

2 2 2 2

   


(1 )   (1 )   (1 )   (1 )   (1 )  

0

Fig. 1. State transfer diagram.
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so πk = π1R
k−1, k ≥ 1 holds.

2) Verifing that ( π0, π1 )B[R] = 0 holds.

( π0, π1 )B[R]

=
(
π0A0 + π1B, π0C + π1A+ π1RB

)
= 0.

To convert it into a groups of equations, the form is:{
π0A0 + π1B = 0,

π0C + π1A+ π1RB = 0.
(5)

From Eq. (4) it follows that π0A0 +π1B = 0 holds. Let
k = 2, then π2 = π1R, which can be substituted into Eq.
(5) gives:

π0C + π1A+ π1RB

= π0C + π1A+ π2B

= 0,

so ( π0, π1 )B[R] = 0.

3) Verifing that π0e+ π1(I −R)−1e = 1 holds.
From the normalization condition Πe = 1, we know that

π0e + π1e + π2e + π3e + · · · = 1. Substituting πk =
π1R

k−1, k ≥ 1 into Πe = 1, we can obtain:

π0e+ π1e+ π2e+ π3e+ · · ·
= π0e+ π1e+ π1Re+ π1R

2e+ · · ·
= π0e+ π1(I +R+R2 +R3 + · · · )e
= 1.

Since SP (R) < 1, the I+R+R2+R3+ · · · converges
to (I −R)−1.

Therefore,

π0e+ π1(I +R+R2 +R3 + · · · )e
= π0e+ π1(I −R)−1e

= 1,

so π0e+ π1(I −R)−1e = 1 holds.

According to Eq. (3) , the steady-state boundary probabil-
ity vector

(
π0, π1

)
can be obtained.

V. SYSTEM STEADY-STATE PERFORMANCE MEASURES

Using the matrix R and the steady-state boundary prob-
ability vector

(
π0, π1

)
, we obtain the steady-state per-

formance measures of the model.
1) The probability that the server is in the state j

P (J = j) =
∞∑
i=0

πiej = π1[(I −R)
−1 −BA0

−1]ej ,

(6)
where ej(0 ≤ j ≤ 2) is a column vector of dimension 3 that
the element of the j+1 line is 1, and the other elements are
0.

2) The steady-state mean queue length of the system

E(L) =
∞∑
i=1

iπie = π1(I −R)
−2

e. (7)

3) The steady-state mean waiting queue length of the
system

E(Lq) =
∞∑
i=1

(i− 1)πie = π1[(I −R)
−2 − (I −R)

−1
]e.

(8)
4) Positive customers loss rate due to negative customers

arrival

D =
2∑
j=1

∞∑
i=0

λ−πije1 = λ−π1[(I −R)
−1 −BA0

−1]e1,

(9)
where e1 = ( 0, 1, 1 )⊤.

5) The steady-state availability of the server

A =
1∑
j=0

∞∑
i=0

πije2 = π1[(I −R)
−1 −BA0

−1]e2, (10)

where e2 = ( 1, 1, 0 )⊤.

VI. NUMERICAL EXAMPLE

Assuming λ+ = 2, λ− = 0.1, α = 0.6, µ = 4, µ0 =
3, ε1 = 3, ε2 = 2, ξ1 = 3 and ξ2 = 4, easily come to
ρ < 1, and the corresponding subblock matrix is

A0 =

 −7 3 2
3 −5 0
4 0 −6

 ,B =

 4 0.06 0.04
0 3 0.1
0 0 0.1

 ,

A =

 −11.1 3 2
3 −8.1 0
4 0 −6.1

 ,C =

 2 0 0
0 2 0
0 0 2

 .

Let the matrix R is

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,

and substituting R into the equation R2B +RA+C = 0,
which can be calculated:

R =

 0.3423 0.1887 0.1179
0.1885 0.3937 0.0675
0.3202 0.2074 0.4427

 .

Substituting R into Eq. (3):

π0 = ( π00, π01, π02 )

= ( 0.1205, 0.1207, 0.0427 ),

π1 = ( π10, π11, π12 )

= ( 0.0777, 0.0791, 0.0412 ).

Plug in the expression, we get:
1) The probability that the server is in state 0, 1 and 2 are

P (J = 0) = 0.3976, P (J = 1) = 0.3940 and P (J = 2) =
0.2084.

2) The steady-state mean queue length of the system is
E(L) = 2.6176.

3) The steady-state mean waiting queue length of the
system is E(Lq) = 1.3833.

4) Positive customers loss rate due to negative customers
arrival is D = 0.0602.

5) The steady-state availability of the server is A =
0.7916.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 77-83

 
______________________________________________________________________________________ 



VII. NUMERICAL EXPERIMENTS

We analyzes the affect of variations of each parameter on
the steady-state mean queue length, positive customers loss
rate due to negative customers arrival, and the availability of
the server of the system through numerical experiments.

Assuming that λ+ = 2, α = 0.6, µ = 4, µ0 = 3, ε1 =
3, ε2 = 2, ξ1 = 3, ξ2 = 4 and λ− takes values of 0.1 to
0.5, we analyze the influence of λ− on the mean queueing
length E(L) of Eq. (7), positive customers loss rate due to
negative customers arrival D of Eq. (9), and the availability
of the server A of Eq. (10), respectively. The results are as
follows:

In Figure 1, when λ+, α, µ, µ0, ε1, ε2, ξ1 and ξ2 are
constant, the mean queueing length E(L) shows a decreasing
trend with the increase of the λ−.

From Figure 2, when λ+, α, µ, µ0, ε1, ε2, ξ1 and ξ2
are constant, positive customers loss rate due to negative
customers arrival D is increasing with the increase of the
λ−, which is consistent with the actual situation.

From Figure 3, when λ+, α, µ, µ0, ε1, ε2, ξ1 and ξ2
are constant, the system steady-state availability of the server
A is increasing gradually with the increase of the λ−.

Assuming that α = 0.6, ε1 = 3, ε2 = 2, ξ1 = 3, ξ2 =
4, λ+ takes values of 1.5 to 2.5, λ− varies in the range of
0.1 to 0.5, µ takes values of 3 to 5 and µ0 varies in the range
of 2 to 4.

Figure 4 illustrates the effects of λ+ and λ− on E(L) of
the system with other parameters. As can be seen from Figure
4, when λ+ is a constant value, E(L) is decreasing with the
increase of λ−. When λ− is constant, E(L) is increasing
with the increase of λ+ .

Figure 5 describes the affect of λ+ and µ on E(L) of the
system. As can be seen from Figure 5, when µ is a constant
value, E(L) is increasing with the increase of λ+. When
λ+ is constant, E(L) is decreasing with the increase of µ0,
which is consistent with the actual situation.

Figure 6 describes the affect of λ− and µ on E(L) of the
system with other parameters. As can be seen from Figure
6, when µ is a constant value, E(L) is decreasing with the
increase of λ−. When λ− is constant, E(L) is increasing
with the increase of µ and the rising trend is slowing down.

Figure 7 describes the influences of ε1 and ε2 on A with
other parameters. As can be seen from Figure 7, when ε1
is a constant value, A is decreasing with the increase of ε2.
When ε2 is constant, A is increasing with the increase of ε1.

VIII. CONCLUSION

The paper investigated a M/M/1 model with two types of
server breakdowns and negative customers. Firstly, the model
was transformed into a QBD process. Using some relevant
theories of the QBD process, the conditions required for the
steady-state balance of the system were obtained. Secondly,
the system steady-state probability vector was derived by
using the matrix geometry solution method. The matrix R
and steady-state boundary probability vector

(
π0, π1

)
were used to obtain the probability of the system being
in each state, the mean queue length of system and other
performance measures. Numerical examples were given and
the availability of the model was verified by them. Finally,
the affect of parameter changes on the system performance
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Fig. 7. The trend of E(L) versus λ− and µ (λ+ = 2, α = 0.6,
µ0 = 3, ε1 = 3, ε2 = 2, ξ1 = 3 and ξ2 = 4).
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measures were illustrated using graphs. The results showed
that different parameters can significantly affect the mean
queueing length in the steady-state system. The model con-
ditions in this paper are considerably general. It can also
provide theoretical references for practical applications.
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