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Abstract—This study presents an innovative method for
approximating solutions to the variational inequality and
fixed-point problems. The proposed approach deviates from
traditional methods by employing different conditions and
techniques drawn from [18] [20] [21]. Uniquely, our work
circumvents the utilization of a commonly used lemma (see
[10]) that forms the basis for most proofs related to strong
convergence theorems. As part of our investigation, we provide a
comprehensive numerical example to substantiate our findings,
thus enhancing the practical relevance and applicability of our
research.

Index Terms—Fixed-point problem, Iteration, nonexpansive
mapping, Variational inequality problem.

I. INTRODUCTION

THE Fixed-point theory is widely recognized as an ex-
ceptionally potent and fundamental tool in the research

of nonlinear phenomena, spanning applications in diverse
fields such as computer science, chemistry, economics, bi-
ology, engineering, game theory, physics, image processing,
and geometry. Fixed point techniques have emerged as a
vital cornerstone of modern scientific research. For example,
[1] [2] [3] [4] [5] have all utilized these techniques. At
its core, the view of a fixed point describes a point that
remains invariant under a given transformation such as a map,
a system of differential equations, or other mathematical
operations. Specifically, a fixed point of a mapping T (x)
is a point x0 ∈ D(T ) that satisfies T (x0) = x0, and the set
of solutions to the fixed point problem associated with T is
denoted by F (T ).

In this paper, we focus on the variational inequality
problem which involves solving an inequality for all possible
values of a given variable. This functional is typically solved
over a convex set and has been widely used in numerous
scientific fields, including game theory, optimization, finance,
and economics.

In 1959, Signorini introduced a challenge that became
the first instance of a variational inequality, known as the
Signorini problem. This was later addressed and resolved
by Fichera in 1963 [6]. Subsequently, in 1964, Stampacchia
introduced an extension to the Lax-Milgram theorem [7].
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This extension was aimed at exploring the consistency is-
sues related to partial differential equations. He introduced
the term “variational inequality” for all problems involving
inequalities of this kind.

In the context of our study, we designate H as a real
Hilbert space characterized by the norm ∥·∥ and the inner
product ⟨·, ·⟩. Additionally, we identify C as a closed convex
set within H that is not devoid of elements.

Let G : C → H be a given mapping. The task associated
with the variational inequality challenge is to ascertain an
element µ ∈ C such that

⟨Gµ, ν − µ⟩ ≥ 0,

is satisfied for all ν ∈ C. We use V I(C,G) to denote
the collection of solutions pertinent to the aforementioned
variational inequality. It is established in the literature that,
under the conditions of G being both strongly monotone
and Lipschitzian within C, the set V I(C,G) yields a unique
solution.

Given a mapping W : C → C, we term it β-Lipschitz
continuous when a β > 0 can be found such that

∥Wµ−Wν∥ ≤ β∥µ− ν∥

for every µ, ν within C. The constant β represents the
Lipschitz constant. When β lies between 0 and 1, W is
described as a β-contractive mapping. In the special case
where β = 1, W is designated as nonexpansive.

Given the mapping G : C → H , it is deemed α-strongly
monotone when there exists an µ ≥ 0 such that

⟨Gx−Gy, x− y⟩ ≥ µ∥x− y∥2,

for every x, y ∈ C. When µ = 0, we refer to G as simply
monotonic.

For a mapping J taking values from C to H , it is defined
as Φ-inverse strongly monotone [6] when a positive real
constant Φ can be identified, satisfying

⟨x− y, Jx− Jy⟩ ≥ Φ ∥Jx− Jy∥2 ,

for every x, y belonging to C.
Xu [10] introduced one of the most fundamental and

widely used methods for proving strong convergence theo-
rems in order to approximate nonlinear and inverse problems.
For examples, see [16], [17], and [19]. The details are
presented below.

Lemma 1: Let {Qn} be a sequence of real numbers
satisfying

Qn+1 ≤ (1− pn)Qn + qn,
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for all n ≥ 0 with a sequence {pn} in (0,1) and {qn} is a
sequence satisfying

(i)
∑∞

n=1 pn = ∞,
(ii) lim supn→∞ qn/pn ≤ 0 or

∑∞
n=1 qn <∞.

Then, we have
lim
n→∞

Qn = 0.

However, many researchers have endeavoured to prove
strong convergence theorems without employing Lemma 1.
For example, see [13], [14], and [15].

Throughout this research paper, our objective is to estab-
lish the theorem of strong convergence by modifying the
Mann iteration of our proposed sequence without the need
for Lemma 1. Additionally, we illustrate how to tackle the
variational inequality problem utilizing our primary conclu-
sions within the context of applicational theory.

II. PRELIMINARIES

In this part, we outline key lemmas that will play a
significant role in validating the principal findings of Section
3.

Let C be a closed convex subset of a real Hilbert space
H , and let PC : H

onto→ C be the metric projection. That is,
for x ∈ H , PCx satisfies the property

∥x− PCx∥ = min
y∈C

∥x− y∥.

The following lemmas explore the properties of PC and
the set of inequality problems.

Lemma 2: (See [10]) Let C be a nonempty closed convex
subset of a Hilbert space H , and L be a mapping of C into
H . Let w be an element of C, then for σ > 0,

w ∈ V I(C,L) if and only if w = PC(I − σL)w

.
Lemma 3: (See [10]) Let C be a closed convex subset of

a Hilbert space H , and let S and T be operators from C to
H that are δ and ε-inverse strongly monotone, respectively.
If V I(C, S) ∩ V I(C, T ) ̸= ∅, then

V I(C, dS + (1− d)T ) = V I(C, S) ∩ V I(C, T ),

for all d ∈ (0, 1). Moreover, if 0 < Ω < min{2δ, 2ε}, we
have I − Ω(dS + (1− d)T ) is a nonexpansive operator.

Lemma 4: (See [11]) Let {ιn}∞n=0 and {ϑn}∞n=0 be se-
quences of non-negative numbers satisfying

ιn+1 ≤ ιn + ϑn,

for all n ≥ 0.

(i) If
∑∞

n=0 ϑn <∞, then limn→∞ ιn exists.
(ii) If

∑∞
n=0 ϑn <∞ and {ιn}∞n=0 has a subsequence that

converges to zero, then limn→∞ ιn = 0.

Lemma 5: (See [12]) Every Hilbert space H satisfies
Opial’s condition, i.e., for any sequence {µn} ⊂ H with
µn ⇀ µ, the inequality

lim inf
n→∞

∥µn − µ∥ < lim inf
n→∞

∥µn − ν∥

holds for every ν ∈ H with ν ̸= µ.

III. MAIN RESULT

Theorem 1: Let C be a nonempty closed convex subset of
a real Hilbert space H , and let Γ : C → C be a nonexpansive
mapping. Let Q : C → H be ε-strongly monotone and Υ-
Lipschitzian. Let {qn} be a sequence generated by q0 ∈ C
and

qn+1 = aqn + bΓqn + cPC(I − λQ)qn,

for all n ≥ 1 with 0 < Υ ≤ ε < 1, λ ∈ (0, 1), and a+b+c =
1. Then, the following are equivalent:

(i) The sequence {qn} converges strongly to q⋆ ∈ F (Γ)∩
V I(C,Q).

(ii) limn→∞ ∥qn − Γqn∥ = 0.
Proof: Assuming that condition (i) holds, we show that

(i) → (ii). Let qn be the sequence generated as defined in
Theorem 1. Then we have

∥qn − Γqn∥ = ∥qn − q⋆ + q⋆ − Γqn∥
≤ ∥qn − q⋆∥+ ∥q⋆ − Γqn∥
= ∥qn − q⋆∥+ ∥Γq⋆ − Γqn∥
≤ 2∥qn − q⋆∥.

Since {qn} converges strongly to q⋆, then

lim
n→∞

∥qn − Γqn∥ = 0.

Conversely, suppose condition (ii) holds and employ the
nonexpansiveness of PC . We get

∥PC(I − λQ)q − PC(I − λQ)t∥2

≤ ∥(I − λQ)q − (I − λQ)t∥2

= ∥(q − t)− (λQq − λQt)∥2

= ∥q − t∥2 − 2 ⟨q − t, λQq − λQt⟩
+ ∥λQq − λQt∥2

≤ ∥q − t∥2 − 2λ ⟨q − t, Qq −Qt⟩
+ λ2ε2∥q − t∥2

≤ (1− 2λε+ λ2ε2)∥q − t∥2

= (1− λε)2∥q − t∥2

= ω2∥q − t∥2.

with ω = 1− λε ∈ (0, 1).
Consequently, PC(I − λQ) is an ω-contractive mapping.

From Γ is a nonexpansive mapping, getting

∥qn+1 − qn∥ = ∥(aqn + bΓqn + cPC(I − λQ)qn)

− (aqn−1 + bΓqn−1 + cPC(I − λQ)qn−1)∥
≤ b∥Γqn − Γqn−1∥+ a∥qn − qn−1∥

+ cω∥qn − qn−1∥
≤ (1− (1− ω)c)∥qn − qn−1∥
≤ (1− (1− ω)c)2∥qn−1 − qn−2∥
≤ (1− (1− ω)c)3∥qn−2 − qn−3∥

...
≤ (1− (1− ω)c)n∥q1 − q0∥. (1)
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For any natural numbers n and κ with using equation (1),
we have

∥qn+κ − qn∥ = ∥qn+κ − qn+κ−1 + qn+κ−1 − qn+κ−2

+ qn+κ−2 − ...− qn∥

≤
n+κ−1∑
j=n

∥qj+1 − qj∥

≤
n+κ−1∑
j=n

(1− (1− ω)c)j∥q1 − q0∥

≤ (1− (1− ω)c)n

(1− ω)c
∥q1 − q0∥. (2)

From (2) and limn→∞(1− (1−ω)c)n = 0, we have {qn}
is a Cauchy sequence. Employing the completeness of H ,
there exists q⋆ ∈ H such that

lim
q→∞

qn = q⋆. (3)

Since C is closed, we obtain q⋆ ∈ C. Assume that q⋆ ̸=
Γq⋆, using the fact that limx→∞ ∥qn − Γqn∥ = 0, Lemma 5,
and nonexpansiveness of Γ. Getting,

lim inf
n→∞

∥qn − q⋆∥ < lim inf
n→∞

∥qn − Γq⋆∥

≤ lim inf
n→∞

(∥qn − Γqn∥+ ∥Γqn − Γq⋆∥)

≤ lim inf
n→∞

∥qn − q⋆∥.

This is a contradiction, we obtain that q⋆ = Γq⋆. It means
that q⋆ ∈ F (Γ). From definition of qn+1, then

c∥PC(I − λQ)qn − qn∥ ≤ ∥qn+1 − qn∥+ b∥Γqn − qn∥.

From limn→∞ qn = q⋆ and condition (ii), we have

lim
n→∞

∥PC(I − λQ)qn − qn∥ = 0. (4)

Assume that q⋆ ̸= P (I−λQ)q⋆. From (4), Lemma 5, and
the nonexpansiveness of PC(I − λQ). Therefore, we have
shown that

lim inf
n→∞

∥qn − q⋆∥ < lim inf
n→∞

∥qn − PC(I − λQ)q⋆∥

≤ lim inf
n→∞

(∥qn − PC(I − λQ)qn∥

+ ∥PC(I − λQ)qn − PC(I − λQ)q⋆∥)
≤ lim inf

n→∞
∥qn − q⋆∥.

This is a contradiction, we obtain q⋆ = PC(I − λQ)q⋆.
From Lemma 2, then q⋆ ∈ V I(C,Q).

Hence, {qn} converges strongly to q⋆ ∈ F (Γ)∩V I(C,Q).

From Theorem 1, we prove strong convergence theorem
by using condition F (Γ) ∩ V I(C,Q) ̸= ∅ as follows.

Theorem 2: Let C be nonempty closed convex subset of
a Hilbert space H and let Γ : C → C be a nonexpansive
mapping. Let Q : C → H be ε-strongly monotone and Υ-
Lipschitzian with F (Γ) ∩ V I(C,Q) ̸= ∅. Let {qn} be a
sequence generated by q0 ∈ C and

qn+1 = aqn + bΓqn + cPC(I − λQ)qn,

for all n ≥ 1 with 0 < Υ ≤ ε < 1, λ ∈ (0, 1), and a +
b + c = 1. Then the sequence {qn} converges strongly to
q⋆ ∈ F (Γ) ∩ V I(C,Q).

Proof: Let conditions (i)−(ii) hold and let ψ ∈ F (Γ)∩
V I(C,Q), then

∥qn+1 − ψ∥2 = ∥aqn + bΓqn + cPC(I − λQ)qn − ψ∥2

= ∥a(qn − ψ) + b(Γqn − ψ)

+ c(PC(I − λQ)qn − ψ)∥2

= a∥qn − ψ∥2 + b∥Γqn − ψ∥2

+ c∥PC(I − λQ)qn − ψ∥2

− ab∥qn − Γqn∥2

− bc∥Γqn − PC(I − λQ)qn∥2

≤ a∥qn − ψ∥2 + b∥Γqn − Γψ∥2

+ c∥PC(I − λQ)qn − PC(I − λQ)ψ∥2

− ab∥qn − Γqn∥2

≤ a∥qn − ψ∥2 + b∥qn − ψ∥2 + c∥qn − ψ∥2

− ab∥qn − Γqn∥2

≤ ∥qn − ψ∥2 − ab∥qn − Γqn∥2. (5)

From (5), it implies that

∥qn+1 − ψ∥ ≤ ∥qn − ψ∥. (6)

Employing Lemma 4, we have limn→∞ ∥qn − ψ∥ exists
for all ψ ∈ F (Γ) ∩ V I(C,Q).

From (5), we get

ab∥qn − Γqn∥2 ≤ ∥qn − ψ∥2 − ∥qn+1 − ψ∥2.

Accordingly,

lim
n→∞

∥qn − Γqn∥ = 0. (7)

Using (7) and Theorem 1, it follows that the sequence
{qn} converges strongly to q⋆ ∈ F (Γ) ∩ V I(C,Q).

IV. APPLICATIONS

The combination of the variational inequality problem [22]
is to find z ∈ C such that〈

w − z,
M∑
i=1

biBiz

〉
≥ 0,

where Bi : C → K is a nonlinear mapping, and bi ∈ (0, 1)
with

∑M
i=1 bi = 1, for all i = 1, 2, . . . ,M .

The set of solutions of combination of this varia-
tional inequality problem is given by V I(C,

∑M
i=1 biBi) ={

v ∈ C :
〈
w − z,

∑M
i=1 biBiz

〉
≥ 0,∀w ∈ C

}
.

This problem is called the variational inequality problem
if Bi = B for all i = 1, 2, . . . ,M .

In the research conducted by Kangtunyakarn [22], a robust
convergence theorem is established to identify the solution
sets pertaining to the common element within the fixed-
point sets of a finite family of nonspreading mappings.
The theorem, demonstrating convergence, is intricately con-
nected with two split variational inequality problems and is
substantiated through the application of outcomes derived
from Lemma 3. This foundational theorem is articulated as
follows:

Theorem 3: Let C be nonempty closed convex subset of
a real Hilbert space H, and let Q

♡
, G

♡
: C → H be

ε, δ-inverse strongly monotone, respectively. Let Q : C →
H be ε-strongly monotone and Υ-Lipschitz operator, with
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V I(C,Q) ∩ V I(C,Q♡
) ∩ V I(C,G♡

) ̸= ∅. Let {qn} be a
sequence generated by q0 ∈ C and

qn+1 = aqn + bPC(I − γ(aQ
♡
+ (1− a)G

♡
))qn

+ cPC(I − λA)qn,

for all n ≥ 1 with 0 < Υ ≤ ε < 1, λ ∈ (0, 1), γ ∈
(0,min{2ε, 2δ}), and a + b + c = 1. Then, the sequence
{qn} converges strongly to q⋆ ∈ V I(C,Q) ∩ V I(C,Q♡

) ∩
V I(C,G

♡
).

Proof: From Lemma 4, we have PC(I − γ(aQ
♡
+(1−

a)G
♡
) is a nonexpansive mapping. Using Theorem 2 and

Lemma 3, we obtain that {qn} converges strongly to q⋆ ∈
V I(C,Q) ∩ V I(C,Q♡

) ∩ V I(C,G♡
).

From Theorem 3, the following are the direct results.
Corollary 1: Let C be a nonempty closed convex subset

of a real Hilbert space H . Let Q
♡

: C → H be ε-inverse
strongly monotone, and Q : C → H be ε-strongly monotone,
and Υ-Lipschitz operator with V I(C,Q)∩ V I(C,Q♡

) ̸= ∅.
Let {qn} be a sequence generated by q0 ∈ C and

qn+1 = aqn + bPC(I − γQ
♡
)qn + cPC(I − λQ)qn,

for all n ≥ 1 with 0 < Υ ≤ ε < 1, λ ∈ (0, 1), 0 < γ < 1,
and a+b+c = 1. Then, the sequence {qn} converges strongly
to q⋆ ∈ V I(C,Q) ∩ V I(C,Q♡

).
Remark:

(1) If G : C → H is a nonexpansive mapping with
F (G) ̸= ∅, then V I(C, I −G) = F (G).

(2) If G is a nonexpansive mapping, then I−G is 1
2 -inverse

strongly monotone.
We use the above two remarks and Theorem 2 to prove

the following results.
Corollary 2: Let C be a nonempty closed convex subset

of a real Hilbert space H . Let Q : C → H be ε-
strongly monotone, and Υ-Lipschitz. Let S̄, Ŝ : C → C be
nonexpansive mappings with V I(C,Q)∩F (S̄)∩F (Ŝ) ̸= ∅.
Let {qn} be a sequence generated by q0 ∈ C and

qn+1 = aqn + bPC(I − γ((I − S̄)a+ (1− a)(I − Ŝ))qn

+ cPC(I − λQ)qn,

for all n ≥ 1 with 0 < Υ ≤ ε < 1, λ ∈ (0, 1), 0 < γ < 1,
and a+b+c = 1. Then the sequence {qn} converges strongly
to q⋆ ∈ F (S̄) ∩ F (Ŝ) ∩ V I(C,Q).

V. NUMERICAL METHOD

In the field of physics, Apéry’s constant is particularly
intriguing and essential to the computation of the electron’s
gyromagnetic ratio using quantum electrodynamics. It is
defined as the sum of the reciprocals of the positive cubes
and represented by the Euler-Riemann zeta function:

ζ(3) =
∞∑

n=1

1

n3
.

This constant holds an irrational value, approximately
equal to

1.20205690315959428539973816151144...,

making it all the more fascinating. Furthermore, we
have presented evidence of the newly proven theorem’s
application to support our findings, that is, the convergence

trend of sample sequences.

Example: Let C = [−100, 100], Tq = 1
2q, and Qq =

ζ(3)
4 q. Let {qn} be a sequence generated by q0 ∈ C, and

qn+1 = 0.2qn + 0.3Tqn + 0.5PC

(
I − ζ(3)π

20

)
qn,

for all n ≥ 1. We know that Q is both ζ(3)
4 -strongly

monotone and ζ(3)
4 -Lipschitz. Moreover, T is nonexpansive

with 0 ∈ V I(C,Q) ∩ F (T ). Applying Theorem 2, we can
conclude that the sequence {qn} converges strongly to 0.

The Table I and Fig 1 show the value of {qn} with
q0 = −10, 10 and n = 500.

Table I
CONVERGENCE OF THE ITERATIVE METHOD FROM

THE NUMERICAL METHOD EXAMPLE

n qn with q0 = −10 qn with q0 = 10
1 -7.5559067159592303 7.5559067159592303
2 -5.709172630027780 5.709172630027780
3 -4.3137975817797525 4.3137975817797525
4 -3.2594652119458319 3.2594652119458319
5 -2.4628215085376987 2.4628215085376987
...

...
...

15 -0.1493821869718095 0.1493821869718095
16 -0.1128717869784972 0.1128717869784972
17 -0.0852848693273147 0.0852848693273147
18 -0.0644404516919962 0.0644404516919962
19 -0.0486906041719000 0.0486906041719000
20 -0.0367901663066572 0.0367901663066572
...

...
...

50 -0.0000082097395123 0.0000082097395123

0 5 10 15 20 25 30

−10

−5

0

5

10

The number of iteration (n)

q n

Fig 1. Graph of Iteration Convergence

qn with q0 = −10
qn with q0 = 10

VI. CONCLUSION

In conclusion, our research successfully implemented a
novel modification of the Mann iteration to achieve strong
convergence. Importantly, our approach accomplishes this
without the need to depend on Lemma 1 and without assum-
ing F (Γ)∩V I(C,Q) ̸= ∅. The main results of our study were
subsequently employed to prove Corollary 2 and estimate the
solution of the combined variational inequality problem. To
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substantiate our theoretical findings, we provided extensive
numerical evidence. Our research underscores the potential
of this modified Mann iteration technique, opening new
avenues for future explorations in this field.
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