
Numerical Approximation of the One-dimensional
Inverse Stefan Problem Using a Meshless Method

Mohammed Baati, Nada Chakhim, Mohamed Louzar and Abdellah Lamnii

Abstract—This paper employs a recent algorithm capable
of determining an optimal regularization technique based on
a meshless method of fundamental solutions for the one-
dimensional inverse Stefan problem, where the boundary data
is reconstructed on the fixed boundary. The inverse problem
is ill-posed. For comparison purposes, we employ Tikhonov,
Truncated Singular Value Decomposition, and Randomized
Singular Value Decomposition regularization methods to obtain
a more accurate solution. The numerical results of three
different benchmark examples are presented in this paper.

Index Terms—inverse problem, problem the Stefan, tikhonov,
truncated singular value decomposition, randomized singular
value decomposition, method of fundamental solutions.

I. INTRODUCTION

THE Stefan problem model arises in various real-world
and engineering situations involving melting or freezing

that cause a boundary to change over time [1]. Examples
include the solidification of metals, melting, casting, crystal
growth, freezing of water and food, ablation, and more.
The direct Stefan problem allows us to determine both
the temperature and the moving boundary interface when
provided with initial and boundary conditions, as well as the
thermal properties of the heat-conducting body.

In contrast, the primary goal of the inverse Stefan problem
is to determine the initial condition, boundary condition,
and thermal properties from complementary information.
This may involve partial knowledge or measurements of
the moving boundary interface location, its velocity in a
normal direction, and the temperature at the selected interior
thermocouples within the domain [2], [3]. Furthermore, the
inverse Stefan problem belongs to a significant class of ill-
posed control theory problems with numerous engineering
applications.

For instance, in the material refining technology that
utilizes recrystallization, solving the inverse Stefan problem
becomes crucial. It involves finding the temperature and
heat flux at the fixed surface to ensure the flatness of the
crystallization front.

Solutions to both the direct and inverse Stefan problems
often pose challenges for popular numerical methods like the
Finite Element Method (FEM) [4] and the Finite Difference
Method (FDM) [5], [6]. This difficulty arises due to the
free boundary changing in the domain mesh at each time
instant for these methods. To address this issue, the Boundary
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Element Method (BEM) [7] partially mitigates the problem
by only discretizing the boundary of the solution domain.

However, a more efficient and simplified approach with
easier computational implementation is offered by the
Method of Fundamental Solutions (MFS). MFS eliminates
the need for domain mesh and requires only suitable place-
ment of collocation points on the initial base/boundary of the
solution domain, along with source points located external
to this boundary. In this study, we will investigate how the
location of these source points affects the accuracy of the
approximate solution.

Recently, the fundamental solutions method has been
successfully applied to various hyperbolic and parabolic
problems, including direct and inverse Stefan problems. The
simplicity of the technique and the ease with which it can
be implemented have made it widely known.

For the advantages of MFS over other more traditional
methods of domain or boundary discretization, references [8]
and [9] can be consulted. In this study, we have developed
the Method of Fundamental Solutions (MFS) based on the
Randomized Singular Value Decomposition (rSVD). Several
rSVD inversion algorithms have been proposed [10], [11].
rSVD leverages the intrinsic low-rank structure of inversion
problems to construct an accurate approximation efficiently.

Our main contribution lies in providing a framework
for developing the fundamental solutions method based on
rSVD and demonstrating the robustness of this approach. To
facilitate comparison, we will evaluate this method against
two widely recognized regularization techniques: Truncated
Singular Value Decomposition (TSVD) and Tikhonov regu-
larization [2].

The outline of this paper is organized as follows: In
Section 2, we will formulate the inverse Stefan problem
and discuss some of its variants. In Section 3, we present
the Method of Fundamental Solutions (MFS) for solving the
inverse Stefan problem numerically and provide a recap of
its theoretical properties. In Section 4, we introduce various
regularization methods. Section 5 will showcase numerical
results demonstrating that an accurate approximation of the
inverse Stefan problem can be achieved using MFS with
rSVD regularization.

II. MATHEMATICAL FORMULATION

In the direct one-dimensional Stefan problem, we aim to
determine the free boundary which we denote by RM and is
given by x=M(t) and the temperature solution v(x,t) in the
heat conduction domain Ω=(0,M(t))×(0,tf ], when tf>0 is
the fixed boundary at x=0, which we call by Rv . We denote
the union of the boundaries by R=RM∪Rv and the closure
of the domain Ω by Ω̄=[0,M(t)]×[0,tf ].

In the direct one-phase Stefan problem we aim to deter-
mine the solution v(x,t) as well as the moving boundary given
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by x=M(t), satisfying the heat equation

∂v

∂t
(x, t)− ∂2v

∂x2
(x, t) = 0, (x, t) ∈ Ω (1)

Subject to the initial condition

v(x, 0) = v0(x), x ∈ [0, b],M(0) = b > 0 (2)

Where v0∈C1([0,M(0)]).
The Dirichlet and Neumann boundary conditions on the

moving boundary x=M(t)

v(M(t), t) = 0, t ∈ (0, tf ] (3)

∂v

∂x
(M(t), t) = −M ′(t), t ∈ (0, tf ] (4)

With M∈C1([0, tf ]) is a positive function.
We have Dirichlet and Neumann boundary conditions at

the fixed boundary x=0

v(0, t) = h(t), t ∈ (0, tf ] (5)

−∂v

∂x
(0, t) = g(t), t ∈ (0, tf ] (6)

The existence and uniqueness of a solution, along with its
continuous dependence on the data, have been established
and can be found in references [12] and [13].

The boundary conditions given by equations (3) and (4)
can be replaced by the general boundary conditions given by

v(M(t), t) = h1(t), t ∈ (0, tf ] (7)

∂v

∂x
(M(t), t) = h2(t), t ∈ (0, tf ] (8)

Where h1, h2∈C1([0,tf ]) which satisfy the compatibility
conditions h1(0)=v0(M(0)) and h2(0)=v′0(M(0)).

The inverse Stefan problem considered in this study in-
volves finding the temperature v(x,t) that satisfies equations
(1)-(4), with M(t) known. A simple approach proposed in [2]
uses the Method of Fundamental Solutions with Tikhonov
regularization. However, in our research, we employ the
Method of Fundamental Solutions with rSVD regularization
to tackle the ill-posed nature of the problem and enhance
convergence.

III. THE METHOD OF FUNDAMENTAL SOLUTIONS (MFS)

We refer to the fundamental solutions of the one-
dimensional heat equation (1) as presented in references [14]
and [15].

E(x, t, y, µ) =
H(t− µ)

(4π(t− µ))
1
2

e
−(x−y)2

4(t−µ) (9)

Where H is the Heaviside function.
We construct a novel version of the method of fundamental

solutions to approximate equations (1)-(4) using a linear
combination of the fundamental solutions provided by:

v∞(x, t) =
2∑

j=1

∞∑
n=1

c(j)n E(x, t, yj(µn), µn), (x, t) ∈ Ω̄

(10)

Fig. 1. General representation of the domain Ω, boundary R=Rv∪RM ,
and source points placed on RE external to the domain Ω.

To implement the Method of Fundamental Solutions for
the inverse Stefan problem, we truncate equation (10) by
considering a finite number of terms, specifically,

vN (x, t) =
2∑

j=1

2N∑
n=1

c(j)n E(x, t, yj(µn), µn), (x, t) ∈ Ω̄ (11)

We construct a one-dimensional domain with a fixed
boundary at x=0 and a moving boundary at x=M(t). Source
points are positioned at the following coordinates:

(−l, µ), µ ∈ (−tf , tf )

(l +M(µ), µ), µ ∈ (0, tf )

(l +M(−µ), µ), µ ∈ (−tf , 0)

Source points have been located symmetrically concerning
µ via a reflection through t=0. We will test other source point
locations to improve the results.

The source points will be set to time points
(µn)n=1,...,2N∈(-tf ,tf ) given by

µn =
2(n−N)− 1

2N
tf , n = 1, ..., 2N

y1(µn) = −l, n = 1, ..., 2N

y2(µn) = l +M(|µn|), n = 1, ..., 2N

We have in total 4N source points on the boundary RE ,
and we place the same number of collocation points on the
lateral and base surfaces M0∪Rv . We note that the location
of the collocation points may be arbitrary, but in what follows
we set them uniformly for ease of implementation. Let

ti =
i

N
tf , x

(i)
1 = M(ti), i = 0, ..., N

x
(k)
0 =

kM(0)

K + 1
, k = 1, ...,K

We get the following equation system:

vN (x
(k)
0 , 0) = v0(x

(k)
0 ), k = 1, ...,K (12)

vN (x
(i)
1 , ti) = 0, i = 0, ..., N (13)

∂vN
∂x

(x
(i)
1 , ti) = −M ′(ti), i = 0, ..., N (14)
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The system of equations (12)-(14) contains k+2(N+1)
equations and 4N unknowns. Therefore, we get k≥2N-2 [12],
[13], which is a necessary condition for a unique solution.
This system can be represented as follows

Ac = g (15)

Where c represents the vector of unknown constants c
(j)
n ,

g is the vector describing the initial and boundary values
at the collocation points, and A is the matrix representing
the value of the fundamental solutions at the corresponding
collocation and source points.

Matrix A has a high condition number [16], [17], which
necessitates the application of regularization methods, such
as Tikhonov regularization [18], randomized singular value
decomposition, and truncated singular value decomposition,
to achieve better regularization.

IV. REGULARIZATION METHODS

The solution to the ill-conditioned linear system requires
special treatment using regularization methods. Notably, the
Tikhonov regularization method stands out as one of the
oldest and most widely used approaches. In its simplest form,
the Tikhonov regularization replaces the linear system (15)
with the following regularized system

(AtrA+ αI)c = Atrg (16)

Where α is a regularization parameter that determines the
quality of the approximate solution and I is a unit matrix.
The choice of the regularization parameter α≥0 is chosen
according to the L-curve criterion see [19]. We can apply
the truncated singular value decomposition (TSVD) method,
which is one of the most powerful tools in numerical linear
algebra [20].

For the matrix A∈Rn×n the SVD of A is defined by

A = U
∑

V tf =

n∑
i=1

uiσiv
tf
i

Where U=(u1, u2, u3, ..., un), V=(v1, v2, v3, ..., vn) are or-
thonormal column matrices with size n×n. Σ=

(
D 0
0 0

)
, which

D=diag(σ1, σ2, ..., σn), and σi is the singular value of A
and satisfies σ1>σ2>...>σn. When singular values in the
matrix are very small, the condition number of the matrix A
becomes very large. To mitigate this issue, the best approach
is to reduce the condition number of A by truncating the
very small singular values using the TSVD method.

The truncated SVD (TSVD) approximation of A as a
matrix Ak such as

Ak = U
∑
k

V tf =
k∑

i=1

uiσiv
tf
i

With Σk=diag(σ1, σ2, ..., σk, 0, ..., 0)∈Rn×n, k≤n where∑
k equals

∑
with the smallest n-k singular values replaced

by zeros. ui and vi are the columns of the matrices U and
V, respectively. The TSVD solution to (15) is defined by:

ck = A−1
k g =

k∑
i=1

u
tf
i g

σi
vi

The theory of random singular value decomposition (rSVD)
is employed to extract the principal information from the

Fig. 2. Particularization of Fig. 1 for three examples.

convolution [21]. The main goal of this method is to compute
a q-rank approximation of the matrix A with q≪n.

Ãq = Ũ
∑̃

˜V tf

Where the U and V are orthogonal unitary matrices with
size n×q. Ũ=(ũ1, ũ2, ..., ũq) and Ṽ =(ṽ1, ṽ2, ..., ṽq) are both
orthonormal, and

∑̃
is a diagonal matrix with nonzero

diagonal entries σ̃1 through σ̃q , with σ̃1>σ̃2>σ̃3>...>σ̃q> 0.
The diagonal entries Σ̃ of the approximate singular value of
the A.

The steps of the rSVD method are [22]:
• Form an n×q Gaussian random matrix Ω.
• Construct a matrix Y=AΩ.
• Decomposition of Y.(Y=QyRy , such that Ry is the

upper triangular matrix).
• Construct the q×n approximate matrix C=AtfQy .
• Decomposition QR: C=QcRc.
• Determine the SVD: Rc=UcΣcV

tf
c where Σ=Σc.

• Construct the matrix U =QyVc, V tf=U
tf
c Q

tf
c .

The well-conditioned linear system can be solved us-
ing any classical method such as the Gaussian elimination
method for example [23].

V. NUMERICAL RESULTS

This section presents some numerical tests to demonstrate
the performance of the Method of Fundamental Solutions
with rSVD regularization. We will use this method to ap-
proximate two examples.

A. Example 1

The first example has a moving boundary given by the
function

M(t) =
√
2− 1 +

t√
2
, t ∈ [0, 1] (17)

The source points are located on the external boundaries
(−l, µ), µ ∈ (−1, 1), (M(µ)+l, µ), µ ∈ (0, 1), (M(−µ)+

l, µ), µ ∈ (−1, 0).
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Fig. 3. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=16.

TABLE I
THE SIMULATION CONDITIONS.

Hardware or Software Parameters

CPU Intel(R) Core (TM) i7-10750H CPU

RAM 16 Go

Platform MATLAB R2016a

The exact solution is given by

v(x, t) = −1+exp(1− 1√
2
+
t

2
− x√

2
), (x, t) ∈ [0,M(t)]×[0, 1]

(18)
with the following initial and boundary conditions

v(x, 0) = −1+exp(1− 1√
2
− x√

2
), x ∈ [0,M(0)],M(0) =

√
2−1

(19)
v(M(t), t) = 0, t ∈ (0, 1] (20)

∂v

∂x
(M(t), t) = −M ′(t) = − 1√

2
, t ∈ (0, 1] (21)

The Dirichlet boundary and Neumann conditions on the fixed
boundary x=0 is given by

v(0, t) = −1 + exp(1− 1√
2
+

t

2
), t ∈ (0, 1] (22)

∂v

∂x
(0, t) = − 1√

2
exp(1− 1√

2
+

t

2
), t ∈ (0, 1] (23)

We will choose α=10−6 of the L-curve for the regular-
ization parameter [25]. The simulation conditions are given
in Table 1.

We will choose a new value α=10−5 of the L-curve for
the regularization parameter [25].

In this example, our objective is to determine the Neu-
mann boundary conditions along the fixed boundary x=0. In
Figures 3-6, we present the MFS approximations for v(0,t)
using three regularization methods: Tikhonov, TSVD, and
rSVD with α=10−6. Upon comparison, all methods show
good correspondence with the exact solution. However, as
the number of source points increases, the accuracy notably
improves for the rSVD regularization method compared to
the Tikhonov and TSVD methods.
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Fig. 4. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=32.
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Fig. 5. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=64.
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Fig. 6. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=128.

Figures 11-14 also show that, as expected, the heat flux
can be accurately estimated by the rSVD method compared
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Fig. 7. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=16.
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Fig. 8. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=32.
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Fig. 9. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=64.

to the TSVD and Tikhonov methods as N increases with
α=10−6. Figures 7-10 show that the fundamental solutions
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Fig. 10. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=128.
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Fig. 11. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=16.
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Fig. 12. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=32.

method with the rSVD regularization method is stable and
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Fig. 13. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=64.
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Fig. 14. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=128.

TABLE II
THE COMPARISON OF THE ERROR BETWEEN TSVD, TIKHONOV, RSVD

AND THE EXACT SOLUTION FOR DIFFERENT VALUES OF THE SOURCE
POINTS N.

boundary α N TSVD Tikhonov rSVD

Dirichlet 10−6 16 0.1864 0.0264 0.0180

Dirichlet 10−6 32 0.1675 0.0206 2.1734e-04

Dirichlet 10−6 64 0.1576 0.0168 1.2468e-05

Dirichlet 10−6 128 0.1526 0.0118 3.0710e-06

Dirichlet 10−5 16 0.1864 0.0484 0.0181

Dirichlet 10−5 32 0.1675 0.0392 2.1734e-04

Dirichlet 10−5 64 0.1576 0.0260 1.2264e-05

Dirichlet 10−5 128 0.1526 0.0208 2.5160e-06

Neumann 10−6 16 0.3781 0.0858 0.0784

Neumann 10−6 32 0.3568 0.0710 0.0014

Neumann 10−6 64 0.3458 0.0599 1.0679e-04

Neumann 10−6 128 0.3402 0.0447 3.5315e-05

becomes more accurate when the regularization parameter is
changed α=10−5.

The results in Table 2 are consistent with the previous
conclusions, indicating that the approximation of the Method
of Fundamental Solutions with rSVD regularization becomes
more accurate as the number of source points N along
x=0 increases, compared to both the TSVD and Tikhonov
regularization methods. Consequently, we can conclude that
accurate and stable results can be achieved with a high
number of source points.

Additionally, we compared the computation time of these
methods to demonstrate the efficiency of our proposed ap-
proach. The Tikhonov method takes 2.3125s, the TSVD
method takes 2.6406s, while the proposed rSVD method only
takes 2.2344s. The rSVD method exhibits significant superi-
ority in terms of computation time. Experimental data further
confirm that the method proposed in this paper reduces
the computational time effectively with l=2.5, α=10−6, and
N=128.

In this example, we achieved accurate results with absolute
errors of 10−6, which was expected given that the error in
the Neumann boundary condition was 10−5.

Our numerical results are comparable to those previously
obtained in [2] using the fundamental solutions method with
Tikhonov regularization.

In the first example, we utilized a linear moving boundary
function M(t). In the subsequent example, we employ a non-
linear boundary function.

B. Example 2

The second example features a moving boundary defined
by the non-linear function [25].

M(t) = 2−
√
3− 2t, t ∈ [0, 1] (24)

The source points are located on the external boundaries
(−l, µ), µ ∈ (−1, 1), (M(µ)+l, µ), µ ∈ (0, 1), (M(−µ)+

l, µ), µ ∈ (−1, 0).
The exact solution is given by

v(x, t) = −x2

2
+2x− 1

2
− t, (x, t) ∈ [0,M(t)]× [0, 1] (25)

Such as this example has the following initial and boundary
conditions

v(x, 0) = −x2

2
+ 2x− 1

2
, x ∈ [0,M(0)],M(0) = 2−

√
3

(26)
v(M(t), t) = 0, t ∈ (0, 1] (27)

∂v

∂x
(M(t), t) = −M

′
(t) =

√
3− 2t, t ∈ (0, 1] (28)

The Dirichlet and Neumann boundary conditions on the fixed
boundary x=0 is given by

v(0, t) = −1

2
− t, t ∈ [0, 1] (29)

∂v

∂x
(0, t) = 2, t ∈ [0, 1] (30)

We have demonstrated the MFS approximations in Figures
15-18 and Figures 19-22 to determine the Dirichlet condition
using three different types of regularization with α=10−6

and α=10−5. Our findings indicate that the rSVD regular-
ization achieves greater accuracy as the number of source
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Fig. 15. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=16.
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Fig. 16. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=32.
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Fig. 17. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=64.

points increases when compared to the TSVD and Tikhonov
regularization methods, as previously reported in [2].
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Fig. 18. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−6, k=30 and N=128.
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Fig. 19. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=16.

A comparison of the computation time for these methods
when applied to the second example reveals the efficiency of
our proposed approach. The Tikhonov method takes 3.625s,
the TSVD method takes 2.9375s, while the proposed rSVD
method only takes 2.7813s. The rSVD method exhibits sig-
nificant superiority in terms of computation time. Experimen-
tal data further confirm that our proposed method reduces
the computational time effectively with l=2.5, α=10−6, and
N=128. The Neumann boundary conditions on the fixed
boundary x=0 are presented in Figures 23-26. These figures
depict the exact solution and the MFS approximation for the
normal derivative vx(0,t) using three types of regularization.
Similar to Example 1, the rSVD regularization appears to
become more accurate as N increases, compared to the
Tikhonov regularization [2]. However, the TSVD approxi-
mation exhibits slightly oscillatory and unstable behavior,
supporting the conclusion that our method is more accurate.

The Neumann boundary conditions on the fixed boundary
x=0 is presented in Figures 23-26.

From Table 3, we can deduce that the rSVD method
outperforms the TSVD and Tikhonov methods when the
regularization parameter is set to α=10−5 and α=10−6. In
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Fig. 20. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=32.
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Fig. 21. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=64.
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Fig. 22. The comparison of the exact solution and the MFS approximation
using three methods generated by l=2.5, α = 10−5, k=30 and N=128.

both examples 1 and 2, we increase the number of source
points to investigate their impact on the results. We set
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Fig. 23. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=16.
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Fig. 24. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=32.
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Fig. 25. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=64.
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Fig. 26. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=2.5, α = 10−6, k=30
and N=128.

TABLE III
THE COMPARISON OF THE ERROR BETWEEN TSVD, TIKHONOV, RSVD

AND THE EXACT SOLUTION FOR DIFFERENT VALUES OF THE SOURCE
POINTS N.

boundary α N TSVD Tikhonov rSVD

Dirichlet 10−6 16 0.2976 0.0111 0.0033

Dirichlet 10−6 32 0.0097 0.0096 1.4823e-04

Dirichlet 10−6 64 0.2822 0.0066 8.3041e-06

Dirichlet 10−6 128 0.2791 0.0049 4.2907e-07

Dirichlet 10−5 16 0.2976 0.0239 0.0031

Dirichlet 10−5 32 0.2879 0.0172 1.4822e-04

Dirichlet 10−5 64 0.2822 0.0112 7.0089e-06

Dirichlet 10−5 128 0.2791 0.0096 6.7863e-07

Neumann 10−6 16 0.7059 0.0385 0.0041

Neumann 10−6 32 0.7189 0.0350 4.6159e-04

Neumann 10−6 64 0.7249 0.0249 6.2810e-05

Neumann 10−6 128 0.7279 0.0198 2.8883e-06

N to {16, 32, 64, 128} and observe that these results were
generated using the TSVD, Tikhonov, and rSVD methods.

The numerical results demonstrate that increasing the
number of source points (N) significantly enhances the
accuracy of the outcomes, with the rSVD method being
more accurate than the Tikhonov and TSVD methods. Conse-
quently, we can confidently conclude that accurate and stable
results can be achieved with a relatively high number of
source points.

C. Example 3

In this example, the function defines a moving boundary
as follows:

M(t) = t, t ∈ [0, 1] (31)

The source points are located on the external boundaries.
(−l, µ), µ ∈ (−1, 1), (M(µ)+l, µ), µ ∈ (0, 1), (M(−µ)+

l, µ), µ ∈ (−1, 0).

The exact solution is given by

v(x, t) = −1 + exp(t− x), (x, t) ∈ [0, 1]× [0, 1] (32)
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Fig. 27. The comparison of the exact solution and the MFS approximation
using three methods generated by l=1.7, α = 10−13, k=30 and N=16.
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Fig. 28. The comparison of the exact solution and the MFS approximation
using three methods generated by l=1.7, α = 10−13, k=30 and N=32.

In the present example, the initial and boundary conditions
are as follows:

v(x, 0) = −1 + exp(t), x ∈ [0,M(0)],M(0) = 0 (33)

v(M(t), t) = 0, t ∈ (0, 1] (34)

∂v

∂x
(M(t), t) = −M

′
(t) = −1, t ∈ (0, 1] (35)

The Dirichlet and Neumann boundary conditions on the fixed
boundary x=0 is given by

v(0, t) = −1 + exp(t), t ∈ [0, 1] (36)

∂v

∂x
(0, t) = −exp(t), t ∈ [0, 1] (37)

Figures 27-30 depict the MFS approximations employed
for determining the Dirichlet condition, utilizing three dis-
tinct types of regularization with α=10−13. When compared
to the TSVD and Tikhonov regularization methods, our
findings demonstrate that the rSVD regularization approach
achieves enhanced accuracy as the number of source points
increases. Neumann boundary conditions on the fixed bound-
ary x=0 are presented in Figures 31-34.
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Fig. 29. The comparison of the exact solution and the MFS approximation
using three methods generated by l=1.7, α = 10−13, k=30 and N=64.
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Fig. 30. The comparison of the exact solution and the MFS approximation
using three methods generated by l=1.7, α = 10−13, k=30 and N=128.
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Fig. 31. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=1.7, α = 10−13, k=30
and N=16.

Figures 31-34 illustrate the Neumann boundary conditions
on the fixed boundary x=0. These graphs depict both the
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Fig. 32. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=1.7, α = 10−13, k=30
and N=32.
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Fig. 33. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=1.7, α = 10−13, k=30
and N=64.
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Fig. 34. The comparison of the exact normal derivative and the MFS
approximation using three methods generated by l=1.7, α = 10−13, k=30
and N=128.
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TABLE IV
THE COMPARISON OF THE ERROR BETWEEN TSVD, TIKHONOV, RSVD

AND THE EXACT SOLUTION FOR DIFFERENT VALUES OF THE SOURCE
POINTS N.

boundary α N TSVD Tikhonov rSVD

Dirichlet 10−13 16 0.8864 0.0286 0.0276

Dirichlet 10−13 32 0.8657 0.0073 0.0057

Dirichlet 10−13 64 0.8562 0.0026 7.6305e-04

Dirichlet 10−13 128 0.8517 0.0016 9.5944e-05

Neumann 10−13 16 1.5763 0.1378 0.1357

Neumann 10−13 32 1.5532 0.0445 0.032

Neumann 10−13 64 1.5427 0.0186 0.0064

Neumann 10−13 128 1.5376 0.0122 9.8830e-04

exact solution and the MFS approximation for the normal
derivative vx(0,t) using three different forms of regulariza-
tion. When compared to Tikhonov regularization, the rSVD
regularization appears to be more accurate as N grows. In
contrast, the TSVD approximation exhibits slightly oscilla-
tory and unstable behavior, reinforcing our conclusion that
our method is more accurate.

The results in Table 4 indicate that the Method of Fun-
damental Solutions approximation with rSVD regularization
becomes more accurate as the number of source points
(N) along x=0 increases, in comparison to both the TSVD
and Tikhonov regularization methods. Consequently, we can
conclude that accurate and consistent results are attainable.

VI. CONCLUSION

In this paper, we introduced the fundamental solutions
method for determining the Dirichlet and Neumann condi-
tions of the one-dimensional inverse Stefan problem, employ-
ing different types of regularization. Our findings indicate
that utilizing the MFS with rSVD regularization yields more
accurate results compared to TSVD and Tikhonov regular-
ization.

The numerical examples demonstrate the accuracy of
the MFS in determining boundary data for inverse Stefan
problems. In our future work, we plan to investigate the
accuracy and effectiveness of this method for other classes of
problems, including direct problems and the two-dimensional
inverse Stefan problem.
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