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Abstract—This paper discusses a model of delayed
hematopoiesis with impulsive effects and harvesting terms on
time scales. The author derives criteria that ensure the per-
manence of system by using ∆-differential inequalities on time
scales. Based on the permanence result, fixed point theory and
Gronwall-Bellman’s inequality, The author develops criteria for
the existence and exponential stability of the almost periodic
solutions for the studied model. The study further provides an
illustrative scenario to showcase the theoretical findings that
have been obtained.

Index Terms—Impulsive hematopoiesis model, Almost peri-
odic solution, Exponential stability, Permanence, Time scales.

I. INTRODUCTION

IN [1], the authors primordially put forward the following
hematopoiesis model:

Œ′(t) = −πŒ(t) +
$

1 + Œn(t− υ)
, (1)

where Œ(t) indicates the density of mature cells in blood
circulation at time t; π represents the rate of cell loss in
circulation and υ is the time delay. Once the model (2) was
proposed, it attracted the interest of many scholars and the
dynamic behavior of the model has been studied in depth (see
[2]–[9]). Especially, the author in [9] proposed the following
model:

Œ′(t) = −π(t)Œ(t) +
m∑
R=1

$q(t)

1 + Œn(t− υR(t))
.

By means of the fixed-point theorem, some criteria for the
existence of a unique globally attractive positive ω-periodic
solution are obtained.

In the real world, a variety of natural and human forces
will invariably induce either a fast decline in population or
a rapid growth in it over time. Typically, an impulse can
be used to mathematically represent this abrupt change (see
[10], [11]). As a result, many population dynamics models
for impulsive differential equations have been developed and
extensively researched (see [12]–[18]).

At the same time, it is crucial to examine the discrete-time
model because, in practical applications, the discrete time
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model defined by the difference equation is just as significant
as the continuous model. The idea of time scale has been
suggested by academics to integrate the study of discrete and
continuous systems ( [19]). Studying a system’s dynamical
characteristics on the time scale can help to avoid having
to repeat the study of discrete and continuous systems, and
as a result, this field is currently a focus of active research.
Excellent results have been attained in recent years from the
study of dynamical equations on diverse time scales ( see
[20]–[26]). Therefore, it is merit in further investigating the
hematopoiesis model with impulsive effects and harvesting
terms on the time scale.

In light of the aforementioned, this work examines the ex-
istence and exponential stability of almost periodic solutions
for the following hematopoiesis model with impulses and
harvesting terms on time scales by the following:

Œ∆(t) = −π(t)Œ(t) +
∑m
R=1

$R(t)
1+Œn(t−υR(t))

−E(t,Œ(t− ς(t))), t 6= ak, t ∈ [a0,+∞)T,

∆̃Œ(ak) = γkŒ(ak) + δk, t = ak, k ∈ N.
(2)

where n > 0, a0 ∈ T and T is an almost periodic time scale.
∆̃Œ(ak) = Œ(a+

k )−Œ(a−k ), Œ(a−k ) = Œ(ak) are impulses
at moments ak and 0 ≤ a0 < a1 < a2 < . . . < ak < . . . is
a strictly increasing sequence such that limt→∞ ak = +∞,
γk, δk ∈ R.

Remark 1.1: If T = R, then system (2) is reduced to the
following system:

Œ′(t) = −π(t)Œ(t) +
∑m
R=1

$R(t)
1+Œn(t−υR(t))

−E(t,Œ(t− ς(t))), t 6= ak, t ∈ [a0,+∞)T,

∆̃Œ(ak) = γkŒ(ak) + δk, t = ak, k ∈ N.

If T = Z, then system (2) is reduced to the following system:
∆Œ(Λ) = −π(Λ)Œ(Λ) +

∑m
R=1

$R(Λ)
1+Œn(Λ−υR(Λ))

−E(Λ,Œ(Λ− ς(Λ))), Λ 6= Λk, Λ ∈ [a0,+∞)Z,

∆̃Œ(Λk) = γkŒ(Λk) + δk, Λ = Λk, k ∈ N.

For convenience, we denote

f l = inf
t∈T
|f(t)|, fu = sup

t∈T
|f(t)|.

In the context of this study, it is assumed that
(H1) The functions π,$R, υR, ς ∈ PCrd(T,R+) are posi-

tive bounded almost periodic functions on T such that
πl > 0, $l

R > 0, υlR > 0, ς l > 0, −πu ∈ R+ and
there exists a constant λ > 0 such that π(t) ≥ λ, for
t ∈ T, t− υR(t) ∈ T, t− ς(t) ∈ T, R = 1, 2, . . . ,m.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 123-128

 
______________________________________________________________________________________ 



(H2) The function E ∈ PCrd(T × R,R+) is bounded and
satisfies the Lipschitz condition: ∃ α, β,ℵ > 0 such
that α ≤ E(t,Œ) ≤ β and

|E(t,Œ)− E(t, Œ̃)| ≤ ℵ|Œ− Œ̃|, t ∈ T, Œ, Œ̃ ∈ R.

(H3) {γk}, {δk} are almost periodic sequences with −1 <
γk ≤ 0, where b <≤

∏
a0<ak<t

(1 + γk) ≤ B and
supk∈N |δk| ≤ L for k ∈ N;

(H4) The set of sequences {ajk}, a
j
k = ak+j − ak, k, j ∈ N

are equipotentially almost periodic and infk a
1
k = Œ >

0.
where PCrd(T,X) = {Œ(t)|Œ(t) is a rd-piecewise con-
tinuous functions from the time scale T to a Banach space
X}.

For a0 ∈ T, and denote

Œ(t) = E(t; a0, φ0)

is the solution of system (2), satisfying{
E(t; a0, φ0) = φ0(t), t ∈ (a0 − ῡ, a0)T,

E(a+
0 ; a0, φ0) = φ0(a0),

(3)

where φ0 ∈ PCrd(a0) is a rd-piecewise continuous func-
tion with respects to the sequence {ak}, k ∈ N, ῡ =

max

{
max

1≤R≤m
sup
t∈T
{υR(t)}, supt∈T{ς(t)}

}
.

II. PERMANENCE

Permanence is one of the important indicators of an
ecosystem, which refers to the balance between the amount
of resource use and the carrying capacity of the natural
environment within a certain period of time, thus maintaining
the dynamic stability of the ecosystem. In order to obtain the
permanence of system (2), it is necessary to introduce the
following lemma:

Lemma 2.1: Supposed that (H1)−(H4) hold and let Œ(t)
be any solution of system (2), then

M̄ ≤ lim inf
t→+∞

Œ(t) ≤ lim sup
t→+∞

Œ(t) ≤M.

Proof: Let Œ(t) denote an arbitrary solution of system
(2), then{

Œ∆(t) ≤
∑m
R=1$

u
R − πlŒ(t), t 6= ak, t ∈ [a0,+∞)T,

Œ(a+
k ) ≤ (1 + γk)Œ(ak) + δk, t = ak, k ∈ N.

In view of the Lemma 2.11 in [27], we have

lim sup
t→+∞

Œ(t) ≤
∑m
R=1$

u
RB

πl
= M. (4)

For any positive constant ε small enough, it follows from
(4) that there exists enough large T1(≥ a0) such that

Œ(t) ≤M + ε, for t ≥ T1. (5)

By system (2) and (5), we arrive at{
Œ∆(t) ≥

∑m
R=1$

l
R

1+(M+ε)n − β − π
uŒ(t), t 6= ak,

Œ(a+
k ) ≥ (1 + γk)Œ(ak) + δk, t = ak, k ∈ N.

By applying the Lemma 2.11 in [27], we have

lim inf
t→+∞

Œ(t) ≥ b

πu

( ∑m
R=1$

l
R

(1 + (M + ε)n)
− β

)
.

letting ε→ 0 in the above inequality, we have

lim inf
t→+∞

Œ(t) ≥ b

πu

(∑m
R=1$

l
R

(1 +Mn)
− β

)
= M̄.

The proof is completed.

Theorem 2.1: Assume that (H1)-(H4) hold, then system
(2) is permanence.

III. EXISTENCE AND EXPONENTIAL STABILITY

By use of the system (2), we consider the linear system{
Œ∆(t) = −π(t)Œ(t), t 6= ak, t ∈ [a0,+∞)T,

∆̃Œ(ak) = γkŒ(ak), t = ak, k ∈ N.
(6)

Let the equation

Œ∆(t) = −π(t)Œ(t), ak−1 < t ≤ ak,

and the solution

Œ(t) = Œ(s)e(−π)(t, s)

for ak−1 < s ≤ t ≤ ak. Then the Cauchy matrix of the
linear system (6) is

U[t, s] =


e(−π)(t, s), ak−1 < s ≤ t ≤ ak,∏k+1
i=m(1 + γi)e(−π)(t, s),

am−1 < s ≤ am < ak < t ≤ ak+1,

(7)

and the solutions of (6) are in the form

Œ(t; a0,Œ0) = U[t,Œ0]Œ0, a0 ∈ T, Œ0 ∈ R.

Similar to the proof of Lemma 3.1 and Lemma 3.2 in [24],
one can easily show the following:

Lemma 3.1: For system (2), let (H1)-(H4) hold. Then for
each ε > 0 there exist ε1 > 0, 0 < ε1 < ε, Ω ⊂ Ξ = {r ∈
R : t ± r ∈ T,∀t ∈ T} 6= {0} is a relative dense set of
real numbers, and P̃ is a integer numbers set, such that the
following relations are fulfilled:
(I) the following hold:

|π(t+ r)− π(t)| < ε, |$R(t+ r)−$R(t)| < ε

|υR(t+r)−υR(t)| < ε, |E(t+r,Œ(·))−E(t,Œ(·))| < ε,

|ς(t+ r)− ς(t)| < ε, |t− ak| > ε, t ∈ T, r ∈ Ω;

(II) the following hold:

|γk+p − γk| < ε, |δk+p − δk| < ε, p ∈ P̃ , k ∈ Z;

(III) |apk − r| < ε1, p ∈ P̃ , r ∈ Ω, k ∈ Z.
Lemma 3.2: For system (2), let (H1) − (H4) hold. Then

the Cauchy matrix U[t, s] of (7) satisfies the inequality

‖U[t, s]‖ ≤ e−λ(t−s), t ≥ s, t, s ∈ T,

and the matrix U[t, s] is almost periodic, i.e. for any ε > 0,
t, s ∈ T, |t − ak| > ε, |s − ak| > ε, k ∈ Z, there exists
Ω ⊂ Ξ such that for r ∈ Ω, we have

‖U[t+ r, s+ r]−U[t, s]‖ ≤ εΓe−λ2 (t−s), t ≥ s,

where Γ > 0 is a constant.
Theorem 3.1: Let conditions (H1)-(H4) hold and the fol-

lowing condition is satisfied:
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(H5) γ < 1, where

γ =
(1 + λµ̄)

λ

( m∑
R=1

$u
RnM

n−1 + ℵ
)
, µ̄ = sup

t∈T
µ(t)

and M is defined in Lemma 2.1. Then (2) has a unique
almost periodic solution.

Proof: Denote A ⊂ PCrd(T,Rn) the set of all almost
periodic function ~(t) with ‖~‖ < K̄, where

‖~‖ = sup
t∈T
|~(t)|, K̄ =

1 + λµ̄

λ

m∑
R=1

$u
R +

2NL

1− e−λ
,

where N which denotes that the interval (l, l+ 1)T contains
no more than N terms of the sequences {ak}, 0 < l ∈ R,
k ∈ Z.

Define an operator Υ in A such that if ~ ∈ A,

Υ~ =

∫ t

−∞
U[t, σ(s)]

( m∑
R=1

$R(s)

1 + ~n(t− υR(s))

−E(t, ~(t− ς(t)))
)

∆s+
∑
ak<t

U[t, ak]δk.

In view of the inequality∑
ak<t

e−λ(t−ak) =

∞∑
m=0

∑
t−m−1<ak<t−m

e−λ(t−ak)

≤ 2N
∞∑
m=0

e−λm =
2N

1− e−λ

and for an arbitrary ~ ∈ A it follow

‖Υ~‖ ≤ sup
t∈T

{∣∣∣∣ ∫ t

−∞
U[t, σ(s)]

m∑
R=1

$R(s)

1 + φn(t− υR(s))
∆s

+
∑
ak<t

U[t, ak]δk

∣∣∣∣}

≤ sup
t∈T

{∫ t

−∞
e	λ(t, σ(s))

m∑
R=1

$u
R∆s

+
∑
ak<t

e−λ(t−ak)L

}

≤ 1 + λµ̄

λ

m∑
R=1

$u
R +

2NL

1− e−λ
= K̄. (8)

Let r ∈ Ω, p ∈ P̃ , where the sets Ω and P̃ are introduced
in Lemma 3.1. Then

‖Υ~(t+ r)−Υ~(t)‖

≤ sup
t∈T

{∫ t

−∞
‖U[t+ r, σ(s+ r)]−U[t, σ(s)]‖

×
m∑
R=1

$u
R

1 + ~n(s+ τ − υR(s+ r))
∆s

+

∫ t

−∞
‖U[t, σ(s)]‖

m∑
R=1

∣∣∣∣ $R(s+ r)

1 + ~n(s+ r − υR(s+ r))

− $R(s)

1 + ~n(s− υR(s))

∣∣∣∣∆s+

∫ t

−∞
‖U[t+ r, σ(s+ r)]

−U[t, σ(s)]‖
∣∣∣∣E(s+ r, ~(s+ r − ς(s+ r)))

∣∣∣∣∆s

+

∫ t

−∞
‖U[t, σ(s)]‖

∣∣∣∣E(s+ r, ~(s+ r − ς(s+ r)))

−E(s, ~(s− ς(s)))
∣∣∣∣∆s+

∑
ak<t

‖U[t+ r, ak+p]

−U[t, ak]‖|δk+p|+
∑
ak<t

‖U[t, ak]‖|δk+p − δk|
}

≤ sup
t∈T

{∫ t

−∞
εΓe−

λ
2 (t−σ(s))

m∑
R=1

$u
R∆s

+

∫ t

−∞
e−λ(t−σ(s))

m∑
R=1

[
$u
R

∣∣∣∣ 1

1 + ~n(s+ r − υR(s+ r))

− 1

1 + ~n(s− υR(s))

∣∣∣∣+ |$R(s+ r)−$R(s)|

× 1

1 + ~n(s− υR(s))

]
∆s+

∫ t

−∞
εΓe−

λ
2 (t−σ(s))β∆s

+

∫ t

−∞
e−λ(t−σ(s))

[
|E(s+ r, ~(s+ r − ς(s+ r)))

−E(s, ~(s+ r − ς(s+ r)))|

+|E(s, ~(s+ r − ς(s+ r)))− E(s, ~(s− ς(s)))|
]
∆s

+
∑
ak<t

εΓe−
λ
2 (t−ak)L+

∑
ak<t

εe−λ(t−ak)

}

≤ sup
t∈T

{∫ t

−∞
εΓe−

λ
2 (t−σ(s))

( m∑
R=1

$u
R + β

)
∆s

+

∫ t

−∞
εe−λ(t−σ(s))

[ m∑
R=1

($u
RnM

n−1 + 1) + ℵ+ 1

]
∆s

+
∑
ak<t

εΓe−
λ
2 (t−ak)L+

∑
ak<t

εe−λ(t−ak)

}

≤ ε sup
t∈T

{∫ t

−∞
Γe	λ2

(t, σ(s))

( m∑
R=1

$u
R + β

)
∆s

+

∫ t

−∞
e	λ(t, σ(s))

[ m∑
R=1

($u
RnM

n−1 + 1) + ℵ+ 1

]
∆s

+
∑
ak<t

Γe−
λ
2 (t−ak)L+

∑
ak<t

e−λ(t−ak)

}

≤ ε
{

Γ(2 + λµ̄)

λ

( m∑
R=1

$u
R + β

)
+

(1 + λµ̄)

λ

[ m∑
R=1

($u
RnM

n−1 + 1) + ℵ+ 1

]
+

2NΓL

1− e−λ2
+

2N

1− e−λ

}
. (9)

Consequently, by (8) and (9), we obtain that Υ~ ∈ A.
Let ~1, ~2 ∈ A, then

‖Υ~1
−Υ~2

‖

≤ sup
t∈T

{∫ t

−∞
‖U[t, σ(s)]‖

m∑
R=1

$u
R

∣∣∣∣ 1

1 + ~n1 (s− υR(s))

− 1

1 + ~n2 (s− υR(s))

∣∣∣∣∆s+

∫ t

−∞
‖U[t, σ(s)]‖

×
∣∣∣∣E(s, ~1(s− ς(s)))− E(s, ~2(s− ς(s)))

∣∣∣∣∆s}
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≤ sup
t∈T

{∫ t

−∞
e	λ(t, σ(s))

m∑
R=1

$u
R

∣∣∣∣ 1

1 + ~n1 (s− υR(s))

− 1

1 + ~n2 (s− υR(s))

∣∣∣∣∆s+

∫ t

−∞
e	λ(t, σ(s))

×
∣∣∣∣E(s, ~1(s− ς(s)))− E(s, ~2(s− ς(s)))

∣∣∣∣∆s}
≤ (1 + λµ̄)

λ

( m∑
R=1

$u
RnM

n−1 + ℵ
)
‖~1 − ~2‖

= γ‖~1 − ~2‖. (10)

Subsequently, based on the condition (H5), it can be deduced
that the operator Υ exhibits the property of contraction inside
the set A. Furthermore, there exists a unique almost periodic
solution of (2).

Theorem 3.2: Let conditions (H1) − (H5) hold and the
following conditions are satisfied:
(H6) (	λ)⊕ p̃ < 0, where

p̃ = (1 + λµ̄)

( m∑
R=1

$u
RnM

n−1 + ℵ
)
,

where µ̄ = supt∈T µ(t). Then the unique positive almost
periodic solution of (2) is exponentially stable.

Proof: Let W (t) and Œ(t) be represented as an arbitrary
solution and a unique positive almost periodic solution of
equation (2), respectively. It follows that

W (t)−Œ(t)

= Œ[t, a0](W (a0)−Œ(a0))

+

∫ t

a0

U[t, σ(s)]

[ m∑
R=1

$R(s)

(
1

1 +Wn(s− υR(s))

− 1

1 + Œn(s− υR(s))

)
+ (E(s,W (s− ς(s)))

−E(s,Œ(s− ς(s))))
]
∆s.

Hence

‖W (t)−Œ(t)‖
≤ e−λ(t−a0)‖W (a0)−Œ(a0)‖

+

∫ t

a0

e−λ(t−σ(s))
m∑
R=1

$u
R

∥∥∥∥ 1

1 +Wn(s− υR(s))

− 1

1 + Œn(s− υR(s))

∥∥∥∥∆s+ ‖E(s,W (s− ς(s)))

−E(s,Œ(s− ς(s)))‖
]
∆s

≤ e	λ(t, a0)‖W (a0)−Œ(a0)‖+ (1 + λµ̄)

∫ t

a0

e	λ(t, s)

×
( m∑
R=1

$u
RnM

n−1 + ℵ
)
‖W (s)−Œ(s)‖∆s.

Let X(t) = ‖W (t)−Œ(t)‖eλ(t, a0) and it follows

X(t) ≤ X(a0) + (1 + λµ̄)

( m∑
R=1

$u
RnM

n−1 + ℵ
)∫ t

a0

X(s)∆s.

By means of the Gronwall-Bellman’s inequality on time
scales (see [29]), we have

X(t) ≤ X(a0)ep̃(t, a0),

this is

‖W (t)−Œ(t)‖ ≤ ‖W (a0)−Œ(a0)‖e(	λ)⊕p̃(t, a0),

where

p̃ = (1 + λµ̄)

( m∑
R=1

$u
RnM

n−1 + ℵ
)
.

Therefore, based on condition (H6), it can be deduced
that the unique positive almost periodic solution of system
(2), which exhibits exponential stability. This completes the
proof.

IV. AN EXAMPLE

Consider the following the following hematopoiesis model
with impulsive effects and harvesting terms on time scales:

Œ∆(t) = −π(t)Œ(t) +
∑m
R=1

$R(t)
1+Œn(t−υR(t))

−E(t,Œ(t− ς(t))), t 6= ak, t ∈ [0,+∞)T,

∆̃Œ(ak) = γkŒ(ak) + δk, t = ak, k ∈ N,
(11)

where m = 2, n = 1
10 , and

π(t) = 0.82−0.02 sin(
√

4t), $1(t) = 0.23+0.01 cos(
√

3t),

$2(t) = 0.18+0.04 cos(
√

6t), υ1(t) = 0.38+0.06 cos(
√

5t),

υ2(t) = 0.44 + 0.06 cos(
√

4t), ς(t) = 0.2 + 0.01 sin 2t,

E(t,Œ) = 0.05(|0.5 sin t− cos
√

2t|) |Œ(t)|
1 + Œ2(t)

,

γk = (2)
0.4

2k − 1, δk = 0.1, ak = k, k ∈ N.

Assume model (11) has a solution Œ(t) with the initial
conditions as following{

E(t; a0, φ0) = e2t, t ∈ (−0.5, 0)T,

E(a+
0 ; a0, φ0) = 1.

(12)

Moreover, assume model (11) has a solution W (t) with
another initial conditions as following{

E(t; a0, φ0) = 3t, t ∈ (−0.5, 0)T,

E(a+
0 ; a0, φ0) = 2.

(13)

By calculating, for 0 ≤ µ ≤ 1, λ = 0.6 and

πu = 0.84, πl = 0.8, $u
1 = 0.24, $l

1 = 0.22,

$u
2 = 0.21, $l

2 = 0.15, ℵ = 0.06,

α = 0.025, β = 0.06, b = 20.2, B = 20.4, L = 0.1,

so we obtain

M =

∑2
R=1$

u
i B

al
≈ 0.742,

M̄ =
b

πu

(∑2
R=1$

l
R

(1 +Mn)
− β

)
≈ 0.249,

then

γ =
(1 + λµ̄)

λ

( 2∑
R=1

$u
RnM

n−1 + ℵ
)
≤ 0.317 < 1,
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and

p̃−λ = (1+λµ̄)

( 2∑
R=1

$u
RnM

n−1+ℵ
)
−0.6 ≤ −0.409 < 0.

Thus, (	λ)⊕p̃ < 0, based on Theorem 3.1 and Theorem 3.2,
it can be concluded that the (11) possesses a unique almost
periodic solution that exhibits exponential stability.
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Fig. 1: The evolutions of Œ, W and W −Œ with the initial
conditions (12) and (13) on T = R.

V. CONCLUSION

This study provides the necessary conditions for the exis-
tence and exponential stability of almost periodic solutions
in a delayed hematopoiesis model with impulsive effects
and harvesting terms on time scales. The aforementioned
requirements are derived through the use of fixed-point
theory in Banach space, along with the application of the
Gronwall-Bellman’s inequality approach on time scales. The
main results obtained in this paper are novel, even when
considering the cases where the time scale is either continu-
ous or discrete. The findings of this paper contribute to the
improvement of previously known results, highlighting the
significance of the derived results.
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