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Abstract—One of the extensions of a nearring and a gamma
ring is the concept of a gamma nearring, which allows for a
more general multiplication operation. In this paper, we aim
to establish the concept of a partial order in a Γ-nearring,
thereby extending the notion of partial order observed in a
nearring. We introduce several key concepts such as partial
order, positive cone, convex ideal, and others, within the context
of a Γ-nearring. Additionally, we provide proofs for various
classical results pertaining to these notions. Moreover, we
investigate different types of prime ideals within a lattice-
ordered Γ-nearring and examine their properties. By exploring
the characteristics and behavior of these prime ideals, we
enhance our understanding of lattice-ordered Γ-nearrings and
their structural properties.
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I. INTRODUCTION AND PRELIMINARIES

The notion of Γ-ring is originated from a ring, as its
generalization, which was defined by Nobusawa [1], and
later studied by Barnes [2]. In Bhavanari [24], [15], the
notions of nearring and the ring, taken together to generalize
a new notion, namely Γ-Nearring. Bhavanari [15]; Booth
[13], Booth and Groenewald [14] studied various radical
properties of Γ-nearrings.

The concept of a Γ-ring builds upon the foundation of a
ring, providing a generalization that was initially introduced
by Nobusawa [1] and further extended by Barnes [2]. In
Bhavanari’s work [24], [15], the notions of nearrings and
rings are combined to introduce a novel concept known as
a Γ-nearring. The exploration of Γ-nearrings has attracted
considerable research interest. The authors such as Bhavanari
[15], Booth [13], and Booth and Groenewald [14] have
focused on investigating various radical properties associated
with Γ-nearrings.
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Let (M,+) be a group (not necessarily abelian) and Γ
be a non-empty set. Then M is said to be a Γ-nearring if
there exists a mapping M × Γ × M → M satisfying the
following: (i) (m1 + m2)αm3 = m1αm3 + m2αm3; (ii)
(m1α1m2)α2m3 = m1α1(m2α2m3), for all m1,m2,m3 ∈
M and for all α1, α2 ∈ Γ.

Example I-A: Let M = Z6, Γ = {γ1, γ2} where

aγ1b =

{
a if b = 1

0 otherwise

and

aγ1b =

{
a if b = 2

0 otherwise

Then (M,Γ) is a Γ-nearring.
M is zero symmetric (resp. constant) if M = M0 = {m ∈
M : mα0 = 0, ∀α ∈ Γ} (resp. M = Mc = {m ∈
M : mαm′ = m, ∀m′ ∈ M, α ∈ Γ}). A normal
subgroup (K,+) of (M,+) is called a left (resp. right) ideal
if m1α(m2 + k) − m1αm2 ∈ K (resp. kαm1 ∈ K), for
all m1,m2 ∈ M , α ∈ Γ, and k ∈ K. Let M and M ′ be
Γ-nearrings. A homomorphism ψ : M → M ′ is called a
Γ-homomorphism if: (i) ψ(m+m1) = ψ(m) + ψ(m1); (ii)
ψ(mαm1) = ψ(m)αψ(m1), for all m,m1 ∈M , α ∈ Γ, and
ψ is called Γ-isomorphism if ψ is one-one and onto.
Throughout, M stands for a gamma nearring.

For necessary definitions and results in nearrings, we refer
to [3], [10]; and for Γ-nearrings, we refer to [13], [14], [15],
[21], [25], [26]. For partial order and lattice order aspects
of rings, nearrings, and modules, we refer to [9], [11], [12],
[20], [29], [30].

II. PARTIAL ORDER IN A GAMMA NEARRING

We introduce the notion of partial order in gamma nearrings.
Definition II-A: A gamma nearring M is called an ordered

Γ-nearring if ≤ is a partial ordering on M satisfying the
following conditions: If a ≤ b and c ≤ d, then (i)

1) a+ c ≤ b+ d and c+ a ≤ d+ b;
2) aαc ≤ bαd;
3) cαa ≤ dαb,

for all a, b, c, d ∈M , α ∈ Γ.
Note II-B: When Γ = {·}, then the notion p.o. Γ-nearring

becomes the notion of p.o. nearrings given by Pilz [10].
Note II-C: For a Γ-nearring (M,+,Γ), in the following

we show some examples that indicate either (M,+,Γ1) is
a p.o. Γ-nearring for some Γ1 ⊂ Γ or (M,+,Γ) is a p.o.
Γ-nearring.

Example II-D: Let G be a p.o. group. Then M(G) =
{f : G → G} with pointwise addition and composition of
mappings forms a nearring. Define ≤ on M(G) as

f ≤ g ⇐⇒ g(x)− f(x) ≥ 0
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satisfying:

f ≤ g and h ≥ 0 ⇒


f + h ≤ g + h, h+ f ≤ h+ g

f ◦ h ≤ g ◦ h, (right monotone)
h ◦ f ≤ h ◦ g, (left monotone).

Then (M(G),+,Γ,≤) is a p.o. Γ-nearring with Γ = {◦}.
Example II-E: Let G be a p.o. group. Then (M(G),+,Γ)

is a Γ-nearring, where Γ = {⋆1, ⋆2} defined as follows:
⋆1 : (f ⋆1 g)(x) = f(g(x)),
⋆2 : (f ⋆2 g)(x) = f(x),
for all f, g ∈M(G) and x ∈ G.
Define partial order on M(G) as follows:

f ≤ g ⇐⇒ f(x) ≤ g(x), for all x ∈ G.

Then ≤ satisfies the following: (i)
1) f ≤ g and h ≥ 0 ⇒ f +h ≤ g+h and h+f ≤ h+g.
2) f ≤ g and h ≥ 0 ⇒ (f ⋆i h)(x) ≤ (g ⋆i h)(x) and

(h ⋆i f)(x) ≤ (h ⋆i g)(x), for i ∈ {1, 2}.
Hence, (M(G),+,Γ,≤) is a p.o. Γ-nearring.

Example II-F: Let N = (Z,+, ·) a nearring. Write

M =

{(
x 0
y z

)
: x, y, z ∈ N

}
, Γ = {B, ⋆}, where

B =

{(
a 0
0 b

)
: a, b ∈ N

}
. Ternary operation is defined

as: (A,α,C) → AαC, for all A,C ∈ M and α ∈ B;
and ⋆ : usual matrix multiplication. Then (M,+,Γ) is a
Γ-nearring. We define A ≤ B if and only if aij ≤ bij , for
all i, j. Here (M,+, {⋆},≤) is a p.o. Γ-nearring, whereas

(M,+,B,≤) is not a p.o. Γ-nearring, for let A =

(
1 0
2 3

)
,

B =

(
−1 0
1 2

)
∈ M , A ≥ B, C =

(
1 0
0 2

)
≥ 0, and

X =

(
−1 0
0 1

)
∈ B. Then AXC =

(
−1 0
−2 6

)
and

BXC =

(
1 0
−1 4

)
. But AXC ≱ BXC.

Example II-G: Let M = (Z,+); a group. Define
Γ = {⋆1, ⋆2} by

a ⋆1 b =

{
a, if b ̸= 0

0, if b = 0;

and ⋆2 : usual multiplication.
Then (M,+,Γ) is a p.o. Γ-nearring with the usual order ≤.

Example II-H: Let M = (Z × Z,+) and B = (0) × Z;
be groups (additive). Let Γ = {B, ⋆}. We define the ternary
operation as: (a, α, b) → aαb, for all a, b ∈ M and α ∈ B;
and ⋆ : usual multiplication. We define (a1, a2) ≤ (b1, b2)
if and only if ai ≤ bi, for all i. Then (M,+,Γ,≤) is a
Γ-nearring. Here, (M,+, {⋆}) is a p.o. Γ-nearring, whereas
(M,+,B,≤) is not a p.o. Γ-nearring, for let a = (−1, 2),
b = (3, 4) ∈ M , c = (2, 3) ≥ 0, and x = (0,−2) ∈ B.
Then axc = (0,−12) and bxc = (0,−24). Here, a ≤ b but
axc ≰ bxc.

Definition II-I: Let M be a Γ-nearring. M is called fully
ordered by ≤ if (i)

1) (M,+) is fully ordered;
2) for all m,m′ ∈M and α ∈ Γ, m ≥ 0, m′ ≥ 0 implies

mαm′ ≥ 0 and m′αm ≥ 0.

Definition II-J: Let M be a p.o. Γ-nearring. We define the
positive cone of M as {m ∈ M : m ≥ 0}, we denote it as
P or M+.

Lemma II-K: P satisfies:

1) P + P = P ;
2) P ∩ −P = {0}; where −P = {m ∈M : m ≤ 0}
3) m+ P = P +m, for all m ∈M ;
4) PΓP ⊆ P .

Conversely, suppose that P ⊆ M satisfying all the above
four conditions. Then the relation ‘ ≤P ’ defined by m1 ≤P

m2 ⇔ m2 −m1 ∈ P , is a partial order on M , for which P
is the positive cone.

Proof: The verification of (1)-(3) is straightforward.
(4) Let a, b ∈ P . Then a ≥ 0 and b ≥ 0. Now by definition,
we have aαb ≥ 0, for all α ∈ Γ. This implies aαb ∈ P , for
all α ∈ Γ, and hence PΓP ⊆ P .
Conversely, to show (G,≤P ) is a p.o. Γ-nearring. Clearly,
‘ ≤P ’ is a p.o. relation on M .

(i) Let m1,m2 ∈ M such that m1 ≥ 0, m2 ≥ 0. Then
m1,m2 ∈ P . Now by (1), we get m1+m2 ∈ P+P ⊆
P , implies m1+m2 ≥P 0. Also, m2+m1 ∈ P +P ⊆
P implies m2 +m1 ≥P 0.

(ii) Let m1,m2 ∈ M and x ∈ M such that m1 ≤P m2

and 0 ≤P x. That is, m2 −m1 ∈ P and x ∈ P . Now
by (4), we have (m2 − m1)αx ∈ P , for all α ∈ Γ.
This implies m2αx−m1αx ∈ P , and hence m1αx ≤
m2αx. Similarly, we get that xαm1 ≤ xαm2.

Therefore, M is a p.o. Γ-nearring with respect to ‘ ≤P ’.
Now to show P = {x ∈ M : x ≥P 0}, let x ∈ P . Then
x− 0 ∈ P implies 0 ≤P x. Hence x ∈M+. Conversely, let
m ∈M+. Then m− 0 ∈ P implies m ∈ P . Therefore, P is
a positive cone of (M,≤P ).

Proposition II-L: Let M be ordered by P .

1) ≤P is fully ordered if and only if P ∪ (−P ) =M .
2) ≤P is trivial (that is, m ≤P m′ ⇔ m = m′) if and

only if P = {0}.

Definition II-M: Let M , M ′ be Γ-nearrings ordered by the
positive cones P and P ′ respectively. A map f : M → M ′

is order preserving if f(P ) ⊆ P ′ (we use ⋍o to denote order
preserving isomorphism).

Definition II-N: A subset T of an ordered Γ-nearring M
is called convex if for any t1, t2 ∈ T , and m ∈ M , t1 ≤
m ≤ t2, then m ∈ T .

Lemma II-O: Let M be an ordered Γ-nearring and I be
a convex ideal of M . Define a relation on the quotient Γ-
nearring M/I by

x+ I ≤M/I y + I if x ≤M y + i, for some i ∈ I.

Then (M/I,≤M/I) is a p.o. Γ-nearring.
Proof: Clearly, ≤M/I is a p.o. relation on M/I . To show

(M/I,≤M/I) is a p.o. Γ-nearring, we show the monotonic-
ity.
(i) Let m1+ I,m2+ I ∈M/I such that 0+ I ≤M/I m1+ I
and 0 + I ≤M/I m2 + I . Then 0 ≤M m1 + i and
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0 ≤M m2 + i1, for some i, i1 ∈ I , implies

0 ≤M (m1 + i)α(m2 + i1), for all α ∈ Γ

= m1α(m2 + i1) + iα(m2 + i1)

= m1α(m2 + i1)−m1αm2 +m1αm2 + iα(m2 + i1)

= i2 +m1αm2 + i3, for some i2, i3 ∈ I

= m1αm2 + (i4 + i3), for some i4 ∈ I.

This implies 0 + I ≤M/I m1αm2 + I , and so 0 + I ≤M/I

(m1 + I)α(m2 + I).

Theorem II-P: A subset I of an ordered Γ-nearring M is
the kernel of an order-preserving Γ-homomorphism from M
to some ordered Γ-nearring M ′ if and only if I is a convex
ideal.

Proof: Let f : M → M ′ be an order preserving Γ-
homomorphism. Let I be the kernel of f . Let I be the kernel
of f . To show I is a convex ideal, let i1, i2 ∈ I and m ∈M
such that i1 ≤ m ≤ i2. Since i1 ≤ m, we have m− i1 ∈ P .
Now f is order preserving implies f(m− i1) ∈ f(P ) ⊆ P ′.
Hence, f(m) − f(i) ∈ P ′ so that f(m) − f(i) ≥ 0 and
since I is the kernel of f , we have f(i) = 0. Therefore,
f(m) ≥ 0. Similarly, when m ≤ i2, we get f(m) ≤ 0.
Hence, f(m) = 0 implies that m ∈ I . This proves that I
is a convex ideal. Conversely, suppose that I be a convex
ideal of M . Then, by Lemma II-O, M/I is partial order
nearring. Define ϕ : M → M/I by ϕ(m) = m+ I . Clearly
M is a Γ-homomorphism and ker ϕ = I . To show ϕ is
order preserving, let t ∈ ϕ(P ). Then there exists u ∈ P
such that t = ϕ(u) = u + I . Now, u ∈ P implies u ≥ 0.
Then, by monotonicity, u+m ≥ o+m for every m ∈M . In
particular, u+i ≥ i, for every i ∈ I , and so u+I ≥ I , where
I = 0 + I ∈ M/I . This shows that u + I ∈ P ′. Therefore
f(P ) ⊆ P ′.

Theorem II-Q: Let M and M ′ be Γ-nearrings, ordered
by P and P ′. Let h : M → M ′ be an order-preserving
epimorphism (i.e. h(M) = M ′ and h(P ) = P ′). If I ′ is a
convex ideal of M ′ then h−1(I ′) := I is a convex ideal of
M and M/I ∼=0 M

′/I ′.
Proof: Let h : M → M ′ be an order preserving Γ-

epimorphism. Suppose I ′ be a convex ideal of M ′. To show,
h−1(I ′) = I is a convex ideal of M . Clearly, I is an ideal
of M . Now let x, y ∈ I and m ∈ M such that x ≤ m ≤
y. Then there exists s, t ∈ I ′ such that x = h−1(s), y =
h−1(t) and h−1(s) ≤ m ≤ h−1(t). Since h is order Γ-
epimorphism, we get h(h−1(s)) ≤ h(m) ≤ h(h−1(t)). This
implies s ≤ h(m) ≤ t, and I ′ is convex ideal implies h(m) ∈
I ′. Thus m ∈ h−1(I ′) = I , shows that I is convex. Since
h :M →M ′ is an order preserving Γ-epimorphism, by 2nd
Isomorphism theorem, we get M/I ∼= h(M)/h(I), where
ker h ⊆ I . Also, since h is Γ-epimorphism and h−1(I ′) = I ,
we get h(I) = I ′ and h(M) = M ′. Therefore M/I ∼=
M ′/I ′. Define ϕ :M/I →M ′/I ′ by ϕ(m+I) = h(m)+I ′.
To show ϕ is order preserving, let u ∈ ϕ(P ). Then there
exists v + I ∈ P such that u = ϕ(v + I). This implies
v+ I ≥ 0+ I . That is, 0 ≤ v+ i, for some i ∈ I . Since h is
order epimorphism, we get h(0) ≤ h(v+ i) = h(v)+h(i) =
h(v) + i′, for some i′ ∈ I ′ = h(I). This implies 0 + I ′ ≤
h(v) + I ′, and so h(v) + I ′ ∈ P ′. Hence ϕ(v + I) ∈ P ′.
Therefore, u ∈ P ′.

Remark II-R: For a Γ-nearring M , there corresponds a
group G such that M ↪→M(G).

Proof: Let (G,+) be a group properly containing
(N,+). Let m ∈M . Define fm : G→ G by

fm(g) =

{
mαg, if g ∈M

m, if g /∈M,

for all α ∈ Γ.
To show fm is Γ-homomorphism.

1) Case-(i): Let g ∈M . Then, (fm+ fm′)(g) = fm(g)+
fm′(g) = mαg +m′αg = (m+m′)αg = fm+m′(g).
Case-(ii): Let g /∈ M . Then, (fm + fm′)(g) =
fm(g) + fm′(g) = m+m′ = fm+m′(g).

2) Case-(i): Let g ∈ M . Then, (fm ◦ fm′)(g) =
fm(fm′(g)) = fm(m′αg) = mα(m′αg) =
(mαm′)αg = fmαm′(g).
Case-(ii): Let g /∈ M . Then, (fm ◦ fm′)(g) =
fm(fm′(g)) = fm(m′) = mαm′ = fmαm′(g).
Thus, h : M → M(G) defined by h(m) = fm is a
Γ-homomorphism. If h(m) = h(m′), then fm = fm′ .
In particular, for all g ∈ G \M

m = fm(g)

= fm′(g)

= m′.

Therefore, h is a Γ-monomorphism and an embedding
map.

Proposition II-S: To every abelian ordered Γ-nearring M
there exists an (abelian) ordered Γ-nearring M̂ with identity
such that M ↪→ M̂ .

Proof: By Theorem 1.86 of [10], we have for every
M , there exists a group G such that M ↪→ M(G). That is,
h : M ↪→ M(G) is monomorphism. If M is ordered by P ,
take P̂ = h(P ). Now we show that P̂ is a positive cone in
M̂ . In view of ([10], Theorem 9.125), it is enough to show
the condition (4).
Let α ∈ Γ and x, y ∈ P̂ . Then there exists a, b ∈ P such
that x = h(a) and y = h(b). Now, xαy = h(a)αh(b) =
h(aαb) ∈ h(PΓP ) ⊆ h(P ) = P̂ . Therefore, P̂ΓP̂ ⊆ P̂ .
This shows that P̂ is a positive cone in M̂ . Hence, h is an
order-preserving monomorphism.

Theorem II-T: [5] (i)
1) If e is an idempotent in M , then we get a ‘Peirce

decomposition’:

∀m ∈M and ∀x0 ∈ {x ∈M : xαe = 0}, ∃x1 ∈Mαe

such that m = x0 + x1.
2) Taking e = 0, we get ∀m ∈ M , ∃m0 ∈ M0, ∃mc ∈

Mc such that m = m0 +mc.
3) Hence (M,+) = (M0,+)+ (Mc,+) and M0 ∩Mc =

{0}.
Theorem II-U: Let M be f.o. (by P ) and Mc ̸= {0}. Then

∀m ∈ M , for all c ∈ Pc = P ∩Mc: mαc = mα0, for all
α ∈ Γ.

Proof: Suppose there are some m ∈ M , c ∈ Pc and
α ∈ Γ such that mαc ̸= mα0. Without loss of generality,
assume that mα0 ≥ 0.
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Now, m0αc = (m−mα0)αc = mαc−mα(0αc) = mαc−
mα0 ̸= 0. Therefore, m0 ̸= 0. If m0 > 0, then 0 ≤ m0αc ̸=
0, we have m0αc > 0.
Write l = m−mαc+m0.
Then,

lαc = (m−mαc+m0)αc

= mαc− (mαc)αc+m0αc

= mαc−mαc+m0αc

= m0αc > 0

Since c ∈ Pc, we get l > 0.
On the other hand,

lα0 = (m−mαc+m0)α0

= mα0− (mαc)α0 +m0α0

= mα0−mα(cα0) +m0α0

= mα0−mαc+m0α0

= mα0−mαc

= −m0αc < 0.

Since 0 ∈ Pc, we get l = lα0 > 0, a contradiction.
Similarly, if m0 < 0, we get a contradiction. Therefore,
mαc = mα0, for all m ∈M , c ∈ Pc and α ∈ Γ.

Definition II-V: A p.o. Γ-nearring M is called a weak p.o.
Γ-nearring if (i)

1) (M,+) is a p.o. group;
2) a ≥ 0, b ≥ 0 implies aαb ≥ 0;
3) a ≥ 0, b ≤ 0 implies aαb ≤ 0;

for all a, b ∈M , α ∈ Γ.
A weak p.o. Γ-nearring is called weak f.o. Γ-nearring if ≤
is f.o.

Remark II-W: In a weak f.o. Γ-nearring M with identity
e, mα0 = 0 for all m ∈M and α ∈ Γ.

Proof: Let a ≥ 0. Then aα0 ≥ 0α0 = 0. Since M
is f.o., either aα0 ≥ e or aα0 ≤ e. If aα0 ≥ e, then for
any x ≥ 0, aα0 = aα(0αx) = (aα0)αx ≥ eαx = x.
In particular, by taking x = aα0 + aα0, we get aα0 ≥
x = aα0 + aα0 ≥ aα0. So, aα0 ≥ aα0 + aα0 ≥ aα0
implies aα0+aα0 = aα0. Therefore, aα0 = 0. Also, aα0 ≥
x ≥ aα0 implies x = aα0 = 0. Therefore, M = (0). If
e > aα0, then 0 = eα0 ≥ (aα0)α0 = aα(0α0) = aα0 ≥ 0.
Therefore, aα0 = 0.

Proposition II-X: If M is a Γ-nearring, then (−x)αy =
−(xαy), for all x, y ∈M and α ∈ Γ.

Proof: Proof is straightforward.
Lemma II-Y: If M is a weak f.o. Γ-nearring with identity

e, then aα(−e) = −a, for all a ∈M and α ∈ Γ.
Proof: Consider (−e)αa = −a and aα(−e). Since

(−e)α(−e) = −(−e) = e = eαe, we have e ≥ 0. If
e = 0, M = (0). So let e > 0. As M is f.o., either
(−a) ≥ aα(−e) or aα(−e) ≥ −a. Suppose aα(−e) ≥ −a.
Then aα(−e) + a ≥ 0. Now, (a + aα(−e))α(−e) =
aα(−e) + aα(−e)α(−e) = aα(−e) + aαe = aα(−e) +
a ≥ 0. Whereas, a + aα(−e) ≥ 0 and −e < 0, implies
(a + aα(−e))α(−e) ≤ 0. So (a + aα(−e))α(−e) =
aα(−e)+aα(−e)α(−e) = aα(−e)+aαe = aα(−e)+a ≤
0. Therefore, aα(−e) + a = 0. In the same way, we get
−a ≥ aα(−e) implies aα(−e) = −a.

Theorem II-Z: If M is a weak f.o. Γ-nearring with identity
e, then (M,+) is abelian, and xα(−y) = −(xαy), for all
x, y ∈M , and α ∈ Γ.

Proof: By Lemma II-Y, we have aα(−e) = −a, for
all a ∈ M and α ∈ Γ. Now, for any x, y ∈ M , 0 = (x +
y)α(−e) + (x + y) = xα(−e) + yα(−e) + x + y = −x −
y + x + y. This implies x + y = y + x. Also, xα(−y) =
xα(yα(−e)) = (xαy)α(−e) = −(xαy).

III. L-IDEALS OF Γ-NEARRING

Definition III-A: A p.o. Γ-nearring is called l.o. Γ-
nearring if ≤ is l.o.

Definition III-B: A subset I of a l.o. Γ-nearring is said to
be LΓ-ideal if (i)

1) I is an Γ-ideal of M ;
2) I is a convex sublattice of M .
Definition III-C: Let I and K be LΓ-ideals of a l.o.

nearring M . Then

IΓK = {x ∈M : |x| ≤ aαb, 0 < a ∈ I, 0 < b ∈ K,α ∈ Γ}.

IΓI = {x ∈M : |x| ≤ aαb, 0 < a ∈ I, 0 < b ∈ I, α ∈ Γ}.

Definition III-D: An LΓ-ideal P of a l.o. Γ-nearring M
is said to be LΓ-prime if (i)

1) I and K are LΓ-ideals of M ;
2) IΓK ⊆ P implies I ⊆ P or K ⊆ P .

A l.o. Γ-nearring is said to be LΓ-prime if the LΓ-ideal ⟨0⟩
is LΓ-prime.

Definition III-E: Let m ∈ M . The LΓ-ideal ⟨m⟩ is
defined as

⟨m⟩ = {a ∈M : |a| ≤
n∑

i=1

(−xi + yi + xi), xi ∈M,

yi = ±m or mγzi, γ ∈ Γ, zi ∈M}.

Lemma III-F: ⟨m1⟩γ⟨m2⟩ ⊆ ⟨m1γm2⟩, for all m1,m2 ∈
M and γ ∈ Γ.

Proof: Clearly ⟨m1⟩ ⊆ ⟨m1γm2⟩. For let a ∈ ⟨m1⟩.

Then |a| ≤
n∑

i=1

(−xi + yi + xi) or m1γzi. Put yi = m1.

Then,

|a| ≤
n∑

i=1

(−xi + yi + xi)

=
n∑

i=1

(−xi +m1 + xi)

≤
n∑

i=1

(−xi +m1γm2 + xi).

Also, if |a| ≤ m1γzi, then, |a| ≤ m1γzi ≤ m1γm2γzi.
Therefore, a ∈ ⟨m1γm2⟩. Similarly, ⟨m2⟩ ⊆ ⟨m1γm2⟩.
Therefore, ⟨m1⟩γ⟨m2⟩ ⊆ ⟨m1γm2⟩.

Lemma III-G: Let P be an LΓ-ideal of Γ-nearring M .
The following are equivalent. (i)

1) P is is LΓ-prime;
2) For every two LΓ-ideals I, J of M , we have I ⊈ P

and J ⊈ P implies IΓJ ⊈ P ;
3) For every two elements i, j of M , i /∈ P and j /∈ P

implies ⟨i⟩Γ⟨j⟩ ⊈ P ;
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4) For every two Γ-ideals I, J of M we have P ⊂ I and
P ⊂ J implies IΓJ ⊈ P .

Proof: (i)⇒ (ii): Follows by the contraposition of (i).
(ii)⇒ (i): Follows by the contraposition of (ii).
(ii)⇒ (iii): We suppose that (ii) is true. Let i, j ∈ M such
that i /∈ P and j /∈ P . Then ⟨i⟩ ⊈ P and ⟨j⟩ ⊈ P . Hence
by (ii), we get ⟨i⟩Γ⟨j⟩ ⊈ P .
(iii)⇒ (iv): Let P ⊂ I and P ⊂ J . Then there exists i ∈ I\P
and j ∈ J \ P . So i /∈ P and j /∈ P . Then by (iii), we have
⟨i⟩Γ⟨j⟩ ⊈ P . Therefore, IΓJ ⊈ P .
(iv)⇒ (ii): Let (iv) is true. If I ⊈ P and J ⊈ P , then there
exists i ∈ I \ P and j ∈ J \ P . Therefore, P ⊂ ⟨i⟩+ P and
P ⊂ ⟨j⟩+ P . Then by (iv), we have

(⟨i⟩+ P )Γ(⟨j⟩+ P ) ⊈ P.

So there exists i′ ∈ ⟨i⟩ and j′ ∈ ⟨j⟩, p, p′ ∈ P and γ ∈ Γ
such that (i′ + p)γ(j′ + p′) /∈ P . This implies i′γ(j′ + p′) +
pγ(j′ + p′)= i′γ(j′ + p′)− i′γj′ + i′γj′ + pγ(j′ + p′) /∈ P ,
whereas, i′γ(j′+p′)+pγ(j′+p′) ∈ P and pγ(j′+p′) ∈ P ,
and hence i′γj′ /∈ P . Therefore, IΓJ ⊈ P .

Definition III-H: A LΓ-ideal I of a l.o. Γ-nearring M is
called

1) c-prime if for any a, b of M+,

aγb ∈ I implies a ∈ I or b ∈ I;

2) 3-prime if for any a, b of M+,

aΓM+Γb ⊆ I implies a ∈ I or b ∈ I;

3) e-prime if for any a ∈M+ \ I and x, y ∈M ,

aγ1nγ2x−aγ1nγ2y ∈ I implies x−y ∈ I for all n ∈M+.

Proposition III-I: Let I be an LΓ-ideal of M . Then I is
1) c-prime implies 3-prime;
2) 3-prime implies prime;
3) e-prime implies 3-prime.

Proof: 1. Let a, b ∈M+ such that aΓM+Γb ⊆ I . On a
contrary, a /∈ I and b /∈ I . Since I is c-prime, we have aγb /∈
I , whereas, |aγb| ≤ aγnγb, since n ∈M+. Therefore, aγb ∈
aΓM+Γb, and hence aΓM+Γb ⊈ I , a contradiction.
2. Let A and B be two LΓ-ideals of M such that A ⊈ I
and B ⊈ I . Then there exists a ∈ A \ I and b ∈ B \ I .
Since I is 3-prime, we have aΓM+Γb ⊈ I . Now to show
aΓM+Γb ⊆ AΓB, let x ∈ a+b. Then |x| ≤ aγnγb, for
all n ∈ M+. Now, |x| ≤ aγnγb = a′γb, where 0 < a′ =
aγn ∈ A, being a right LΓ-ideal. Therefore x ∈ AΓB, which
implies aΓM+Γb ⊆ AΓB. Now since aΓM+Γb ⊈ I , we get
AΓB ⊈ I . Hence I is prime.
3. Suppose I is e-prime, and let aΓM+Γb ⊆ I . If a /∈ I ,
then a ∈M+ \I , and aγnγb ∈ aΓM+Γb ⊆ I and aγnγ0 =
0 ∈ I , as M =M0. Therefore, aγnγb−aγnγ0 ∈ I . Since I
is e-prime, we have b = b− 0 ∈ I . Therefore, I is 3-prime.

Definition III-J: (M,Γ) is commutative if aαb = bαa, for
all α ∈ Γ and a, b ∈M .

Proposition III-K: If (M,Γ) is commutative, then
(M2,+) is abelian.

Proof: Let m,m′ ∈M2. Then there exist a, b, c, d ∈M
such that m = dαa and m′ = bαc, for all α ∈ Γ. To show
(M2,+) is abelian, (a+c)α(b+d) = aα(b+d)+cα(b+d) =
(b + d)αa + (b + d)αc = bαa + dαa + bαc + dαc and

(b + d)α(a + c) = bα(a + c) + dα(a + c) = (a + c)αb +
(a+ c)αd = aαb+ cαb+ aαd+ cαd = bαa+ bαc+ dαa+
dαc. Since (a + b) · (c + d) = (c + d) · (a + b), we have
bαa+ dαa+ bαc+ dαc = bαa+ bαc+ dαa+ dαc, implies
dαa+ bαc = bαc+ dαa shows that m+m′ = m′ +m.

Lemma III-L: If P is an LΓ-ideal of a l.o. Γ-nearring M
such that M+ \ P is closed under multiplication, then P is
LΓ-prime. Converse hold if (M,Γ) is commutative.

Proof: Let P is an LΓ-ideal of a l.o. Γ-nearring M and
M+ \ P is closed under multiplication. To show P is LΓ-
prime, let x /∈ P and y /∈ P . Then x, y ∈ M+ \ P . Since
M+ \ P is multiplicative closed, we have xαy ∈ M+ \ P ,
for every α ∈ Γ. Hence ⟨x⟩Γ⟨y⟩ ⊆M+ \P . This shows that
⟨x⟩Γ⟨y⟩ ⊈ P , and so P is LΓ-prime. Conversely, let P be a
LΓ-prime ideal of M . Let x, y ∈M+ \P . That is, x, y /∈ P .
Now by Lemma III-G (iii), we have ⟨x⟩Γ⟨y⟩ ⊈ P . Clearly,
⟨x⟩Γ⟨y⟩ ⊆ ⟨xαy⟩ ⊆ M+ for all α ∈ Γ, and so ⟨x⟩Γ⟨y⟩ ⊆
M+ \ P . This shows that xαy ∈ ⟨x⟩Γ⟨y⟩ ⊆M+ \ P .

Definition III-M: A subset T of M+ of a l.o. Γ-nearring
M is called an mγ-system, if for each pair x, y ∈ T , there
exists 0 < x1 ∈ ⟨x⟩, 0 < y1 ∈ ⟨y⟩ and γ ∈ Γ such that
x1γy1 ∈ T .

Theorem III-N: An LΓ-ideal P of a l.o. Γ-nearring M is
LΓ-prime if and only if M+ \ P is an mγ-system.

Proof: Follows by Lemma III-L.
Proposition III-O: Let T be an mγ-system of a l.o. Γ-

nearring N and J be an LΓ-ideal with J ∩ T = ∅. Then
there exists a LΓ-prime ideal P , J ⊆ P and P ∩ T = ∅.

Proof: Let T be an mγ-system of M and J be a LΓ-
ideal of M such that J ∩ T = ∅. Consider S = {k :
K is a LΓ-ideal of M,J ⊆ K,K∩T = ∅}. Clearly, J ∈ S,
and so S ≠ ∅. Let {K}i∈I be a chain of LΓ-ideals of S. This
chain has an upper bound, say

⋃
, I ⊂ Ki, and so

⋃
Ki ∈ S.

Therefore, by Zorn’s lemma, there exists a maximal element,
say P . Since P is maximal, P ̸= M . By Theorem III-N,
it is enough to show that M+ \ P is an mγ-system. Let
x, y ∈M+\P . Then (⟨x⟩+P )∩T ̸= ∅ and (⟨y⟩+P )∩T ̸= ∅.
Let t ∈ (⟨x⟩ + P ) ∩ T and s ∈ (⟨y⟩ + P ) ∩ T . Since T is
an mγ-system, there exists 0 < t1 ∈ ⟨t⟩ and 0 < t2 ∈ ⟨s⟩
such that t1αs1 ∈ T for all α ∈ Γ. Suppose ⟨x⟩Γ⟨y⟩ ⊂ P
and a = p1 + x1, b = p2 + y1, where p1, p2 ∈ P , x1 ∈ ⟨x⟩
and y1 ∈ ⟨y⟩.
Then

aαb = (p1 + x1)α(p2 + y1)

= p1α(p2 + y1) + x1α(p2 + y1)− x1αy1 + x1αy1

∈ P + ⟨x⟩Γ⟨y⟩
⊆ P.

This implies aαb ∈ P . Hence (P + ⟨x⟩)Γ(P + ⟨y⟩) ⊆ P .
So 0 < t1αs1 ∈ ⟨t⟩Γ⟨s⟩ ⊆ (P + ⟨x⟩)Γ(P + ⟨y⟩) ⊆ P , a
contradiction to P ∩T = ∅. So there exists x′ ∈ ⟨x⟩ and y′ ∈
⟨y⟩ and γ ∈ Γ such that x′γy′ /∈ P and hence |x′|γ|y′| ∈
M+ \ P . Thus M+ \ P is an mγ-system. Therefore, P is
prime.

Definition III-P: the intersection of all LΓ-prime ideals of
a l.o. Γ-nearring M is called the prime radical of M and is
denoted by P(M).

The following proposition is a characterization of prime
radicals in terms of mγ-system.
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Proposition III-Q: Let M be a l.o. Γ-nearring. Then

P = {q ∈M : Every mγ-system containing |q| contains 0}.

Proof: Let q ∈ M and T be an mγ-system containing
|q| and not containing 0. Then by Proposition III-O, taking
J = (0), there exists a prime LΓ-ideal disjoint with T . So
q /∈ P(M). Conversely, let q /∈ P(M). Then there exists a
LΓ-prime ideal P such that q, and so |q| /∈ P . This implies
|q| /∈M+\P . Thus M+\P is an mγ-system not containing
0, but containing |q|.

IV. FUZZY IDEALS OF PARTIALLY ORDERED
Γ-NEARRINGS

Definition IV-A: Let M be a p.o. Γ-nearring. A fuzzy
subset ν of M is said to be a fuzzy sub nearring of M
if

1) ν(p− q) ≥ min{ν(p), ν(q)}
2) ν(pγq) ≥ min{ν(p), ν(q)}
3) p ≤ q =⇒ ν(p) ≥ ν(q) for all p, q ∈M and γ ∈ Γ.

Definition IV-B: Let ν be a non-empty fuzzy subset of a
p.o. Γ-nearring M . Then ν is called a fuzzy ideal of M if

1) ν(p− q) ≥ min{ν(p), ν(q)}
2) ν(pγq) ≥ ν(p) [Left ideal]
3) ν(pγ(q + r)− pγq) ≥ ν(r) [Right ideal]
4) p ≤ q =⇒ ν(p) ≥ ν(q) for all p, q, r ∈ M and

γ ∈ Γ.

Definition IV-C: A fuzzy subset ν of p.o. Γ-nearring M
is called T -fuzzy left (resp. right) ideal if

1) ν(p− q) ≥ T (ν(p), ν(q))
2) ν(pγ(q + r)− pγq) ≥ ν(r) (ν(pγq) ≥ ν(p))
3) p ≤ q =⇒ ν(p) ≥ ν(q) for all p, q, r ∈ M and

γ ∈ Γ.

Theorem IV-D: If {νk : k ∈ K} is a family of T -fuzzy
ideal of p.o. Γ-nearring M , then

( ∨
k∈K

νk
)
(p) = sup{νk(p) :

k ∈ K} for all p ∈M is also a T -fuzzy ideal of M .
Proof: Let {νk : k ∈ K} be a family of T -fuzzy ideal

of p.o. Γ-nearring M . For any p, q, r ∈M ,

1) We have,( ∨
k∈K

νk
)
(p− q)

= sup{νk(p− q) : k ∈ K}
≥ sup{T (νk(p), νk(q)) : k ∈ K}
= T{sup νk(p) : k ∈ K, sup νk(q) : k ∈ K}

= T
(( ∨

k∈K

νk
)
(p),

( ∨
k∈K

νk
)
(q)

)
2) We have, ( ∨

k∈K

νk
)
(pγq)

= sup{νk(pγq) : k ∈ K}
≥ sup{T (νk(p)) : k ∈ K}

=
( ∨
k∈K

νk
)
(p)

and one can observe that,( ∨
k∈K

νk
)
(pγ(q + r)− pγq)

= sup{νk(pγ(q + r)− pγq) : k ∈ K}
≥ sup{T (νk(r)) : k ∈ K}

=
( ∨
k∈K

νk
)
(r)

3) We have,

p ≤ q =⇒
( ∨
k∈K

νk
)
(p)

= sup{νk(p) : k ∈ K}
≥ sup{νk(q) : k ∈ K}

=
∨
k∈K

νk(q)

Hence
∨
k∈K

νk is a T -fuzzy ideal of M .

Theorem IV-E: An epimorphic pre-image of a T -fuzzy
ideal of a p.o. Γ-nearring M is a T -fuzzy ideal.

Proof: Let P and Q be T -fuzzy ideals of a p.o. Γ-
nearring M . Let θ : P → Q be an epimorphism. Let µ be
a T -fuzzy ideals of Q and ν T -fuzzy ideals of P under θ.
Then for any p, q, r ∈ P , we have

1)

ν(p− q) = (µ ◦ θ)(p− q)

= µ(θ(p− q))

= µ(θ(p)− θ(q))

≥ T (µ(θ(p)), µ(θ(q)))

= T ((µ ◦ θ)(p), (µ ◦ θ)(q))
= T (ν(p), ν(q))

2) We have,

ν(pγq) = (µ ◦ θ)(pγq)
= µ(θ(pγq))

= µ(θ(p)γθ(q))

≥ µ(θ(p))

= (µ ◦ θ)(p)
= ν(p)

and one can observe that,

ν(pγq) = (µ ◦ θ)(pγ(q + r)− pγq)

= µ(θ(pγ(q + r)− pγq))

= µ(θ(pγ(q + r))− θ(pγq))

= µ(θ(p)γθ(q + r))− θ(p)γθ(q))

≥ µ(θ(r))

= (µ ◦ θ)(r)
= ν(r).

3) We have,

p ≤ q =⇒ ν(p) = (µ ◦ θ)(p)
= µ(θ(p))

≥ µ(θ(q))

= (µ ◦ θ)(q)
= ν(q).
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Hence ν is a T -fuzzy ideal of a p.o. Γ-nearring M .

V. CONCLUSION

In our research, we have extended the notion of partial
order to Γ-nearrings. One of the key properties we have
explored is convexity, which plays a crucial role in partially
ordered nearrings. We have defined the concept of a convex
ideal in a Γ-nearring, providing a framework to study and
analyze this property within the context of Γ-nearrings. Ad-
ditionally, we have investigated different types of prime ide-
als in lattice-ordered Γ-nearrings and established important
properties associated with them. These findings contribute to
our understanding of lattice-ordered Γ-nearrings and their
structural properties. Furthermore, an avenue for further
research involves extending the study of radical properties in
partially ordered Γ-nearrings. Exploring the characteristics of
radicals within this context can yield valuable insights into
the nature of these algebraic structures. Moreover, for those
interested in exploring fuzzy concepts within the framework
of lattice-ordered Γ-nearrings, we suggest referring to the
works cited as [27], [28]. These references delve into the
application of fuzzy logic and fuzzy concepts to lattice order
Γ-nearrings, offering potential avenues for future investiga-
tions.
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