
 

  

Abstract—Deep learning is proliferating within the field of 

computer vision. Road damage detection technology, as its 

offshoot, already plays vital role in road maintenance and 

traffic safety. With road damage such as potholes and cracks, 

accurate and efficient detection results are essential for timely 

road safety repair and maintenance. Therefore, road damage 

detection algorithms based on deep learning have attracted 

wide attention. YOLOv5 is an advanced target detection 

algorithm known for its efficient detection speed and good 

accuracy. However, there is still room for further improvement 

in its performance for road damage detection. The ability of 

multi-scale damage detection and spatial structure capture is 

not perfect. Therefore, this paper proposes three improvement 

points to improve the accuracy of road damage detection based 

on YOLOv5. The first introduced module is the Non-linear 

Spatial Pyramidal Pooling-Fast (NSPPF) module. This module 

allows for better capture of detailed features of road damage 

areas. Non-linear transformation and fast pyramid operation 

improve the sensing ability and multi-scale damage detection 

ability. Secondly, a combination of the CoordConv and SK 

attention modules is constructed. The CoordConv module fuses 

coordinate information with features to provide a more 

spatially informed representation. The SK attention module 

also learns correlations between global and local features, 

enhancing the model's ability to detect damages at different 

scales. This paper can better capture road injuries' spatial 

structure and context information by combining these two 

modules. Finally, experimental results on the RDD2020 dataset 

demonstrate the effectiveness of our model. Compared to the 

baseline model, the proposed improvement algorithm increases 

the accuracy by 2.2%, resulting in a mAP of 58.2%. This 

demonstrates its effectiveness and feasibility. 
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I. INTRODUCTION 

OADS are an essential part of the modern transport 

system, carrying people on their journeys and 

transporting goods. Their good condition is vital in ensuring 

traffic safety, improving traffic efficiency, and promoting 

economic development. It is therefore important to know the 

extent of damage to the road and its subsequent maintenance 

[1]. However, over time and with frequent use, roads 

inevitably suffer from various types of damage, such as 

cracks and potholes. If these road damages are not detected 

and repaired in time, they do not only cause inconvenience to 

traffic. They can even lead to traffic accidents and vehicle 

damage, seriously threatening to traffic flow and safety. It 

will expand further and harm the overall quality and 

longevity of the road infrastructure. The development of 

Intelligent Transport Systems (ITS) and Advanced Driver 

Assistance Systems (ADAS) requires the use of road damage 

detection technology [2, 3]. Traditional road damage 

detection algorithms rely on manual inspection and empirical 

judgment, with problems such as high workload, low 

efficiency, and subjectivity. Therefore, there is a tremendous 

practical need to research and apply fast, efficient, and 

accurate methods for detecting road damage [4]. In current 

years, the speedy improvement of computer vision and deep 

learning technologies has opened new opportunities for 

automated road damage detection. This rise in computing 

power has played a pivotal role in propelling the progress of 

artificial intelligence [5]. In this context, the improved model 

based on YOLOv5 has become an important research 

direction in road damage detection. YOLOv5 is the fifth 

generation detection algorithm in the YOLO series [6]. It has 

excellent potential for improving detection accuracy and 

robustness. However, the traditional YOLOv5 model still 

faces some challenges in road damage detection. For example, 

these issues include the lack of universality for road damage 

of different shapes and sizes, as well as accuracy issues in 

complex backgrounds and adverse weather conditions. 

In order to address these issues, this paper introduces three 

key improvement modules within the enhanced YOLOv5 

model. Firstly, a Non-linear Spatial Pyramid Pooling-Fast 

(NSPPF) module is incorporated. By conducting multi-scale 

non-linear pooling operations on the input feature maps. This 

module is able to extract road damage features at different 

scales in an efficient manner. The module introduces 

non-linear operations compared to traditional Spatial 

Pyramid Pooling-Fast (SPPF). The model's ability to sense 

road damage is further enhanced. Secondly, this paper 
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introduces the addition of the CoordConv module. This 

module fuses coordinate information with feature maps to 

enhance the model's understanding of road damage geometry 

and location information. The module uses coordinate 

information as an additional channel input. The improvement 

enables the model to better distinguish between different 

locations of road damage, improving the accuracy and 

robustness of the detection. Finally, this paper establishes the 

combination of the CoordConv and SK attention modules. 

The SK attention module enables finer-grained feature 

selection and weighting by learning correlations between 

feature map channels. The SK attention module utilizes the 

output of the CoordConv module as its input. As a result, the 

model becomes more capable of accurately capturing 

essential features of road damage areas.  

Through the improvements above, this study aims to 

enhance the performance and practicality of the road damage 

detection system that utilizes the YOLOv5 model. To 

validate the effectiveness of the improved model, the mAP on 

the RDD2020 dataset in this paper reached 58.2%, an 

enhancement of 2.2% in contrast to the baseline model. This 

result indicates that the enhanced model in this work has 

enhanced robustness and detection accuracy in tasks 

involving the identification of road damage. 

II. RELATED WORK 

A.  Road Damage Detection Algorithm Based on 

Conventional Image Processing 

In the evolution of road damage detection, many studies 

have used techniques based on traditional image processing 

algorithms. Some of these algorithms mainly rely on 

threshold segmentation and feature extraction techniques. In 

previous road breakage detection algorithms, researchers 

have often used threshold segmentation to segment the target 

from the background. For example, Akagic et al. [7] 

proposed a combined algorithm based on grey-scale 

histograms and OTSU thresholds. Pavement cracks are 

detected by segmenting the input image into sub-images and 

searching for pavement cracks. Sari et al. [8] used OTSU 

threshold algorithm and Gray-level Co-occurrence Matrix 

(GLCM) to detect and extract features of road cracks and 

used Support Vector Machine (SVM) for classification and 

statistical analysis. However, these algorithms tend to be 

more sensitive to changes in lighting and background 

complexity. These algorithms have limited performance in 

complex road environments. Some algorithms use edge 

detectors, such as Canny [9] and Sobel [10], to extract edge 

information from road damage. Maode et al. [11], for 

example, used a modified median filter and morphological 

filter to detect cracks. Although these algorithms can extract 

edge information better, they have limitations for complex 

road damage shapes and noise. In addition, some studies have 

used machine learning algorithms, such as Support Vector 

Machine (SVM), to apply this to classify and detect road 

damage. Hoang [12] proposed a supervised learning 

algorithm based on SVM, which establishes an automatic 

road pothole classification algorithm, as opposed to 

single-road pothole detection. Gao et al. [13] proposed a fast 

detection algorithm using a Library of Support Vector 

Machines (LIBSVM) machine learning model. This 

algorithm can distinguish between different types of road 

damage. 

 However, road damage detection algorithms based on 

traditional image processing algorithms have common 

shortcomings and limitations. Firstly, these algorithms 

usually rely on hand-designed feature extraction and 

threshold selection. These algorithms may not generalize 

well to different types and shapes of road damage. Secondly, 

conventional algorithms are sensitive to lighting conditions 

and background interference changes and are susceptible to 

noise and complex environments. These issues reduce the 

accuracy of the detection. 

B. Road Damage Detection Algorithm Based on Deep 

Learning 

With its powerful feature extraction capabilities, 

researchers are increasingly using deep learning-based 

models. Convolutional neural networks [14] can be used for 

various tasks, including image classification [15], object 

detection [16], and semantic segmentation [17].  Researchers 

commonly classify current object detection networks for road 

damage into two categories. One of these is a two-stage 

model based on a candidate region. Xu et al. [18] proposed a 

novel road damage detection algorithm based on Mask 

R-CNN. In order to enhance the network's accuracy, 

researchers incorporated a Path Augmentation Feature 

Pyramid Network (PAFPN). At the same time, they also 

integrated an edge detection branch. In recent years, many 

scholars have conducted experimental research on the Faster 

R-CNN, a two-stage target detection algorithm that utilizes 

convolutional neural network features [19]. Hacıefendioğlu 

et al. [20] used the two-stage network Faster R-CNN to detect 

cracks in concrete pavements. The effect of different lighting 

and weather conditions on the detection effectiveness of the 

model was also investigated. Maeda et al. [21] employed a 

network architecture for detecting cracked images and 

successfully applied this network for road crack detection on 

smartphones.  The algorithm features road damage detection 

on mobile devices but may suffer from poor model 

generalization. Another kind of regression-based is the 

single-stage network. Naddaf-sh et al. [22] achieved the 

seventh position in the IEEE Big Data Challenge 2020 by 

utilizing the single-stage network EfficientDet-D7 [23] for 

the detection and classification of asphalt pavement images. 

Yang et al. [24] instead used a Fully Convolutional Network 

(FCN) to operate pixel-level road crack detection. Wang et al. 

[25] targeted road breakage with slender and tiny 

characteristics. Based on the YOLOv3 model, the detection 

accuracy was improved by integrating low-level and 

high-level features and optimizing the loss function. 

However, the model's accuracy is limited to transverse or 

longitudinal crack detection, and it lacks universality for the 

diverse types of road damage encountered. 

In summary, existing deep learning-based road damage 

detection algorithms have their characteristics and limitations 

in different aspects. Some algorithms have achieved good 

results in accuracy or adaptation to complex environments. 

However, problems remain, such as a lack of generalization 

ability. 

Therefore, this article proposes an improved road damage 

detection algorithm for multi-scale feature. To address the 
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issues with deep learning-based road damage processing and 

conventional image processing, this paper introduces vital 

improvements, including the Non-linear Spatial Pyramid 

Pool Fast (NSPPF) module, CoordConv module, and SK 

attention module. This paper aims to improve the model's 

generalization capability to diverse shapes and sizes of road 

damage. The model's perception of road damage is improved, 

and in challenging weather and complex backgrounds, 

detection accuracy is increased. 

III. ALGORITHM 

A. Network Architecture Design 

The modified YOLOv5 is divided into four parts: input, 

backbone, neck, and detector. Fig. 1 illustrates the network 

structure. This paper redesigns the SPPF module in the 

original YOLOv5 network, naming it NSPPF and replacing 

SPPF with NSPPF. In the end, this paper constructed a 

combination of the CoordConv and SK modules. This 

combination allows for better feature selection and weighting 

using location information. The model's ability to represent 

road damage and its detection performance is further 

enhanced. 

B.  NSPPF Module 

In YOLOv5, this paper proposes a non-linear spatial 

pyramid module, which improves the SPPF. SPPF is a 

commonly used module for spatial pyramid pooling but has 

some drawbacks and shortcomings when dealing with 

multi-scale features.  

Fig. 2 illustrates the SPPF structure. The problem of 

missing information in feature representations obtained at 

different levels of spatial pyramidal pooling. The reason for 

this is the exclusive use of the maximum pooling operation. 

In addition, the pooling operation in SPPF is linear and does 

not capture non-linear feature representations. This issue 

limits the model's ability to identify and locate complex road 

damage.  

To address the shortcomings of SPPF, the NSPPF module 

is introduced to improve SPPF, as shown in Fig. 3. The 

NSPPF module adds a 1x1 convolutional layer between the 

CBS module of the SPPF and the first maximum pooling. 

This additional convolution layer allows the introduction of 

non-linear transformations. Non-linear operations of 1x1 

convolutional layers can enhance the representation of 

features. It enables the model to better capture the complex 

non-linear features of road damage. Reducing the features' 

dimensionality can also improve the model's efficiency. This 

paper continues to preserve the CBS and three maximum 

pooling operations of the SPPF module and adds a 3x3 

convolutional layer after these operations. The convolution 

operation with 3x3 convolution layers allows further feature 

extraction and drives better integration of features over space. 

This step's improvement helps to capture a broader range of 

contextual information about road damage and enhances the 

model's ability to perceive road damage. In addition, the 

Concat operation is performed after the 3x3 convolutional 

layer. This operation further preserves and integrates features 

from the previous pooling layer to better fuse feature 

information at multiple scales. 

C. CoordConv Module 

The CoordConv [26] module is a special kind of 

convolution module. It introduces coordinate information to 

enhance the model's understanding of geometric shape and 

position information. In traditional convolution operations, 

the model does not have direct access to the absolute location 

information on the input feature map. This limitation may 

restrict the model's ability to perceive the road damage's 

location accurately. 
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Fig. 3 Structure of the NSPPF 

 

To address this problem, this paper introduces the 3x3 

CoordConv module. This module can introduce coordinate 

information into the feature map as an additional channel 

compared to conventional convolution. It can improve model  

perception while enhancing the understanding of road 

damage of different sizes and shapes. Fig. 4 shows the 

structure of CoordConv. The figure shows (a) a conventional 

convolutional layer and (b) a CoordConv layer.  

CoordConv compares with the traditional convolution 

module by adding two additional channels, i and j, to the 

input feature map. These two channels, i and j represent each 

pixel point's horizontal and vertical coordinates. At the same 

time, CoordConv retains the advantages of fewer parameters 

and efficient computation found in traditional convolution. 

Nevertheless, it allows the network to learn to keep or discard 

the translation invariance, as is needed for the learning task. 

In this way, the model can obtain information on the absolute 

coordinates of each position on the input feature map through
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a convolution operation. During training, the model can 

automatically learn and adjust the coordinate information to 

adapt to the location distribution of different road damage. 

By introducing the CoordConv module, the model in this 

paper can better understand the geometric and positional 

information of road breaks. This enhancement improves the 

accuracy and robustness of the detection. 

D. SK Attention Module 

In order to enhance the model's ability to focus on road 

damage areas and effectively identify various sizes of road 

damage, further improving the CoordConv module's 

erformance. This paper constructs a combination of the 

CoordConv module and the SK [27] attention module. The 

SK module is a channel attention module. It adaptively 

adjusts the receptive field and dynamically reorganizes 

features. This ability can enable it to understand global 

information better and, thus, better adapt to different scales of 

road damage. Fig. 5 shows the SK module. 

The SK module comprises three operators: Split, Fuse, and 

Select. The Split operator creates several pathways with 

diverse kernel sizes, aligning with the distinct Receptive 

Field (RF) sizes of the neurons. The Fuse operator combines 

and aggregates information from multiple paths to attain a 

global and combined representation of selection weights. The 

Select operator combines feature maps of various kernel sizes 

by utilizing selection weights for aggregation. 

Split: The feature map * *H W CX R
  

 is obtained after the 

CoordConv module. By default, two transformations are 

performed first F1: * *ˆ H W CX U R
  

→  and F2: * *ˆ H W CX U R
  

→   

first, with convolution kernel sizes of 3 and 5, respectively. 

To further improve efficiency, a 3×3 convolution kernel is 

used in conversion F2 to decrease the complexity of the 

model through replacing the 5×5 convolution kernel with a 

dilation convolution of dilation size 2. 

Fuse: Integrating the Ũ and Û information gives U as in 

equation (1). A feature vector S of the shape C×1×1 is 

obtained for the integrated information by the global average 

pooling operation Fgp, as shown in equation (2). where Sc 

denotes the c-th element of S and Uc denotes the c-th element  

of the message U.  

 

 ˆU U U= +  (1) 

 

1 1

1
( ) ( , )

×

H W

c gp c c

i j

S F U U i j
H W = =

= =   (2) 

The globally averaged pooled feature vector S is then fed 

into a fully connected layer (Ffc) for linear transformation to  

obtain a shape 1×1×(C/r) feature Z as in equation (3). Where 

r is the scale factor that controls the size of dimension d of Z. 

As shown in equation (4), the computational workload of the 

model is reduced by dimensionality reduction. Meanwhile, L 

stands for the lowest dimension of Z. 

 
* *1

( ) ( ( ))

,

fc s

d C d

Z F s B W

W R Z R
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 
 (3) 

 max( , ) , 32
C

d L L
r

= =  (4) 

where W denotes the fully connected operation on feature 

S at value d. B is batch normalized to optimize the fully 

connected layer's output and avoid gradient vanishing. The 

RELU activation function is chosen for δ better to capture the 

non-linear relationship of the feature S. 

Select: Here, two weight matrices, a and b, are used to 

weight the matrices Ũ and Û, and then the final output vector 

V is obtained by summation.  

Soft attention across channels is first generated, then 

information from the adaptation is used to pick distinct 

spatial scales. Then, we obtain from Z the attention weights ac 

for Ũ and Û as in equation (5) and bc as in equation (6).  
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+
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Where *, C dA B R , a, b denote the soft 

attention of Ũ and Û, 1*d
cA R  is the c-th row of A, 

and ac is the c-th element of a. In the case of two branches, 

since ac+bc=1, the matrix B is redundant. The final mapping 

V, as in equation (7), is obtained from the attention weights of 

the different convolution kernels. Where several branches 

generate several attention weights. Here, the attention weight 

ac controls the Ũ branch, and the attention weight bc controls 

the Û branch.  
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 ˆ , 1c c c c cV a U b U a b=  +  + =  (7) 

Where *
1 2 3[ , , ,..., ,], H W

c cV V V V V V R=  , and this paper 

employs a three-branch convolution kernel of 3, 5, and 7 in 

the SK attention module. This paper provides a formula for 

the two-branch case, and the three-branch principle and 

formula are like the above. 

IV. EXPERIMENTS 

The experimental setup used in this work is equipped with 

an Intel(R) Xeon(R) Silver 4210R CPU running at 2.40GHz 

and a GPU called the RTX 3090. Software configured for 

Windows 10 and Cuda 11.3. Deep learning framework 

platforms: Pytorch 1.10.0, Python 3.8. All photos were 

resized to 640×640 pixels to comply with the model's input 

specifications. The computer hardware-corresponding batch 

size was set to 32. The network was made more efficient with 

the use of an SGD optimizer. The model utilizes a migration 

learning approach to reduce training time and begins training 

by loading officially provided pre-training weights. 

A. Experimental Dataset 

The Road Damage Detection 2020 (RDD2020) dataset 

was used to assess the road damage detection network 

suggested in this paper. The dataset utilised in this paper 

includes 21041 photos with damage annotations, sourced 

from Japan, India, and the Czech Republic. The road damage 

information consists of the coordinates of the bounding boxes 

and labels that describe the type of damage associated with 

the bounding boxes. The training and validation sets were 

divided in 8:2 by random distribution of 16833 and 4208 

images. Table Ⅰ shows the specific types in this dataset and 

their definitions. 

B. Evaluation Indicators 

To evaluate the experimental results objectively, the 

model's performance is measured using two widely used 

metrics: Precision (P) and Recall (R). Precision (P) represents 

the probability of accurately predicting a positive sample out 

of all the samples predicted as positive. Recall (R) denotes 

the probability of correctly predicting a positive sample out 

of all the actual positive samples. Equations (8) and (9) 

provide formulas for Precision (P) and Recall (R). 

 
TP

P
TP FP

=
+

 (8) 

 
TP

R
TP FN

=
+

 (9) 

True Positives (TP): The model correctly predicted the 

positive cases. False Positive (FP): The model incorrectly 

predicts negative cases as positive. False Negative (FN): The 

model incorrectly predicts positive cases as negative cases. 

True Negative (TN): The model correctly predicted the 

negative cases.  

This paper uses the composite assessment criteria 

F1-Score to assess the model holistically and the Average 

Precision (AP) to characterize detection accuracy. The 

F1-Score aims to balance the impact of precision and recall, a 

reconciled average of precision and recall. A higher value of 

F1-Score indicates a higher quality model. Increased network 

accuracy is implied by higher AP and F1-Score values. The 

average accuracy across all categories is shown by Mean 

Average Precision (mAP). The formulas for AP, F1-Score, 

and mAP are in equations (10), (11), and (12). 

 
1

0
( )AP P R dR=   (10) 

 

1

1 m
i

i

mAP AP
n =

=   (11) 

 
TABLE Ⅰ 

EXPERIMENTAL DATA 

 

Class Name 

 

Type Detail 

Number of       

training 

Samples 

Number of 

validation 

Samples 

D00 Longitudinal Crack, Tire indentation 5230 1362 

D01 Longitudinal Spile Crack, Construction joint 133 46 

D10 Transverse Crack, Equal interval 3562 884 

D11 Transverse Spile Crack, Construction joint 32 13 

D20 Alligator Crack 6714 1667 

D40 Rutting, bump, pothole, separation 4506 1121 

D43 Crosswalk Blur 642 151 

D44 Lane Line Blur 4071 986 

D50 Manhole Cover 2842 739 
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C. Experimental Results 

Tests were carried out on the RDD2020 dataset, processed 

by way of the technique described in this paper, to verify the 

effectiveness of the model improvements. Fig. 6 and Fig. 7 

show the changes in mAP and F1-Score during the proposed 

and baseline model training process. These two figures 

clearly demonstrate that the enhanced model in this paper 

consistently surpasses the baseline model in accuracy and 

demonstrates more excellent stability. These outcomes 

validate the proposed model's efficacy in road damage 

detection. Compared to the baseline model, the model in this 

research performs better in road damage identification and 

validates the improvement's efficacy. 

This paper utilizes YOLOv5 as the baseline and 

incorporates additional improvement modules in a stepwise 

manner to demonstrate their validity and necessity through 

ablation experiments. AP, mAP, and F1-Score are used as 

assessment metrics. From the ablation experiments, the 

NSPPF, CoordConv, and SK added in this paper can increase 

model's accuracy. This paper's model chooses better 

approaches according to the properties of road damage. First, 

the SPPF in the original YOLOv5 is replaced with NSPPF, 

enhancing the model's non-linear transformation capability. 

This modification results in a 1.1% increase in the model's 

mAP and a 1.2% advancement in the F1-Score. Secondly, 

this paper constructs a combination of CoordConv and SK 

attention mechanism modules. This change allows the model 

to better adapt to changes in location and scale in road 

detection tasks. Furthermore, it enhances the model's ability
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Fig. 6 Comparison chart of experimental results mAP 
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Fig. 7 Comparison chart of experimental results F1-Score 

 
TABLE Ⅱ 

RESULT OF ABLATION EXPERIMENTS 

Evaluating 

Indicator 

Class 

Name 

YOLOv5 YOLOv5+ 

NSPPF 

YOLOv5+ 

CoordConv 

YOLOv5+ 

SK 

Ours 

 

 

AP (%) 

D00 50% 49% 46.7% 49.1% 50.4% 

D01 36% 33.1% 41.3% 36.7% 43% 

D10 42.5% 45.7% 42.6% 44.2% 44.9% 

D11 23.5% 31.9% 24.1% 30.1% 29.1% 

D20 66.3% 64.7% 64.8% 66.9% 65.3% 

D40 51.9% 52.7% 53.8% 52.8% 53.8% 

D43 75.9% 78.9% 77.9% 76.3% 78.4% 

D44 68.5% 69% 68.7% 69.7% 69.5% 

D50 89% 88.9% 88.1% 88.4% 89.2% 

mAP (%) All 56% 57.1% 56.4% 57.1% 58.2% 

F1-Score(%) All 58.2% 59.4% 58.6% 58.6% 60.4% 
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to capture road damage targets. Adding the CoordConv and 

SK attention mechanisms improved the model by 0.4% and 

1.1% mAP, respectively, and both F1-Score by 0.6%. Also, in 

the model of this paper, each of the nine categories of the 

dataset RDD2020 processed by the method in the text is 

tested in the improved model. The experiment's results are 

displayed in Table Ⅱ.  

From Table Ⅱ, the mAP of the improved YOLOv5 model 

improved by 2.2%, and the F1-Score improved by 2.2%. The 

AP of the dataset's nine damage categories, D00, D01, D10, 

D11, D20, D40, D43, D44 and D50 has improved. This result 

demonstrates that the optimized YOLOv5 model can better 

identify and detect various forms of road damage. Moreover, 

it can learn a more generalized feature representation. 

Fig. 8 shows three representative sets of images to 

illustrate different aspects of the model's improvement. The 

top image in each group demonstrates the experimental 

outcomes for the baseline model, and the bottom image 

demonstrates the experimental outcomes for the improved 

model. In group (a), both models identify the same category 

and number of road damage. However, as can be seen from 

the figure, the accuracy of the improved model has improved 

in each category. It shows that the improvements in this 

model have improved the model's accuracy for road damage 

detection. In group (b), the model in this paper has a greater 

variety of detections and improved accuracy compared to the 

experimental results of the baseline model. This paper's 

improved model has improved the perception of multi-scale 

damage, as demonstrated. In group (c), the baseline model 

misidentifies the shadow of a streetlamp in sunlight as a D50 

class dataset. The improved model has shown advancements 

in this aspect, enhancing accuracy in detecting real road 

damage. The experimental outcomes demonstrate that the 

optimized model in this paper can scientifically detect road 

damage under complex weather conditions. The ability of the 

model to focus on road damage is further validated, enabling 

the model to capture important features of road damage areas 

greater accurately. 

The algorithm is further compared with other target 

detection algorithms to validate the model's effectiveness in 

this paper. This includes YOLOv5, Faster R-CNN, 

EfficientDet, and two other literatures. The above algorithms 

are trained and validated on the RDD2020 dataset processed 

by the method in the paper. Two metrics, mAP and F1-Score, 

are selected to evaluate the algorithms. Table Ⅲ shows the 

experimental results of different algorithms for road damage 

detection on the RDD2020 dataset. 

 
TABLE Ⅲ 

PERFORMANCE COMPARISON OF VARIOUS ALGORITHMS 

Model mAP (%) F1-Score (%) 

YOLOv5 56% 58.2% 

Faster R-CNN 51.2% 51.4% 

EfficientDet 56.9% 57.2% 

Ref. [28] 57% 58.6% 

Ref. [29] 57.6% 58.7% 

Ours 58.2% 60.4% 

 

According to the experiments, the algorithm suggested in 

this paper achieves 58.2% and 60.4% for mAP and F1-Score, 

respectively, in the road damage detection task. Compared 

with the baseline model YOLOv5, the improvements are 

2.2% and 2.2%, respectively. Compared to Faster R-CNN, 

the improvements are 7% and 9%, respectively. Compared 

with EfficientDet, the improvements are 1.3% and 3.2%

 

 
(a)                                                               (b)                                                              (c) 

 
Fig. 8 Comparison chart of experimental real-world effects 
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respectively. Compared to Ref. [28], the improvements are 

1.2% and 1.8% respectively. Compared to Ref. [29], the 

improvements are 0.6% and 1.7% respectively. These results 

demonstrate the effectiveness of the model improvement in 

this paper. 

V. CONCLUSION 
This paper proposes three improvement points in the road 

damage detection task based on multi-scale feature extraction. 

Firstly, introducing the Non-linear Spatial Pyramid 

Pooling-Fast (NSPPF) module. Better capturing the detailed 

features of road damage areas improves the perception of 

multi-scale damage. Secondly, by building a combination of 

the CoordConv and SK attention modules. The ability to fuse 

coordinate information and learn correlations between global 

and local features enhances the model's capacity to identify 

damage at various sizes. These improvements enable our 

algorithm to achieve an accuracy of 58.2% on the RDD2020 

dataset, These improvements enable our algorithm to achieve 

an accuracy of 58.2% on the RDD2020 dataset, our algorithm 

is able to outperform the baseline model by 2.2%. 

These improvements are of great importance for road 

maintenance and traffic safety. Accurate detection of damage 

on roads helps to repair and maintain them promptly, 

improving traffic safety, reducing accidents, and improving 

the driving experience for drivers. Future research could 

further explore and optimize road damage detection 

algorithms to improve accuracy and robustness. At the same 

time, combining other advanced deep learning techniques 

and computer vision algorithms can expand the application 

area of road damage detection. For example, this technology 

enables real-time monitoring and prediction of road damage. 

Various benefits can be achieved by integrating road damage 

detection into autonomous driving technology. These further 

studies and applications will advance the field of road 

maintenance and traffic safety. They will lead to a safer and 

more efficient road damage detection network for society. 
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