
Motion Planning of Differential Drive Mobile
Robot Using Circular Arc

Wan Zafira Ezza Wan Zakaria, Ahmad Ramli*, Md Yushalify Misro and Mohd Nadhir Ab Wahab

Abstract—In modern applications, mobile robots are impor-
tant dynamic systems. Motion planning is a crucial responsibil-
ity for these robots as it enables them to move from one place
to another safely and efficiently. Extensive research has been
conducted on motion planning for static scenarios. However,
research is limited when the scenarios are dynamic because
it is difficult and expensive to continuously replan the robot’s
moves to ensure its safety. This paper presents the circular arc
path algorithm for sensorless differential drive mobile robot
movement, given that the initial point and endpoint are defined.
The differential drive mobile robot, which is adopted for various
vehicles and robots, is very popular due to its simple operation
and robustness. A mobile robot with two driving wheels that
uses a differential drive splits its overall velocity between its
left and right wheels. Accordingly, the radius of the circle that
forms after movement between two points is the main factor
that determines the left and right velocity of the robot’s wheels.
Through this algorithm, all points will be interpolated with G1

continuity, which only requires an initial direction to move.
Robot simulation is performed using CoppeliaSim, and the
algorithm is developed using Remote API functions in Matlab.

Index Terms—differential drive, circular arcs, robot simula-
tion, motion planning, mobile robot

I. INTRODUCTION

MOTION planning, in the context of robotics and
autonomous systems, refers to the process of deter-

mining a sequence of motions or actions that enable a robot
or vehicle to move from an initial state to a desired goal
state while satisfying various constraints and objectives [1].
Motion planning algorithms take into account the kinematics
and dynamics of the robot, as well as factors such as
velocity limits, accelerations, and control inputs. The goal
of motion planning is to determine the appropriate control
commands or control signals that enable the robot to execute
the planned path while satisfying the physical constraints
and operational requirements. It plays a fundamental role
in various applications, including robot manipulation such
as in [2], autonomous navigation, unmanned aerial vehicles
(UAVs), self-driving cars, industrial automation, and many

Manuscript received April 13, 2023; revised October 12, 2023.
This paper was supported by Ministry of Higher Education Malaysia

through the Fundamental Research Grant Scheme with Project Code:
FRGS/1/2020/STG06/USM/02/4

W.Z.E Wan Zakaria a lecturer at the School of Industrial Technology,
Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Malaysia. e-mail:
(ezzafira@usm.my).

A. Ramli is an Associate Professor at the School of Mathematical
Sciences, Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Malaysia.
(Corresponding Author; phone: +604-653-4773; fax: +604-657-0910; e-
mail: alaramli@usm.my.

M. Y. Misro is a lecturer at the School of Mathematical Sciences,
Universiti Sains Malaysia(USM), 11800 Pulau Pinang, Malaysia. e-mail:
(yushalify@usm.my).

M. N. Ab Wahab is a lecturer at the School of Computer Sciences,
Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Malaysia. e-mail:
(mohdnadhir@usm.my).

others. It enables robots and autonomous systems to plan
and execute their motions effectively, ensuring efficient and
safe interactions with the surrounding world.

A differential drive mobile robot is a drive system in
which each side of the vehicle’s wheels or tracks is driven
separately, and turning is accomplished by driving the left
and right wheels at separate velocities [3]. The popularity
of this driving system stems from its simplicity (no explicit
turning mechanism) and agility (it can turn in extremely
small radii of curvature). It has been widely used in a range
of robot simulations for motion planning. In general, there
are two types of controllers for mobile robots: kinematic
controllers, which govern the driving wheel velocities for
mobile robots, and dynamic controllers, where the control
command is the driving torques. A kinematic controller for a
two-wheel mobile robot with a differential drive is presented
in [4].

The majority of current differential drive mobile robots are
equipped with various types of sensors, including cameras
(or more generally, visual sensors) [5], [6], sonar sensors
[7], Light detecting and ranging (LiDAR) sensors [8] and
tactile sensors [9], among others, to observe the environ-
ment. However, for our research, we solely rely on CAGD
(Computer-Aided Geometric Design) knowledge without the
assistance of sensors for the study of motion planning. In
traditional motion planning, it is typically assumed that we
have knowledge, at least partially, of the pose (position and
orientation) of the target and/or the robot.

Any motion controller would be incomplete without a cir-
cular motion controller. The circular interpolation controller
drives two motors with changing velocities and directions
based on the quadrant of motion to achieve a circular
movement from the start to end coordinates. A succession
of short steps is used to imitate circular motion [10]. Most
circular interpolation methods utilize parametric sine and
cosine functions for the necessary calculations. Parametric
functions are necessary due to their high level of numeric
precision, but they also require additional hardware and time
to be applicable in real-time applications.

Research on the topic of smooth circular arc interpolation
for parametric curves has been active in recent years. A
novel two-stage interpolation algorithm is proposed in [11],
with the first stage being rough interpolation without linear
approximation and the second stage being circular arc fine
interpolation, which is an improvement above traditional
interpolation techniques. The suggested approach has nearly
little theoretical error, according to simulation findings. Due
to the linear approximation error, a contradiction between
velocity and accuracy occurred.

The problem of constructing circular motion from one
point to another point in Cartesian space (x, y, z), which
entails the robot’s travel from the beginning to the final

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

position, was investigated by [12]. The difficulty of creating
point-to-point circular motion in multidimensional space was
also explored. However, the point-to-point (PTP) method in
Cartesian space is used to generate a circular pathway, which
becomes computationally burdensome as the number of PTP
increases; more time will be required. On the other hand,
the smoothness of the circular path improves when there are
more points. A parametric equation of a circle is utilized to
achieve circular motion.

The topic of producing a trajectory capable of avoiding
probable impediments in a blending event with a non-
holonomic assumption is the focus of [13]. This study
proposes a method that combines a basic circular path tool
with a corridor generation algorithm. It places the problem
in a workspace where a blending trajectory is needed to link
tangent routes and avoid obstructions. To address this issue,
the system attempts to create a collision-free corridor that
can serve as a safe path-taking region.

In order to execute an ideal smooth path and enable smooth
turning of the robot movement, [14] introduces new modified
circular arcs to replace path segment joints. One of the most
widely used applications for calculating navigational paths
is the Probabilistic Roadmap (PRM), which is employed in
their approach. The arc fillet approach presented in this study
is particularly strong for smoothing the robot’s navigational
path, giving it a unique characteristic.

On the other hand, [15] introduces a novel concept for
creating a line-following algorithm for a mobile differential
drive robot. The paper explains in detail how the radius of the
path’s curvature is determined using geometry, and based on
that information, the differential drive kinematics establish
the desired difference between the angular velocities of the
two wheels. This robot measures how much a circular arc
deviates from a straight line using a variety of IR-reflecting
sensors. However, our study does not involve any sensors,
as the differential drive mobile robot will move based on the
velocity of the two wheels and time.

In this research, we propose a circular-arc-based approach
for point interpolation in route planning of sensorless differ-
ential drive mobile robots, building upon the work of [16].
The focus is on finding a path using two circular arcs, con-
sidering that the angles of the start and endpoint are different.
Thus, a path based on circular arcs that interpolate two or
more points with G1 continuity is constructed, referring to
[17], where a smooth path consisting of a linear path and a
circular arc path with G1 continuity, tolerance restrictions,
shape preservation, and computational efficiency is formed
through simulations and real robot experiments. We also
propose an algorithm to compute the velocities of the wheels
and the travel time based on curvature [18]. This approach
is implemented and evaluated on a simulator to observe
its accuracy and efficiency. Experimental results have been
applied to the Pioneer 3-DX mobile robot in CoppeliaSim.

II. MOBILE ROBOTS

This section shows information about the mobile robot
used in simulation with CoppeliaSim. The components to
move the mobile robot are discussed.

A. Pioneer 3-DX

Pioneer 3-DX is a two-wheel, two-motor differential drive
robot that is excellent for use in a laboratory or classroom.
The robot comes with a front SONAR, a single battery, and
wheel encoders. Pioneer research robots are the most widely
used intelligent mobile robots in education and research
across the world [19].

Fig. 1: Pioneer 3-DX simulated model.

Figure 1 depicts the simulated Pioneer 3-DX, which was
utilized in our CoppeliaSim simulation. The Pioneer 3-DX
is equipped with two wheels that control the robot’s motion.
Varied velocities applied to the wheels result in different
directions and operations. The robot’s movement is generated
using the remote API function in MATLAB, establishing a
connection with the robot. Table I presents the robot’s motion
data based on the velocities of its wheels.

TABLE I: The movement of pioneer 3-DX robot

Velocity of left wheel, VL Operations
and right wheel, VR

VL < VR Counter-clockwise circular movement

VL > VR Clockwise circular movement

VL = VR = 0 Stop

Note that the circular movement creates a certain radius
based on the speed. If we wish for the robot to rotate at a
particular point without creating a circular arc, we can let
VL = −VR whereas VL and VR are the velocity of left and
right wheels respectively.

B. Differential drive mobile robot

The differential drive robot consists of a platform equipped
with a front caster and a pair of rear coaxial drive wheels
for isotatic equilibrium. Each of these drive wheels is inde-
pendently driven by a DC motor, which is in turn energized
by a control voltage. By varying the power applied to the
motors, the differential-wheeled mobile robot can be made
to move in a straight line or trace different trajectories such
as curves and circles. Deriving a precise mathematical model
is a crucial part of designing any control system [20].

The kinematics concept of a differential drive mobile robot
is shown in Figure 2. To generalize this approach to any
robot with two wheels, we would not be using any additional
features such as sensors. The following model assumptions
are taken into account: (1) The robot’s mass center is at the
geometric center of the body frame. (2) The robot moves

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

without depending on sensors. (3) The robot is moving on
a solid ground surface with two wheels that are always in
contact with it.

Fig. 2: The kinematics schematic of differential drive mobile
robot (This figure is redrawn and simplified from [20].
Permission has been obtained)

Let (x,y) represent the coordinates of the robot platform’s
center of mass, and θ represents the angle between the
direction of the robot’s travel and the x-axis. The angular
velocities of the wheels are determined by the robot center’s
linear and angular velocities, represented by Vc and ωc = θ
respectively [21]. The wheels are separated by a distance of
2d. Different velocities in the wheels will result in different
directions and operations. The movement is generated by the
remote API function in MATLAB, which is connected to the
robot.

III. METHODOLOGY USED AND RESULTS

A. Circular Arcs Interpolation

The trajectory of a point moving in the plane with coordi-
nates C(t) = (x(t), y(t)), where x(t) and y(t) are functions
of the parameter t, is known as a parametric curve. For each
value of t, we obtain a point on the curve.

In this paper, we utilize a circular arc path. The parametric
equations for a circle of radius r and center (a, b), represent-
ing the functions x(t) and y(t) respectively, are given by:

x(t) = a+ r cos t

y(t) = b+ r sin t
(1)

and its first derivative is given by

x′(t) = −r sin t

y′(t) = r cos t
(2)

So, given any two points, P1 = (px,1, py,1) and P2 =
(px,2, py,2), we aim to interpolate these points with a speci-
fied tangent direction at P1, denoted as C ′

1(t1) = (dx,1, dy,1).
By substituting the values into Equation 1, we can deter-

mine the radius (r), centers (a and b), and phases (t1 and
t2). The equation will then become:

px,1 = a+ r cos t1

py,1 = b+ r sin t1

px,2 = a+ r cos t2

py,2 = b+ r sin t2

dx,1 = −r sin t1

dy,1 = r cos t1

(3)

Note that there are only 5 parameters to be solved: a, b,
r, t1, and t2. However, there are 6 equations in Equation 3.
Therefore, we transform the coordinate system by rotation
such that either dx,1 or dy,1 equals zero. By doing so, we
can eliminate one of the last two equations. This is because
sin 0 = 0 when the direction is on the y-axis, and cos π

2 = 0
when the direction is on the x-axis.

We demonstrate our algorithm by interpolating the first
three points using a circular arc, as shown in Figure 3. To
simplify our discussion, we intentionally choose the robot’s
direction to be facing the y-axis and the x-axis. However,
we will generalize it in the later section.

We propose Algorithm 1 to interpolate 3 points using
a circular arc, as shown in Figure 3. This algorithm can
be easily extended to include more points by repeating the
iteration. The notations used in Algorithm 1 are as follows:
Ci = (x(ti,j), y(ti,j)), where i denotes the i-th curve and j
denotes the j-th point. Specifically, when j = 1, it represents
the starting point, and when j = 2, it represents the end
point. We will demonstrate the results for more points in a
later section.

In the algorithm, we emphasize the need to rotate the
points to reduce Equation 3 to 5 equations. This can be
achieved using matrix transformation rules by transitioning
the point to the origin and rotating it to either the x-axis
or the y-axis. The rotation in polar coordinate form can be
referred to in [22].

Technically, the robot can stop at the endpoint of the first
curve and start with different velocities for the next curve.
Therefore, G1 continuity [23] would be sufficient. Algorithm
1 only requires incorporating the initial direction into the
movement.

Each circular arc is connected by G1 continuity, where the
endpoint direction of the first curve, C ′

1(t2) = (dx,2, dy,2),
is equal to the start point direction of the second curve,
C ′

2(t1) = (dx,1, dy,1). The figure below illustrates the in-
terpolation of 2 circular arcs.

B. Velocity and time for differential drive mobile robot
simulation

It is computationally easier to construct a path that interpo-
lates the desired points. However, applying this information
to a robot simulator requires further assessment. Assuming
that a robot is facing the initial direction, it will move to the
next point by traversing the circular arc with a specific radius.
The radius can be controlled by adjusting the velocities of
its left and right wheels.

Suppose the relationship between VL and VR and the
center velocity is as follows:

Vc =
(VL + VR)

2
(4)

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

(a) Three points and the first direction

(b) First Circular arc.

(c) Next direction.

(d) Two circular arc.

Fig. 3: Illustration of circular arc interpolation.

When turning clockwise,

VL = Vc + dωc

VR = Vc − dωc

(5)

When turning counter-clockwise,

VL = Vc − dωc

VR = Vc + dωc

(6)

By referring to [18], where they evaluate the Bezier curve
formula and the curvature, we implement it into a circular
arc to express the linear velocity, Vc, and angular velocity.ωc

as follows:

Algorithm 1 Circular Arc Interpolation
Input

• Three points, P1 = (px,1, py,1),
P2 = (px,2, py,2) and P3 = (px,3, py,3)

• The direction where the robot is
facing, C ′

1(t1) = (dx,1, dy,1)

Output
• Radius, r
• Center,(a, b)
• Direction, C ′

1(t2) = (dx,2, dy,2)
• Phase t1 and t2

1: Step 1 (As shown in Figure 3a) : Substitute (px,1, py,1),
(px,2, py,2) and (dx,1, dy,1) into Equation 3. Note that in
this example, dx,1 = 0. Solve the first four equations and
the last equation to obtain the center, phase and radius
of a circular arc that interpolates both points.

2: Step 2 (As shown in Figure 3b)) : First circular arc,
C1(t) is obtained.

3: Step 3 (As shown in Figure 3c): Set the direction of
the next curve C ′

2(t1) = C ′
1(t2). If either (dx,2, dy,2) is

equal to 0, we may proceed. Otherwise, rotate the whole
system to the x-axis or y-axis for computation purposes.

4: Repeat Step 1.
5: Step 4 (As shown in Figure 3d): Next circular arc, C2(t)

is obtained.

Fig. 4: Circular interpolation of 2 circular arcs.

Vc =
√
(x′[A])2 + (y′[A])2 (7)

and

ωc =
x′[A]y”[A]− y′[A]x”[A]

(x′[A])2 + (y′[A])2
(8)

We choose d = 0.1905 referring to the specifications of
the Pioneer 3DX robot [19]. The time, t, for each velocity
is determined as follows:

t =
Vc

S
(9)

where S is the Euclidean distance between two points.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

C. Robot simulation

In this part, we present a robot simulation as a continuation
of the output in Algorithm 1. The simulation is run on
a computer with an Intel(R) Core(TM) i3-8100 CPU @
3.60GHz 3.60 GHz. Since Algorithm 1 produces the radius
for each circular arc, we substitute different values of linear
and angular velocity, Vc and ωc respectively, into Equations
9 and 5 to obtain the velocities for both wheels.

We implement this simulation on CoppeliaSim by pro-
viding the values of VL, VR, and time corresponding to its
speed in Matlab. The motivation behind our simulation is to
observe whether the robot can move on the projected path
without the assistance of any additional elements, such as a
sensor.

We separate our simulation into 5 cases. Each case show
a different points for the robot to pass through as follows:

• Case 1, the robot need to pass through 2 points which
are P1 = (0, 0) and P2 = (1, 3).

• Case 2, the robot need to pass through 3 points which
are P1 = (0, 0), P2 = (1, 3) and (2, 6).

• Case 3, the robot need to pass through 3 points which
are P1 = (0, 0), P2 = (1, 3) and (3, 4).

• Case 4, the robot need to pass through 3 points with
larger radius on the second arc which are from P1 =
(0, 0), P2 = (2, 0.5) and (4, 1).

• Case 5, the robot need to pass through 4 points which
are P1 = (0, 0), P2 = (1, 3), (2, 6) and (4, 9).

In Figure 5, we show the path generated from the sim-
ulation and compare it with the interpolated curve obtained
from Algorithm 1. It is important to note that the interpolated
curve is constructed from a circular arc.

Fig. 5: Case 1: One segment of circular arc

The robot simulation in Figure 5 moves from (0, 0) to
(1, 3) in the right direction. According to Algorithm 1, we
obtained a radius of r = 5. We computed the velocities and
obtained VL = 5.1905 and VR = 4.8095. The time required
to complete the circular arc in the simulator is 247.56s. As
shown in the figure, the path generated from the simulation
closely follows the expected interpolated curve. The simula-
tion endpoint is (1.0160, 2.981), while the endpoint from the
interpolated curve is (1.0000,3.0000), resulting in an error of
0.0248.

Next, we proceed to run the robot simulation for the
second circular arc. We set two different endpoints: (2, 6) for

(a) Case 2: The second circular arc moves counter-clockwise from
(1, 3) to (2, 6)

(b) Case 3: The second circular arc moves clockwise from (1, 3)
to (3, 4)

Fig. 6: Comparison of interpolated and path generated from
the simulation

counterclockwise motion and (3, 4) to continue the clockwise
motion. The results are shown in Figure 6.

The red and green paths in Figure 6 represent the paths
generated from the simulation. The different directions of the
second segment of the circular arc are shown for comparison
of the simulation results. Table II presents the list of veloc-
ities used for the left and right wheels, VL and VR, for the
red path in Figure 6a.

TABLE II: Velocity left and right wheels, VL and VR and
time for path Figure 6a

Points VL VR

(0, 0) to (1, 3) 5.1905 4.8095

(1, 3) to (2, 6) 4.8905 5.1905

Figure 6a displays the interpolated curve with different
directions continuing the first segment of the circular arc
from Figure 5. The path generated from the simulation (red
path) in Figure 6a closely follows the interpolated curve, with
an error difference of less than 0.5 as shown in Table III. The
total time taken to complete the entire path is 495.055s.

Table IV presents the list of velocities used for the left
and right wheels, VL and VR, for the red path in Figure 6b.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

TABLE III: The comparison error between interpolated and
simulation coordinate for path Figure 6a

Points Interpolated Simulation Error
coordinate coordinate

P1 (1, 3) (0.9708, 2.9056) 0.0988

P2 (2, 6) (2.0238, 6.0354) 0.0426

TABLE IV: Velocity left and right wheels, VL and VR and
time for path Figure 6b

Points VL VR

(0, 0) to (1, 3) 5.1905 4.8095

(1, 3) to (3, 4) 2.6905 2.3095

Figure 6b depicts the interpolated curve with the same
directions continuing the first segment of the circular arc
from Figure 5. The path generated from the simulation (green
path) for Figure 6b closely follows the interpolated curve in
the first segment, with a small error difference as shown in
Table V. However, in the second segment, it deviates slightly
in the right direction before continuing along the intended
path. The total time taken to complete the entire path is
464.77s.

TABLE V: The comparison error between interpolated and
simulation coordinate for path in Figure 6b

Points Interpolated Simulation Error
coordinate coordinate

P1 (1, 3) (0.8894, 2.7591) 0.1221

P2 (3, 4) (2.9007, 3.5996) 0.4125

Furthermore, our algorithm was applied to two circular
arcs, each exhibiting distinct characteristics: the first arc
displays a clearly defined circular shape, whereas the second
arc appears to resemble a straight line from its second point.
Technically, the second arc is still a circular arc but has an
extremely large radius. The results are shown in Figure 7.

The red and blue paths in Figure 7 represent the paths
generated from the simulation. Table VI presents the list of
velocities used for the left and right wheels, VL and VR, for
the red path in Figure 7.

Fig. 7: Case 4: Two segments of circular arcs. The second
arc exhibits a straight line behavior but is represented by a
large radius.

TABLE VI: Velocity left and right wheels, VL and VR and
time for path Figure 7

Points VL VR

(0, 0) to (2, 0.5) 4.0595 4.4405

(2, 0.5) to (4, 1.5) 37.9008 37.5198

In Table VI, we can see that the velocity VL and VR are
almost equal as it traverse a straight line.

As anticipated, the robot adhered quite faithfully to the
trajectory of the first arc. However, it exhibited a slight
deviation when traversing the second arc. The error at the
end for the second arc is 0.2086 as shown in Table VII.

As shown in previous cases, the error propagates once the
robot traverses the second arc.

TABLE VII: The comparison error between interpolated and
simulation coordinate for path in Figure 7

Points Interpolated Simulation Error
coordinate coordinate

P1 (2, 0.5) (1.9771, 0.5105) 0.0251

P2 (4, 1.5) (3.7957, 1.5428) 0.2086

Next, we tested our algorithm on 3 circular arcs. Figure 8
illustrates the interpolated curve and the path obtained from
the robot simulation.

Fig. 8: Case 5: Three segments of circular arc.

The error for each point is calculated as shown in Table
VIII.

TABLE VIII: The comparison error between interpolated and
simulation coordinate for path Figure 8

Points Interpolated Simulation Error
coordinate coordinate

P1 (1, 3) (0.9434, 2.8573) 0.1535

P2 (2, 6) (1.9636, 5.9681) 0.0484

P3 (4, 9) (2.9276, 8.2750) 1.2944

Notably, it’s observed that the simulated path terminates
before reaching the endpoint indicated in the interpolated
curve. The error, following the utilization of three circular
arcs, is recorded at 1.2944. The entirety of the simulation
process required a total time of 790.66 seconds.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

IV. ERROR ANALYSIS

In this section, we analyze the errors in our simulation. In
the previous section, we demonstrated the simulation for a
specific run. However, each time a simulation is conducted,
the results may vary due to factors such as the computer’s
capacity at that particular moment.

We analyze the errors at the endpoints for three different
cases: one segment, two segments, and three segments of
circular arcs. Respectively for each case, we have selected
Case 1 (as in Figure 5), Case 2 (as in Figure 6), and Case
5 (as in Figure 8) for further analysis. We run these three
cases 30 times in the simulation to observe the error pattern.

Figure 9 shows the histogram of error versus frequency
between interpolation and simulation for Case 1: one circular
arc in Figure 5.

Fig. 9: The histogram of simulation error for Case 1.

Next, we run another 30 simulations for Case 2: two
circular arcs in Figure 6, and the error frequency is shown
in Figure 10.

Fig. 10: The histogram of simulation error for Case 2.

We then continue with Case 5 in Figure 8, involving three
circular arcs, and the histogram of error is shown in Figure
11.

Fig. 11: The histogram of simulation error for Case 5.

Table IX shows the errors and variances for each cases. As
we observed previously, the error increases when the number

of arcs increases. However, for all cases, the variances are
low (<0.02), indicating that the simulation remains consis-
tent even after multiple runs.

TABLE IX: The maximum, minimum, average and variance
of error for Case 1 (5), Case 2 (6), and Case 5 (8)

Case Minimum Maximum Average Variance
Case 1 0.0679 0.2063 0.1077 0.001

Case 2 0.0231 0.1540 0.0741 0.001

Case 5 1.0226 1.7480 1.2225 0.018

V. DISCUSSION

During the development and experimental path used in
the simulation, we encountered difficulties in finding suitable
velocities and times for each wheel traveled by the robot in
the simulator. It is important to note that a real robot would
require a different approach to determine the velocity and
time solutions. This challenge can be addressed by analyzing
the relationship between velocity, time, and the curvature of
a circle, as outlined in [18]. By using this approach, the path
can be simulated with the required velocity and time for
each circular arc connection, without the need for the initial
rotation of the robot.

This approach yields similar paths in both interpolation
and simulation. The small error between the interpolated
points and the points resulting from the robot simulation
for two circular arcs with different directions confirms this.
However, when using a path with two circular arcs in the
same direction or three circular arcs, we observed that the
slight movement of the robot stopping before continuing to
the next circular arc has an impact on the robot simulation’s
ability to reach the desired destination.

From the robot simulation, it is generally observed that
the robot closely follows our interpolated curve. However,
the error may increase when multiple arcs are used. This
may be caused by skidding [24].

At the end of the first segment in Case 3 (Figure 6b), the
movement of the robot appears to deviate. This is due to
the fact that the tangent at the endpoint of the first segment
during simulation does not align with the expected direction.
Since we rely on the initial tangent to be the same as the end
tangent of the first segment computationally, any error at the
end of the first segment will propagate to the second segment
and subsequent segments.

It should be noted that the curve from the simulation may
slightly differ each time the simulation is run. We observed
that errors may occur for a few reasons. Firstly, when we
tested the algorithm on a computer with lower capacity
(Intel(R) Celeron(R) N4000 CPU @ 1.10GHz 1.10 GHz), the
results showed variations in time and endpoint. Therefore, we
deduced that computer capacity may yield slightly different
results. However, our calculations in Algorithm 1 remain
valid.

Secondly, as our simulation runs on the connection be-
tween Matlab and CoppeliaSim simultaneously, there is a
possibility of a communication breakdown during the simu-
lation, leading to errors. The connection may be interrupted
if there are other ongoing applications running at the same
time.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

VI. CONCLUSION

In this paper, we have developed a method for constructing
paths using circular arcs in the context of a differential drive
mobile robot simulation application. Our approach allows
users to generate interpolated paths by providing the initial
coordinates and direction while maintaining G1 continuity
between connected curves. The code implementation we have
presented is beneficial for users seeking to move their robots
along circular trajectories by simply specifying the speed and
time for the left and right wheels.

Through our experiments, we have demonstrated that the
simulation closely follows the planned curve and successfully
interpolates the given points for scenarios involving two and
three circular arcs.

There are several directions for future research that we
would like to highlight. Firstly, it would be valuable and
insightful to implement our code on a real robot to assess
any additional limitations or challenges that may arise in a
practical setting. This real-world experimentation can provide
valuable insights into the applicability and performance of
our approach.

Secondly, when constructing paths using two circular arcs,
it is important to note that mathematically, there is a lack of
curvature continuity between the arcs, which can result in a
discontinuity in terms of speed (as discussed in [25], [23],
and [26]). Exploring alternative curve types that allow for
curvature continuity could potentially lead to smoother robot
movements and improve overall path quality.

These areas of future research have the potential to further
enhance the practicality and performance of our method,
expanding its applicability to real-world scenarios and ad-
dressing potential limitations related to curvature continuity.

REFERENCES

[1] “Motion Planning vs Path Planning — shaderobotics.com,” https:
//www.shaderobotics.com/posts/motion-planning-vs-path-planning,
[Accessed 10-Jul-2023].

[2] J. Shen, W. Zhang, Y. Ye, Y. Zhu, and X. Ye, “Adaptive neural
network control of space flexible robot based on calculated torque for
non-cooperative targets.” IAENG International Journal of Computer
Science, vol. 50, no. 2, pp. 525–536, 2023.

[3] N. Uddin, “A two-wheeled robot trajectory tracking control system
design based on poles domination approach.” IAENG International
Journal of Computer Science, vol. 47, no. 2, pp. 154–161, 2020.

[4] A. Nagy, G. Csorvási, and D. Kiss, “Path planning and control of
differential and car-like robots in narrow environments,” in 2015 IEEE
13th International Symposium on Applied Machine Intelligence and
Informatics (SAMI). IEEE, 2015, pp. 103–108.

[5] A. Gorbenko and V. Popov, “Visual landmark selection for mobile
robot navigation,” IAENG International Journal of Computer Science,
vol. 40, no. 3, pp. 134–142, 2013.

[6] H. H. Triharminto, O. Wahyunggoro, T. B. Adji, A. Cahyadi,
I. Ardiyanto et al., “Local information using stereo camera in artificial
potential field based path planning,” IAENG International Journal of
Computer Science, vol. 44, no. 3, pp. 316–326, 2017.

[7] P. Paral, S. Ghosh, A. Chatterjee, and S. K. Pal, “Automatic relevance
determination kernel-embedded gaussian process regression for sonar
based human leg localization with a mobile robot,” IEEE Sensors
Letters, 2022.

[8] J. Iqbal, R. Xu, S. Sun, and C. Li, “Simulation of an autonomous
mobile robot for lidar-based in-field phenotyping and navigation,”
Robotics, vol. 9, no. 2, p. 46, 2020.

[9] C. T. Nnodim, A. El-Bab, B. W. Ikua, and D. N. Sila, “Design and
simulation of a tactile sensor for fruit ripeness detection,” Proc. World
Cong. Eng. Comp. Sci, vol. 2019, pp. 390–395, 2019.

[10] J. Liao, Z. Chen, and B. Yao, “Adaptive robust control of skid steer
mobile robot with independent driving torque allocation,” in 2017
IEEE International Conference on Advanced Intelligent Mechatronics
(AIM). IEEE, 2017, pp. 340–345.

[11] G. Wang and G. Ye, “Novel circular interpolation algorithm for high-
accuracy positioning systems,” in 2016 IEEE International Conference
on Information and Automation (ICIA). IEEE, 2016, pp. 222–227.

[12] Z. Zhang, A. Beck, and N. Magnenat-Thalmann, “Human-like behav-
ior generation based on head-arms model for robot tracking external
targets and body parts,” IEEE transactions on cybernetics, vol. 45,
no. 8, pp. 1390–1400, 2014.

[13] H. Ren and F. Katsuki, “Circular arc based obstacle avoiding blending
trajectory plan,” in 2020 5th International Conference on Control and
Robotics Engineering (ICCRE). IEEE, 2020, pp. 15–18.

[14] M. K. Ouach and T. Eren, “Prm path smoothening by circu-
lar arc fillet method for mobile robot navigation,” arXiv preprint
arXiv:2112.03604, 2021.

[15] J. Singh and P. S. Chouhan, “A new approach for line following
robot using radius of path curvature and differential drive kinematics,”
in 2017 6th International Conference on Computer Applications In
Electrical Engineering-Recent Advances (CERA). IEEE, 2017, pp.
497–502.

[16] M. Effati and K. Skonieczny, “Circular arc-based optimal path plan-
ning for skid-steer rovers,” in 2018 IEEE Canadian Conference on
Electrical & Computer Engineering (CCECE). IEEE, 2018, pp. 1–4.

[17] S. He, Y. Deng, C. Yan, Z. Gao, and C.-H. Lee, “A tolerance
constrained robot path circular interpolation method for industrial scara
robots,” Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, vol. 235, no. 6-7, pp. 1061–
1073, 2021.

[18] E. Broman and I. Rossing, “A system for procedural camera move-
ments for navigation in astrographics,” 2020.

[19] I. A. Technology, “Pioneer3-dx,” https://www.generationrobots.com/
media/Pioneer3DX-P3DX-RevA.pdf, 2011, [Accessed 10-Jul-2023].

[20] A. Rosales, G. Scaglia, V. Mut, and F. di Sciascio, “Formation control
and trajectory tracking of mobile robotic systems–a linear algebra
approach,” Robotica, vol. 29, no. 3, pp. 335–349, 2011.

[21] S. L. Francis, S. G. Anavatti, and M. Garratt, “Real-time path planning
module for autonomous vehicles in cluttered environment using a
3d camera,” International Journal of Vehicle Autonomous Systems,
vol. 14, no. 1, pp. 40–61, 2018.

[22] K. Kuttler, Sep 2022. [Online]. Available:
https://math.libretexts.org/Bookshelves/Linear Algebra/A
First Course in Linear Algebra (Kuttler)/05\%3A Linear
Transformations/5.04\%3A Special Linear Transformations in R

[23] W. Z. E. W. Zakaria, A. Ramli, and J. M. Ali, “Bezier curves inter-
polation with end point constraints on road map,” in AIP Conference
Proceedings, vol. 2184, no. 1. AIP Publishing LLC, 2019, p. 060060.

[24] D. Wang and C. B. Low, “Modeling and analysis of skidding and
slipping in wheeled mobile robots: Control design perspective,” IEEE
Transactions on Robotics, vol. 24, no. 3, pp. 676–687, 2008.

[25] N. Othman, U. Reif, A. Ramli, and M. Misro, “Manoeuvring speed
estimation of a lane-change system using geometric hermite interpola-
tion,” Ain Shams Engineering Journal, vol. 12, no. 4, pp. 4015–4021,
2021.

[26] Y. Zhang, P. Ye, J. Wu, and H. Zhang, “An optimal curvature-smooth
transition algorithm with axis jerk limitations along linear segments,”
The International Journal of Advanced Manufacturing Technology,
vol. 95, pp. 875–888, 2018.

Engineering Letters

Volume 32, Issue 1, January 2024, Pages 160-167

__

