
 

  

Abstract—Aiming at the problems of low accuracy, false 

detection, missed detection, and low real-time detection of 

current traffic sign detection, this paper proposes an improved 

traffic sign detection algorithm based on the YOLOv8s 

algorithm. Firstly, this paper proposes a double-layer semi-

composite backbone network structure (DSCB), which uses the 

auxiliary backbone network to extract features, and then 

transmits the extracted features to the backbone network to 

enhance the ability of the backbone network to extract target 

features. At the same time, the deformable convolution is 

integrated into the DC2f structure of the auxiliary backbone 

network to enhance the generalization performance of the 

network. Secondly, the coordinate attention mechanism is used 

after the SPPF layer. The coordinate attention mechanism can 

better retain the coordinate position information of small 

targets, reduce the miss rate of the model, and increase 

detection accuracy. Finally, this paper introduces a new CAB 

module to learn and aggregate the output of each layer of the 

feature pyramid for global spatial context to enhance the 

feature representation ability further. The experimental results 

show that the improved algorithm achieves 90.51% detection 

accuracy, 82.00% recall rate, 89.51% mAP@0.5 on the 

TT100K dataset, and the FPS reaches 106. Compared with the 

original algorithm model, the detection accuracy is increased 

by 2.27%, and the recall rate is increased by 2.48%. mAP@0.5 

is increased by 2.01%, and FPS is increased by 1. The 

improved traffic sign detection algorithm meets the 

requirements in detection accuracy and real-time detection. 

 
Index Terms—traffic sign detection, YOLOv8s, deformable 

convolution, coordinate attention mechanism, feature pyramid 

I. INTRODUCTION 

n recent years, due to the rapid development of Intelligent 

Transportation Systems (ITS), traffic sign detection 

technology has been playing an increasingly vital role in 

intelligent traffic safety. With the continuous increase in 

traffic volume and the growing prominence of road traffic 

safety issues, traffic sign detection accuracy and real-time 

capability have become critically important. As a result, 

traffic sign detection technology has become one of the 

focal points of research in traffic safety [1-6].  

The primary objective of traffic sign detection technology 

is to accurately identify traffic signs on road surfaces within 

complex road traffic environments. Traditional methods of 
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traffic sign detection typically rely on image processing 

techniques such as template matching and feature extraction. 

However, these methods have numerous areas for 

improvement, such as sensitivity to lighting conditions, 

weather, and viewing angles. They also require significant 

manual intervention and parameter adjustments, resulting in 

poor robustness. Consequently, new algorithms for traffic 

sign detection continue to emerge, aiming to address these 

limitations. 

As time has progressed, deep learning techniques have 

gradually found widespread applications in computer vision, 

effectively enhancing the accuracy and robustness of traffic 

sign detection. Among these techniques, object detection 

algorithms based on Convolutional Neural Networks (CNNs) 

[7], such as Faster R-CNN [8], SSD [9], FCOS [10], and 

YOLO [11], have emerged as mainstream approaches for 

traffic sign detection. In particular, the YOLO (You Only 

Look Once) algorithm has gained significant attention and 

application in recent years due to its high speed and 

accuracy characteristics. However, directly applying these 

methods to traffic sign detection often yields less 

satisfactory results in practical scenarios. This is because 

onboard mobile terminals exhibit low detection accuracy for 

objects of varying scales, and achieving real-time 

performance while meeting detection requirements remains 

challenging. 

YOLOv8, an algorithm open-sourced by Ultralytics in 

January 2023, builds upon the successful foundation of 

previous YOLO series iteration. It introduces new features 

and improvements aimed at further enhancing performance 

and flexibility. Among its various models, YOLOv8s 

effectively balances detection precision and real-time 

capability. This advantage positions YOLOv8s favorably for 

tasks demanding both high accuracy and real-time 

performance, such as traffic sign detection. Therefore, this 

paper proposes an enhanced traffic sign detection algorithm 

based on the YOLOv8s architecture. As the latest iteration 

in the YOLO series, the YOLOv8 algorithm exhibits 

significant improvements in speed and accuracy compared 

to its predecessors. Despite having fewer parameters, it 

maintains enhanced precision, effectively reconciling the 

trade-off between real-time responsiveness and detection 

accuracy. Moreover, the algorithm boasts high versatility 

and scalability, accommodating many complex traffic 

environments and signage. The primary contributions of this 

paper are as follows: 

First and foremost, this paper introduces a novel dual-

layer semi-composite backbone network structure built upon 

the foundation of YOLOv8s backbone. The proposed 

backbone network structure comprises a primary backbone 

and an auxiliary backbone. Recognizing that including an 
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auxiliary backbone would inevitably increase the parameter 

count and potentially degrade real-time performance, we opt 

to utilize only half of the primary backbone's structure for 

the auxiliary backbone. Addressing the noteworthy 

contribution of the C2f module within YOLOv8s, this paper 

replaces standard convolutions with deformable 

convolutions within the module, enhancing its network 

generalization performance and facilitating the detection of 

occluded objects. For specific implementation details, please 

refer to Chapter Three. 

Furthermore, this paper introduces a novel Context 

Aggregation Block (CAB). The central concept of this 

module is rooted in the idea that even after the aggregation 

of feature maps across different levels by the backbone 

network, the feature pyramid still retains spatial local 

information. The CAB module learns the global spatial 

context of each level's output in the feature pyramid to 

enhance features more effectively. This approach enables 

the fusion of local and global features in a manner that 

reduces information ambiguity, thereby achieving a 

balanced integration. 

Continuing to address the issue of losing precise location 

coordinate information for small objects as the network 

deepens, this paper introduces a Coordinate Attention 

Mechanism. This attention mechanism encodes the precise 

positional information of targets through a sequence of 

convolutional operations along the image's height and width 

directions. This process yields feature maps imbued with 

width and height dimensions attention weights. 

Finally, a comprehensive summary and analysis of the 

research findings will be presented, followed by exploring 

the practical application value and prospects of the 

optimized YOLOv8s algorithm in real-world traffic sign 

detection. The significance of this study lies in its 

optimization and enhancement of the YOLOv8s algorithm, 

leading to improved accuracy and robustness in traffic sign 

detection. This advancement contributes to the technical 

support required for intelligent transportation systems' 

secure and efficient operation. Moreover, the methods and 

insights gained from this research can also serve as a 

reference and inspiration for addressing object detection 

challenges in other domains. The remaining structure of this 

paper is outlined as follows: Section Two introduces 

traditional traffic sign detection algorithms, and deep 

learning-based traffic sign detection algorithms and provides 

an overview of the YOLOv8s algorithm. Section Three 

elaborates on the proposed methodology, detailing the 

development of a real-time and efficient traffic sign 

detection approach. Experimental results and analysis are 

presented in Section Four. Lastly, Section Five offers 

concluding remarks. 

II. RELATED WORK 

As a significant branch of object detection, traffic sign 

detection has emerged as a research hotspot in computer 

vision in recent years. Research in traffic sign detection can 

be divided into traditional and deep learning-based methods. 

Traditional techniques for traffic sign detection can be 

categorized into color-based, shape-based, and machine-

learning-based methods. Color and shape-based detection 

techniques manually extract features from images based on 

specific color and shape characteristics. Algorithms such as 

Histograms of Oriented Gradient (HOG) and Scale Invariant 

Feature Transform (SIFT) are utilized to crop and extract 

traffic signs from images, detecting them through template 

matching mechanisms. Reference [12] proposed a traffic 

sign detection approach based on HOG features and Support 

Vector Machines (SVM). This method initially segments 

traffic sign images using color thresholds to eliminate 

substantial interference. Then, the Max Stable Extremal 

Region algorithm is employed to detect connected regions. 

Reference [13] introduced a color-based segmentation 

model for traffic sign detection. It transforms RGB color 

ranges into HIS and detects red, yellow, blue, and green 

colors for traffic sign identification. The Region of Interest 

(ROI) with extracted features using Histograms of Oriented 

Gradient (HOG) or Pyramid HOG (PHOG) is subsequently 

classified using Support Vector Machines, ultimately 

leading to traffic sign detection. However, color and shape-

based methods are susceptible to limitations, particularly the 

influence of lighting, weather conditions, and other 

environmental factors. 

With the advancement of deep learning, object detection 

algorithms have matured over time, categorizing mainstream 

object detection methods into two main approaches: one-

stage and two-stage detection. Two-stage object detection 

algorithms follow a process where the network first 

proposes regions of interest, followed by object detection 

carried out by classification and localization networks. 

While these algorithms tend to achieve higher detection 

accuracy, their real-time performance is often compromised. 

Representative algorithms in this category include SPP-Net, 

Faster R-CNN, and R-FCN. In contrast, one-stage object 

detection algorithms accomplish end-to-end detection 

without the need to pre-extract regions of interest. These 

algorithms directly yield object classification probabilities 

and bounding box coordinates during detection. While 

typically offering lower detection accuracy than two-stage 

methods, one-stage algorithms excel in real-time 

performance. Noteworthy examples within this category 

include SSD (Single Shot Multibox Detector), YOLOv3, 

YOLOv5, and YOLOv7 [14]. 

In recent years, numerous researchers have delved into 

deep learning-based traffic sign detection. Reference [15] 

introduces an improved feature pyramid model called AF-

FPN, which employs an Adaptive Attention Module (AAM) 

and Feature Enhancement Module (FEM) to mitigate 

information loss during feature map generation, thereby 

enhancing the expressiveness of the feature pyramid. 

Reference [16], addressing low detection accuracy and data 

collection issues in traffic sign detection, proposes an 

enhanced Sparse R-CNN by integrating the Coordinate 

Attention Mechanism and ResNeSt, constructing a feature 

pyramid to rectify the backbone and improve detection 

precision. Reference [17] tackles the lack of high-level 

spatial information for minor traffic signs. It introduces the 

Parallel Deformable Convolution Module (PDCM), 

maintaining the integrity of abstract information through 

symmetric branches to enhance feature extraction 

capabilities. These improvements aim to enhance detection 

accuracy while maintaining real-time performance. 

However, challenges such as missed detections, false 
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positives, and further enhancement of multi-scale feature 

fusion persist, particularly for small-sized traffic signs. 

Addressing the earlier challenges in traffic sign detection, 

this paper opts to study the latest model in the YOLO series, 

YOLOv8, as the foundational algorithm. YOLOv8 offers 

five versions: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, 

and YOLOv8x, categorized based on model size. Among 

these, YOLOv8s is a lightweight model, but there is room 

for further improvement in detection accuracy. Hence, this 

paper focuses on enhancing the YOLOv8s version to boost 

detection precision. 

Like YOLOv5, YOLOv8 comprises three main 

components: the backbone network, the neck network, and 

the detection head. The backbone network continues to 

employ the Conceptually Simple and Practical (CSP) 

architecture. However, unlike YOLOv5, YOLOv8 replaces 

the C3 module found in YOLOv5 with the C2f module, 

drawing inspiration from the ELAN concept in YOLOv7. 

This adaptation enables YOLOv8 to achieve richer gradient 

flow information while maintaining a lightweight design. 

YOLOv8 utilizes a PAN-FPN (Path et al. with Feature 

Pyramid Network) structure for the neck network. The 

backbone network performs downsampling operations, 

followed by two cross-layer fusion connections between the 

upsampled and downsampled branches. This enhances the 

fusion and utilization of feature information across various 

scales. 

Notably, YOLOv8 introduces significant improvements 

in the detection head. It employs a decoupled head structure, 

separating the classification and detection heads while 

discarding the objectness branch. Only the classification and 

regression branches are retained, representing a departure 

from previous designs. By integrating these modifications, 

YOLOv8 aims to achieve enhanced detection performance 

while maintaining lightweight characteristics, offering 

advancements over its predecessors. 

Regarding the sample matching strategy, YOLOv8 

departs from the Anchor-Based approach and instead adopts 

an Anchor-Free methodology. This shift is motivated by the 

fact that traditional Anchor-Based methods can lead to 

significant computational overhead during training and 

require extensive manual tuning of hyperparameters. In 

contrast, the Anchor-Free approach simplifies the 

determination of positive and negative samples, achieving 

and surpassing the accuracy of Anchor-Based methods 

while offering faster processing speeds. YOLOv8 employs 

the Task-Optimal Odd Sampling (TOOD) strategy for 

allocating positive and negative samples. This approach 

aligns the task and distribution of positive samples based on 

weighted scores for classification and regression, as 

illustrated by the following equation: 

 t s u =   (1) 

In the YOLOv8 algorithm, s  represents the model's 

classification score, and u  signifies the Intersection over 

Union (IOU) between the predicted box and the ground truth 

box. The YOLOv8 algorithm incorporates both a 

classification branch and a regression branch. In the context 

of the classification branch, the Binary Cross-Entropy (BCE) 

loss is employed, and it is formulated as follows:  

 ( ) ( )log 1 log 1n n n n nLoss w y x y x= −  + − −    (2) 

Where w  represents weights, ny  denotes ground truth 

values, and nx  signifies algorithm-predicted values, the 

regression branch employs the Distribution Focal Loss (DFL) 

function and the Complete Intersection over Union (CIOU) 

loss function. The primary objective of the DFL loss 

function is to model the positional distribution of bounding 

boxes as a Gaussian distribution. This modeling facilitates 

the network's rapid attention toward positions closely 

aligned with the target location. The formulation of the DFL 

loss function is presented as follows: 
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The CIOU (Complete Intersection over Union) introduces 

an aspect ratio term to the DIOU (Distance-IoU) metric, 

with its specific definition as follows: 
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Where d  represents the distance between the centers of 

the predicted and ground truth bounding boxes, and c  

corresponds to the diagonal distance of the minimum 

enclosing rectangle. v  stands for the similarity factor based 

on aspect ratio, and its definition is provided below: 
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Where bW  is the width of the true box, bH  is the height 

of the true box, pW  is the width of the predicted box, and 

pH  is the height of the predicted box. 

III. IMPROVED MODEL 

In Chapter 3, this paper presents a detailed exposition of 

the modules introduced. Section 3.1 outlines the overall 

structure of the proposed model. Section 3.2 delves into the 

newly introduced dual-layer semi-composite backbone 

network structure and its variants. Subsequently, Section 3.3 

elaborates on the Context Aggregation Block (CAB) 

introduced in this study. Lastly, Section 3.4 provides insight 

into the introduced Coordinate Attention Mechanism. 

A. Improved YOLOv8s Algorithm Model 

This section presents the enhanced structure of the 

YOLOv8s algorithm proposed in this paper, as depicted in 

Fig. 1. Firstly, an improvement is made to the backbone 

network of YOLOv8s by introducing a dual-layer semi-

composite backbone network structure. This structure 

comprises a leading backbone network and an auxiliary 

backbone network. Both components perform feature 

extraction on the input image, with the auxiliary backbone 

network transmitting the extracted features to the leading 

backbone network for subsequent detection tasks. 

Furthermore, a Coordinate Attention mechanism (CA) is
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Fig. 1. The improved YOLOv8s structure diagram

introduced after the Spatial Pyramid Pooling Fusion (SPPF) 

layer. This is motivated by the ability of the Coordinate 

Attention mechanism to mitigate the issue of losing 

positional information for small objects in object detection. 

Moreover, the Coordinate Attention mechanism is designed 

as a lightweight attention mechanism, minimizing the 

additional computational burden on the network model. 

Lastly, a Context Aggregation Block (CAB) is introduced 

before each detection head. This module enhances features 

by learning the global spatial context from the outputs of 

each layer in the feature pyramid. This strategy effectively 

fuses local and global features while reducing information 

confusion. 

B. Dual-Layer Semi-Composite Backbone Network Structure  

The strength of convolutional neural networks (CNNs) in 

feature extraction is closely intertwined with the structure of 

the backbone network. Therefore, a robust backbone 

network often yields promising results for various research 

tasks. As long as the backbone network extracts sufficient 

features and the loss of information remains within an 

acceptable range, the network's performance can be 

significantly enhanced. YOLOv8s utilizes the CSPDarkNet 

structure as its backbone network. This paper proposes a 

dual-layer semi-composite backbone network structure 

based on the CSPDarkNet architecture. The specific 

implementation details are outlined as follows. 

The Dual-Layer Semi-Composite Backbone (DSCB) 

network consists of a leading backbone network structure 

and an auxiliary backbone network. The auxiliary backbone 

network is composed of three convolutional layers and two 

DC2f modules. The difference between DC2f and C2f lies 

in introducing deformable convolutions in the C2f module. 

Deformable convolutions introduce position offsets within 

the receptive field, which are learnable. This enables the 

extracted features during the convolution process to better 

align with the actual shape of objects, regardless of their 

deformation. The convolutional region consistently covers 

the surroundings of the object. The deformable convolution 

is illustrated in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2. Schematic of deformable convolutions 

For standard convolution, the computation can be 

generally expressed as follows: sample a set of pixels from 

the input feature map {( 1, 1),( 1,0)..., (1,1)}R = − − − , using 

convolution to calculate the sampling results and obtain the 

results after convolution. As shown in Equation 7. Where: 

np  denotes the position in R  and w  denotes the 

convolution weight. 

 0 0( ) ( ) ( )
n

n n

p R

y p w p x p p


= +  (7) 

For deformable convolution, it does not directly change 

the shape of the convolution kernel, but modifies the 

sampling result, to indirectly achieve the effect of changing 

the shape of the convolution kernel. In deformable 

convolution, np  is used to augment a point np  on the 

feature map, where { | 1,2,...,np n N = }. The deformable 

convolution is calculated as follows. 

 0 0( ) ( ) ( )
n

n n n

p R

y p w p x p p p


= + +   (8) 

The auxiliary backbone network first extracts features 

using two convolutional modules. The extracted features are 

then fed into the DC2f module, where another convolutional 

operation occurs. Afterward, the extracted features are 

passed through the final DC2f module, completing the entire
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Fig. 3. First Feature Fusion Structure in Double-Layer Semi-Composite Backbone Network (DSCB1) 

 
Fig. 4. Second Feature Fusion Structure in Double-layer Semi-composite Backbone Network (DSCB2) 

operation of the auxiliary backbone network. Structural 

differences exist between the auxiliary backbone network 

and the leading backbone network. Since adding an 

auxiliary backbone network would increase the parameter 

count and computational complexity, the auxiliary backbone 

network is designed to have only half the structure of the 

leading backbone network. This design ensures no 

significant increase in parameters or computational 

complexity. The proposed dual-layer semi-composite 

backbone network structure is illustrated in Fig. 3. 

Once the auxiliary backbone network structure is 

designed, this paper proposes two methods for feature fusion 

with the leading backbone network. The first method 

involves feature fusion among corresponding layers through 

high-level connections, while the second method employs 

feature fusion among corresponding layers through peer-

level connections. Among these, the first feature fusion 

method is illustrated in Fig. 3. In this method, the output of 

the first convolutional layer of the auxiliary backbone 

network is passed to the leading backbone network before 

its first convolutional layer. The main backbone network 

incorporates the features extracted by the auxiliary backbone 

network from the first layer before its initial convolution, 

thus obtaining features of varying scales during the feature 

extraction process. Like the preceding step, the auxiliary 

backbone network continues its subsequent feature 

extraction tasks and submits the features it extracts to the 

leading backbone network at the same layer before the 

corresponding feature extraction operation takes place. This 

procedure enhances the feature extraction capability of the 

leading backbone network. The second feature fusion 

method involves peer-level connections among 

corresponding layers, as depicted in Fig. 4. The outputs of 

each layer from both the auxiliary backbone network and the 

leading backbone network are aligned. Within the same 

layers, the features extracted by the auxiliary backbone 

network are fused with those of the leading backbone 

network. The input of the subsequent layer of the leading 

backbone network will carry features extracted by the 

auxiliary backbone network and those obtained by the 

upper-level main backbone network. The outputs of each 

subsequent layer of the auxiliary backbone network will be 

fused with the aligned outputs of the main backbone 

network, thereby augmenting the overall feature extraction 

capability of the entire network. 

C. Context Aggregation Block 

The leading backbone network is responsible for 

extracting crucial features from input images, while the 

feature pyramid structure of the neck network aggregates 

feature mappings of varying levels. However, the feature 

pyramid structure still incorporates certain spatial local 

information. Therefore, this paper introduces contextual 

aggregation blocks to merge global contextual information 

for each layer, further enhancing the capability of 

representing features. 

Following the neck network, this paper introduces 

contextual aggregation blocks, with each layer employing a 

residual structure. The detailed design of this module is 

illustrated in Fig. 5. Within each block, per-pixel spatial 

context is aggregated using Equation 9. Here, iP  and iQ  

represent the input and output feature mappings of the i-th 

layer in the feature pyramid, each containing iN  pixels. 

Indices  , 1, ij m N  denote the pixel positions, while kw  

and vw  stand for linear transformation matrices used for 
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projecting the feature mappings. In practice, a 1x1 matrix is 

employed for feature mapping operations. 
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 (9) 

As depicted in Fig. 5, the feature pyramid structure within 

the neck network aggregates features from different levels 

of the input image. After this aggregation process, three 

branches are generated to feed into the detection head for 

the final objective of target detection. 

 
Fig. 5. context aggregation block 

Due to each branch carrying a certain amount of spatial 

contextual information, we introduce contextual aggregation 

blocks after each branch. For each branch, this paper 

incorporates residual connections to ensure the integrity of 

feature information. The feature maps produced by each 

branch initially undergo a 1x1 convolutional feature 

mapping operation within the contextual aggregation block. 

Following the 1x1 convolution, a Sigmoid operation is 

applied for the first branch. The second branch begins with a 

1x1 convolutional feature mapping operation and then fuses 

its output with the third branch. The third branch executes a 

1x1 convolutional feature mapping operation and 

subsequently feeds into the Softmax function. This output is 

merged with the output of the second branch. After the 

feature fusion of the two branches, the output is passed 

through another 1x1 convolutional block. This output is then 

element-wise multiplied (Hadamard product) with the 

output of the first branch. The result of the Hadamard 

product is subjected to a residual connection operation with 

the initial input. This sequence outlines the execution 

process of the contextual aggregation block described in the 

subsequent sections. 

D. Coordinate Attention Mechanism 

The attention mechanism originates from the 

phenomenon of attention in the human visual system, 

wherein humans automatically focus on a specific area 

while ignoring others when observing objects. Currently 

popular attention mechanisms include the Channel Attention 

Mechanism (SE), the CBAM Attention Mechanism which 

combines channel attention with spatial attention, and the 

Spatial Attention mechanism (SA) that involves channel 

shuffling. The integration of these attention mechanisms, to 

varying degrees, into object detection models often leads to 

improved network performance. However, when it comes to 

small objects, these mechanisms tend to overlook positional 

information. The Coordinate Attention Mechanism (CA) is 

an improved version built upon the Channel Attention 

Mechanism (SE). It incorporates positional information to 

capture spatial structure, thus making it a lightweight 

attention approach with lower module complexity compared 

to SE and CBAM. By integrating positional information 

with channel information, it enhances the feature 

representation of mobile networks. The structure of the 

Coordinate Attention Mechanism is depicted in Fig. 6. 

 
Fig. 6. coordinate attention structure map 

The Coordinate Attention Mechanism achieves precise 

encoding of positional information for channel relationships 

and long-range dependencies through Coordinate 

Information Embedding and Coordinate Attention 

Generation. During the Coordinate Information Embedding 

process, global pooling methods are typically employed to 

encode global spatial information for channel attention. 

However, such methods often compress global spatial 

information into channel descriptions, making it challenging 

to preserve the positional information of targets. To address 

this, the Coordinate Information Embedding process 

decomposes the global pooling, as shown in Equation 10. 

Here, cZ  represents the output associated with the c-th 

channel, and the input x  comes directly from a 

convolutional layer with a fixed kernel size. This 

decomposition helps retain positional information, allowing 

the Coordinate Attention Mechanism to encode channel 

relationships and long-range dependencies more accurately. 
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The coordinate information embedding process 

specifically, given an input x , each channel is first encoded 

along the horizontal and vertical coordinate directions, 

respectively, using a pooling kernel of size ( ),1h  or ( )1,w . 
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BatchNorm+Non-linear

Conv2d Conv2d

Re-weight

Sigmoid Sigmoid

Input

C×H×W

C×1×W

C/r×1×(W+H)
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C×1×W

C×1×W

C×H×1

C×H×1

C×H×1
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Therefore, the output of channel c  with height h  can be 

expressed as follows: 

 
0

1
( ) ( , )h

c c

i W

z h x h i
W  

=   (11) 

Similarly, the output of the c  channel of width w  can be 

expressed as follows: 

 
0

1
( ) ( , )w

c c

j H

z w x j w
H  

=   (12) 

The transformations aggregate feature information along 

two spatial directions, producing directionally aware feature 

maps. These transformations enable the attention module to 

capture long-range dependencies along one spatial direction 

while preserving precise positional information along the 

other spatial direction. This capability aids the network in 

accurately localizing the regions of interest within the input, 

contributing to improved object localization. 

Continuing with the Coordinate Attention Generation 

process, the next step involves concatenating the feature 

maps from the two directions, corresponding to the width 

and height of the global receptive field. These concatenated 

feature maps are then passed through a shared convolutional 

module with a 1x1 kernel. The dimensionality of the feature 

maps is reduced to the original value /C r . Subsequently, 

the batch-normalized feature map 1F  is fed into the Sigmoid 

activation function to obtain the feature map f  in the form 

of 1 ( ) /W H C r +  , as shown in the following equation: 

 1( ([ , ]))h wf F z z=   (13) 

Continuing, the feature map f  is further processed by 

performing 1x1 convolution separately along the original 

height and width dimensions. This results in two feature 

maps, hF  and wF , both having the same number of 

channels as the original feature map. After passing through 

the Sigmoid activation function, attention weights 
hg  and 

wg  are obtained for the height and width directions, 

respectively. The following formulas describe this process: 

 ( ( ))h h

hg F f=   (14) 

 ( ( ))w w

wg F f=   (15) 

After the computations outlined above, attention weights 
hg  for the height direction and 

wg  for the width direction 

will be obtained. Finally, these attention weights are used to 

perform element-wise multiplication on the original feature 

map, resulting in the final feature map that carries attention 

weights in both the width and height directions. The formula 

for this process is as follows: 

 ( , ) ( , ) ( ) ( )h w

c c c cy i j x i j g i g j=    (16) 

IV. EXPERIMENTS AND ANALYSIS 

A. Introduction to Database 

To validate the effectiveness of the proposed 

improvements to the YOLOv8s algorithm, this study utilizes 

the Chinese Traffic Sign dataset, TT100K, as its 

experimental dataset. TT100K is a dataset curated and 

released by a collaborative effort between Tsinghua 

University and Tencent's Joint Laboratory. The dataset is 

sourced from six high-resolution wide-angle digital cameras 

and comprises panoramic images captured in various cities 

across China. The lighting conditions and weather at the 

capture locations vary significantly. The TT100K dataset 

encompasses a comprehensive range of traffic sign classes 

featuring 221 distinct categories. However, the dataset 

exhibits class imbalance due to variations in capturing 

difficulty. The dataset was cleaned to address this, and 45 

traffic sign classes with instance counts greater than 100 

were selected. The training set comprises 7,198 images, 

while the testing set comprises 1,850 images. 

B. Experimental Environment and Parameter Configuration 

The original images in the TT100K dataset have a size of 

2048x2048. Due to the high resolution and large dimensions 

of these images, the YOLOv8s algorithm resizes the input 

images uniformly to 640x640 before training. Additionally, 

data augmentation is performed using the Mosaic technique. 

The experimental setup and parameter configuration are 

presented in Table Ⅰ. 

TABLE Ⅰ 
EXPERIMENTAL SETUP 

Environment Configuration 

Operation platform Windows10 

CUDA v11.3 

Batch size 32 

Initial learning rate 0.001 

Momentum 0.937 

Pytorch v11.3 

GPU RTX4070ti 

C. Evaluation Index 

To visually demonstrate the effectiveness of the 

improvements made to the YOLOv8s algorithm in this 

paper, several evaluation metrics are chosen to assess the 

algorithm's performance. These metrics include precision, 

recall, mean average precision (mAP), frames per second 

(FPS), and the Precision-Recall curve. Precision refers to the 

probability of correct detections among all positive samples, 

providing a direct measure of the model's false positive rate. 

The recall represents the probability of correctly detecting 

all positive samples among the total positive samples, 

offering insight into the model's false negative rate. Mean 

Average Precision (mAP) is the most crucial performance 

metric, encapsulating the model's detection performance 

across all categories. The calculation expression for mAP is 

as follows: 

 
1

1
( )

n

j

mAP AP j
n =

=   (17) 

Where n =45, represents the 45 categories within the 

dataset employed in this paper. AP  refers to the average 

precision for a specific category within the dataset. This 

configuration allows for a comprehensive evaluation of the 

algorithm's performance across the diverse range of 45 

classes present in the dataset. 

D. Experimental Results and Analysis 

In the Precision-Recall (P-R) curve, P represents 

precision, and R represents recall. As a convention, recall is 

typically assigned to the horizontal axis, while precision is 

placed on the vertical axis. The P-R curve illustrates the 

relationship between precision and recall, showcasing how 
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(a) YOLOv8s-P-R curve before improvement 

 
(b) YOLOv8s-P-R curve after improvement 

Fig. 7. P-R curve comparison of YOLOv8s algorithm on TT100K dataset before and after improvement 

they vary concerning each other. This relationship is 

depicted in Fig. 7, which presents the Precision-Recall curve 

plotted after conducting experiments on the TT100K dataset 

[18], as discussed in this paper. 

In the experiment results on the TT100K dataset, Fig. 7(a) 

shows the P-R curve of the original YOLO8s algorithm, 

while Fig.7(b) shows the P-R curve of the improved 

YOLO8s algorithm. The blue curve represents the 

mAP@0.5 for all categories. In Fig. 7(a), the mAP@0.5 of 

the blue curve is 87.50%, while in Fig 7(b), it is 89.51%. A 

larger area under the curve indicates better model 

performance. The area under the blue curve in Fig. 7(a) is 

smaller than that in Fig. 7(b), which demonstrates the 

effectiveness of the improvements made to the YOLOv8s 

algorithm in this paper. 

E. Ablation Study 

In this paper, three improvements were made to the 

YOLOv8s algorithm. To demonstrate the positive effects of 

each module on the original algorithm, the following 

ablation experiments were conducted: 

(1) Only the proposed dual-layer semi-composite 

backbone network was used in place of the backbone 

network in YOLOv8s. 

(2) Only the coordinate attention mechanism was added 

after the SPPF layer of the original algorithm. 

(3) Only the context aggregation block was added to the 

Neck part of the original algorithm. 

(4) The dual-layer semi-composite backbone network, 

coordinate attention mechanism, and context aggregation 

block were applied to the YOLOv8s algorithm altogether, 

validating the effectiveness of each module and the overall 

effectiveness of applying all modules to the original network. 

The experimental results are presented in Table Ⅱ. The 

ablation experiment data in Table Ⅱ demonstrates the 

effectiveness of the improvements made to the original 

algorithm in this paper.  

The proposed Dual-layer Semi-Composite Backbone 

(DSCB) structure improves mAP@0.5 by 1.5% while only 

adding 0.7M parameters, increasing 9.3G FLOPs, and 

boosting FPS by 4. Integrating the Coordinate Attention 

(CA) mechanism into the original algorithm increases 

mAP@0.5 by 0.92%, adds 10.2M parameters, increases 

53.5G FLOPs, and decreases FPS by 6. Incorporating the 

Context Aggregation Block (CAB) into the original 

algorithm increases mAP@0.5 by 0.51%, adds 0.7M 

parameters, increases 0.9G FLOPs, and decreases FPS by 1. 

From the experimental data alone, it can be observed that 

adding the CA attention mechanism significantly increases 

model complexity, leading to a decrease in FPS and a slight 

increase in mAP.  

 TABLE Ⅱ 
ABLATION EXPERIMENT OF YOLOV8S ALGORITHM ON TT100K DATASET 

Models DSCB CA CAB P (%) R (%) mAP@0.5 (%) #Params(M) FLOPs(G) FPS 

YOLOv8s × × × 88.24 79.52 87.50 11.1 28.5 105 

YOLOv8s+ 

DSCB 
√ × × 89.38 80.60 89.00 11.8 37.8 109 

YOLOv8s+ 
CA 

× √ × 86.01 81.60 88.42 22.3 81.8 99 

YOLOv8s+ 
CAB 

× × √ 88.17 81.44 88.01 11.8 29.4 104 

Ours √ √ √ 90.51 82.00 89.51 12.5 38.7 106 
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Fig. 8. Comparison of heatmaps of different improved modules 

However, when the three proposed improvement modules 

are combined and applied to the original algorithm, the 

adverse effects caused by the CA attention mechanism are 

mitigated, thanks to the design of the DSCB structure. The 

DSCB structure has fewer parameters and lower complexity 

in the model's shallow stages compared to the original 

model's detection stage.  

Ultimately, this paper achieves a 2.01% improvement in 

mAP@0.5 over the original algorithm. Although there is a 

slight increase in parameters and FLOPs, it does not affect 

the real-time detection performance of the model. On the 

contrary, the FPS is ultimately increased by 1. The proposed 

improvements not only enhance the detection accuracy of 

the model but also ensure real-time detection performance, 

striking a balance between detection accuracy and real-time 

capability. 

As shown in Fig. 8, this paper incorporates different 

improvement modules into the baseline model. Four images 

were randomly selected, and the effects of integrating the 

original algorithm with each module were visualized using 

heatmaps. It can be observed that without integrating any 

module, the baseline model extracts features more broadly 

without a specific focus on traffic signs. However, when the 

DSCB module is integrated, the model focuses on traffic 

signs. The model further emphasizes the traffic signs by 

integrating the CA attention mechanism. Similarly, 

incorporating the CAB module produces results superior to 

the baseline model.  

F. Performance Comparison of The Two DSCB Modules 

In this paper, a comparative experiment was conducted on 

the two feature fusion methods within the DSCB module, as 

shown in Table Ⅲ. The performance comparison between 

the two DSCB structures is presented. DSCB1 shows a 

slightly lower detection accuracy compared to DSCB2. 

However, considering the overall performance in terms of 

recall rate, mAP@0.5, parameter count, and FPS, DSCB1 

outperforms DSCB2. Based on the experimental results 

mentioned above, although the DSCB2 structure shows 

improvement compared to the original algorithm, this paper 

selects the DSCB1 structure, which demonstrates better 

performance, for further experiments. We can see from 

Table Ⅲ that the performance of DSCB1 structure is 

significantly better than that of DSCB2 structure. 

TABLE Ⅲ 

PERFORMANCE COMPARISON OF TWO DIFFERENT DOUBLE-LAYER SEMI-COMPOSITE BACKBONE NETWORKS 

Network Structure P(%) R(%) mAP@0.5(%) #Params(M) FLOPs(G) FPS 

DSCB1 89.38 80.60 89.00 11.8 37.8 109 

DSCB2 90.40 78.41 88.62 12.2 36.4 100 
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TABLE Ⅳ 
PERFORMANCE COMPARISON WITH MAINSTREAM OBJECT DETECTION ALGORITHMS 

Model Name P(%) R(%) mAP(%) # Parameters (M) FLOPs(G) FPS 

YOLOv3 73.36 72.14 73.79 61.6 77.7 50 

YOLOv5s 82.21 77.31 83.35 7.1 16.1 136 

Faster R-CNN 75.54  75.20 74.58 41.2 91.1 24 

YOLOv4-tiny 76.62 75.43 76.80 5.9 6.9 131 

TRD-YOLO 86.30  81.19 86.50 12.6 26.0 73 

YOLOv7-tiny 71.12 73.23 72.82 6.2 13.8 142 

YOLOv8s 88.24 79.52 87.50 11.1 28.5 105 

Ours 90.51  82.00 89.51 12.5 38.7 106 

G. Compared with the Performance of Advanced Object 

Detection Algorithms 

To demonstrate the advantages of the proposed method in 

traffic sign detection algorithms, this paper validated the 

proposed algorithm on the TT100K dataset. In the 

evaluation, a comparison was made with YOLOv3 [19], 

YOLOv4-tiny [20], YOLOv5s, Fast-RCNN, TRD-YOLO 

[21], YOLOX-s [22], and YOLOv7-tiny algorithms. The 

performance of the models was evaluated based on detection 

accuracy, recall rate, model parameter count, floating-point 

operations per second (FLOPs), mAP@0.5, and frames per 

second (FPS). The specific results can be found in Table Ⅳ. 

From the data in Table Ⅳ, it can be observed that the 

proposed model outperforms other classical algorithms in 

terms of precision, recall rate, and mAP@0.5 evaluation 

metrics. Although the proposed model has a higher 

parameter count than YOLOv8s by 1.4M and an increase of 

10.2G in FLOPs compared to YOLOv8s, the proposed 

model achieves one more FPS in terms of real-time 

performance evaluation compared to YOLOv8s. These 

experimental results indicate that even with a slight increase 

in model parameters and computational complexity, the 

real-time detection capability of the model may not 

necessarily be affected and may even improve slightly. 

Comparing with other mainstream algorithms, although the 

proposed model has lower FPS than YOLOv5s, YOLOv4-

tiny, and YOLOv7-tiny, its detection accuracy is superior to 

these mentioned algorithms. 

H. Detection on Random Images 

In Fig. 9, the detection results of YOLOv8s and the 

improved version of YOLOv8s on the TT100K dataset are 

presented. The top three images in Fig. 9 represent the 

detection results of the YOLOv8s algorithm, while the 

bottom three images represent the detection results of the 

improved version of the YOLOv8s algorithm. From the 

comparative images, we can observe that the improved 

version of the YOLOv8s algorithm demonstrates superior 

detection performance compared to the original YOLOv8s 

algorithm. 

   

   
Fig. 9. Comparison of the detection effect of YOLOv8s and the improved YOLOv8s algorithm 
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V. CONCLUSION 

In this paper, we propose an improved traffic sign 

detection algorithm based on the YOLOv8s algorithm, 

which outperforms current mainstream object detection 

algorithms. The key improvements in this paper are as 

follows:  We introduce a new Dual-layer Semi-Composite 

Backbone (DSCB) structure that enhances the capability of 

the backbone network to extract target features. This 

structure also reduces the complexity of the model's 

backbone network to some extent, resulting in improved 

detection performance and real-time capability. After the 

SPPF layer of YOLOv8s, we incorporate a Coordinate 

Attention mechanism to compensate for the loss of 

coordinate position information in feature extraction, 

particularly for small objects. This attention mechanism 

helps the model better focus on and localize traffic signs. 

We propose a new Context Aggregation Block (CAB) 

module to enhance feature representation. This module 

leverages global spatial context learning and aggregation at 

each level of the feature pyramid, further improving the 

detection performance and robustness of the model. 

Through these improvements, our traffic sign detection 

algorithm in this paper surpasses the performance of some 

current mainstream object detection algorithms. 

Additionally, it maintains good real-time performance while 

improving detection accuracy. 
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