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Abstract—In this paper, the derivation of the 2-point Frac-
tional Block Backward Differentiation Formula is studied and
used to solve the fractional Pharmacokinetics model. The
method is developed using the fractional linear multistep
method connected to the linear difference operator. The analysis
of the method’s stability properties confirms that the stability
regions appear to be A-stable for various values of fractional
order α. Numerical results obtained using the proposed method
are investigated. Additionally, the impact of fractional order on
the quantity of the drug within the human body is examined.

Index Terms—Block Backward Differentiation Formula
(BBDF); Fractional order; stability; Pharmacokinetics Model;

I. INTRODUCTION

FRACTIONAL differential equations (FDEs) have re-
cently attracted significant attention among researchers,

particularly due to their demonstrated applications in various
disciplines of science and engineering. The utilization of
fractional order differential equations has emerged as a
significant approach in the modelling of several physical
processes in recent times [1]. The accurate representation of
a physical phenomena relies not only on the current moment
in time but also on the preceding temporal history. Fractional
calculus provides a viable approach to effectively include this
historical information into realistic models [2]. Most frac-
tional equations lack exact analytic solutions, necessitating
the use of approximation and numerical techniques [3]. In
this article, we consider the following system of fractional
initial value problems (FIVPs).

CDαi
t0 = fi (t, y1, y2, . . . , ym) ,

yi(t0) = y0,i, i = 1, 2, . . . ,m,
(1)

where 0 < αi < 1 represents the fractional order and
CDαi

t0 is denoted as the Caputo α derivative operator.
One benefit of employing the Caputo derivative is that it
guarantees the same beginning states for FDEs as it does for
integer order differential equations. This eliminates concerns
related to solvability and optimizes the practical application
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of the Caputo derivative [4]. Thus, the Caputo fractional
derivative of y(t) of order α with t0 > 0 is defined as [5]:

CDαi
t0 y(t) =

1

Γ (1− α)

∫ t

t0

y′(τ)

(t− τ)
α dτ. (2)

In modelling an application problem, FDEs are found to
be more plausible than integer orders because the former
provides a tool for describing memory effects [4]. Among the
mathematical models employing FDEs are the SIR Model,
the Prey-Predator Model, the Disease Model, and the Phar-
macokinetics Model. The pharmacokinetics model is one of
the branches of chemical kinetics that studies the process by
which a drug is assimilated, distributed, bioavailable, me-
tabolized, and eliminated via the body’s biological systems
[6]. To explain the diffusion behavior of pharmaceuticals
in biological systems, FDEs were included in the phar-
macokinetics model. According to studies, FDEs are more
applicable and accurate than integral differential equations
[7]. For instance, Qiao et al. [7] applied a pharmacokinetics
model with the compartment to calculate drug concentration
in the body. Numerous mathematical models for the transport
of drugs within the body have been intensively explored [8],
[9], [10], [11], [12], [13], [14]. In this paper, the fractional
mathematical model of drug diffusion presented in [15] will
be solved numerically using the proposed method.

The Fractional Linear Multistep Method (FLMM), which
is based on Fractional Backward Differentiation Formulas
(FBDFs), is one of the most powerful methods for solving
FDEs, which were initially described by Lubich [16] for
fractional order in (0, 1). Galeone and Garrappa [17] studied
the Fractional Backward Differentiation Formula (FBDF)
in explicit and implicit ways to solve FDEs. Biala and
Jator [18], [19] extended the ideas by developing the k-
step continuous FBDF and k-step implicit Adams Methods
(IAMs) to approximate the solution of (1). The FBDF will
be studied in the block method first proposed by Ibrahim et
al. [20], named Block Backward Differentiation Formulas
(BBDF). The advantage of the block method is that the
numerical solutions will be approximated concurrently at
selected points in the block. Most of the BBDF methods
were used to solve stiff Ordinary Differential Equations
(ODEs) [21], [22], [23], [24], [25], [26], [27]. Since the
BBDF method is widely used and has been demonstrated to
be effective for solving ODEs, we are motivated to extend
the concepts by adapting the method to solve the fractional
model.

In this paper, the Fractional Block Backward Differen-
tiation Formula (FBBDF) will be described in Section II.
In Section III, we investigate the convergence and stability
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properties of the derived method. Next, the fractional three-
compartment of the pharmacokinetics model is presented,
and there will be a discussion of the numerical simulations
in Section IV. Section V is devoted to the conclusion of this
paper.

II. DERIVATION OF THE METHOD

This section details the construction of a 2-point Fractional
Block Backward Differentiation Formula (2FBBDF). The
method is constructed using the general formula of fractional
Linear Multistep Method (LMM) by Galeone and Garrappa
[17] and Block Backward Differential Formula (BBDF) by
Ijam et al. [28], and presented as

4∑
j=0

γj,iyn+j−2 = hαβifn+i, (3)

where γj,i and βi are the real parameters, hα is the step
length, and i = 1, 2 for yn+1 and yn+2, respectively. Then,
we associated the linear difference operator Lh in the case
of LMM (3), which is defined by,

Lh [y(t), t, α] =
4∑

j=0

γj,iyn+j−2 − hαβifn+i

=
4∑

j=0

γj,iyn+j−2 − hαβC
i Dα

t0yn+i

=γ0,iyn−2 + γ1,iyn−1 + γ2,iyn

+ γ3,iyn+1 + γ4,iyn+2

− hαβC
i Dα

t0yn+i.

(4)

Expanding yn+j−2 and CDα
t0yn+i using Taylor’s series

expansion about t, we have

yn+j−2 =y(tn) +
m∑

k=1

(j − 2)khk

k!
y(k)(tn)+

hm+1

m!∫ n−j

0

(n− s)
m
y(m+1) (tn + sh) ds,

CDα
t0yn+i =

m∑
k=1

(i)k−αhk−α

Γ (k + 1− α)
y(k)(tn)+

hm+1−α

Γ (m+ 1− α)∫ n−j

0

(n− s)
m
y(m+1) (tn + sh) ds,

(5)

and collecting terms in (5) gives

Lh [y(t), t, α] =C0,i (n, α) y(t0)+
m∑

k=1

hkCk,i (n, α) y
(k)(t0)+

hm+1Rm+1,

(6)

where the constant Ck,i(n, α) is defined as

C0,i =
4∑

j=0

γj,i,

C1,i =
4∑

j=0

jγj,i −
1

Γ (1 + 1− α)
j(1−α)βi,

...

Ck,i =
4∑

j=0

jk

k!
γj,i −

1

Γ (k + 1− α)
j(k−α)βi

(7)

where k = 2, 3, . . . ,m, i = 1, 2 in (7) are denoted as the first
and second points, respectively. The systems of (7) are solved
simultaneously to obtain the coefficient values of γj,i and
βi. Therefore, the general corrector formula of the 2FBBDF
method is obtained as follows:

yn+1 =−
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2

+
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn

+
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2

− 3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαfn+1,

yn+2 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

yn−2

−
8α

(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

+
12

(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

yn

+
8α

(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1

+
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hαfn+2.

(8)

III. ANALYSIS OF THE METHOD

In this section, the method will be analyzed by determining
the order and error constants, the convergence, and the
stability properties of the proposed method. We begin with
the determination of the order and error constant of the
method in the following subsection.

A. Order and Error Constant
By considering the following definition from Zabidi et al.

[29], as adapted from Galeone and Garappa [17], the order
and error constant of the proposed method are determined.

Definition 1: FLMM is said to be of order p if, C0 =
C1 = · · · = Cp = 0 and Cp+1 ̸= 0. The constant Cp is
calculated using the following formula:

Cp =
4∑

j=0

(j − 2)
p

p!
γj−

1

Γ (p+ 1− α)

4∑
j=0

(j − 2)
(p−α)

βj ,

(9)
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TABLE I
THE ERROR CONSTANTS OBTAINED FOR EACH VALUE OF α

Error α = 0.7 α = 0.8 α = 0.9

e1
113323
4041140

3679
102620

39961
868380

e2 − 644854
10760965

− 1462
20545

− 284578
3421655

where p = 0, 1, 2, . . . , γj and βj are the coefficients obtained
from the proposed method, while Cp+1 ̸= 0 is the error
constant of the method.

By substituting α = 0.7, 0.8 and 0.9 into equation (8), we
determined the order and the error constant of the method
using equation (9) and obtained the following solutions:

C0 :=
4∑

j=0

γj =

[
0
0

]
,

C1 :=
4∑

j=0

(j − 2)

1!
γj −

1

Γ (2− α)

4∑
j=0

(j − 2)
(1−α)

βj

=

[
0
0

]
,

C2 :=
4∑

j=0

(j − 2)
2

2!
γj −

1

Γ (3− α)

4∑
j=0

(j − 2)
(2−α)

βj

=

[
0
0

]
,

C3 :=
4∑

j=0

(j − 2)
3

3!
γj −

1

Γ (4− α)

4∑
j=0

(j − 2)
(3−α)

βj

=

[
0
0

]
,

C4 :=
4∑

j=0

(j − 2)
4

4!
γj −

1

Γ (5− α)

4∑
j=0

(j − 2)
(4−α)

βj

=

[
0
0

]
,

C5 :=

4∑
j=0

(j − 2)
5

5!
γj −

1

Γ (6− α)

4∑
j=0

(j − 2)
(5−α)

βj

=

[
e1
e2

]
̸=

[
0
0

]
,

(10)

where e1 and e2 represent the error constants for yn+1

and yn+2 respectively. Table I presents the error constants
obtained from the solutions in equation (10).

Therefore, we conclude that the method is an order 4 with
the error constants at C5 as presented in Table I.

B. Convergence of the Method

Theorem 1: Let there be a constant L where the coordi-
nates (t, y, y∗) and (t, y∗) for every t, y, y∗ are both in R
such that

|f(t, y)− f(t, y∗)| ≤ L |y − y∗| . (11)

By letting f(t, y) be Lipschitz continuous at all points (t, y)
in the region R, given by

a ≤ t ≤ b, −∞ < y < ∞, (12)

such that a and b are finite.

Theorem 2: If all IVPs subject to Theorem 1 as t ∈ [a, b]
and α ∈ (0, 1), then equation (8) is said to be convergent,
such that

|y − y∗| ≤ K.tα−1hp, (13)

where K is a constant that is solely dependent on α and p
as p ∈ (0, 1), and

lim
h→0

yi = y∗(ti). (14)

Proof: Recalling the proposed method (8), we have

yn+1 =−
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2+

α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1−

3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn+

α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2−

3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαfn+1,

yn+2 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

yn−2−

8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1+

12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

yn+

8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1+

12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hαfn+2.

(15)

Referring to equation (15), we let

A1 = −
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

,

A2 =
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

,

A3 = −
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

,

A4 =
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

,

A5 = − 3Γ (5− α)

2α3 − 22α2 + 77α− 72
,

B1 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

,

B2 = −
8α

(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

,

B3 =
12

(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

,

B4 =
8α

(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

,

B5 =
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
.

(16)
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1) For the exact form of the system, we have

yn+1 =A1yn−2 +A2yn−1 +A3yn +A4yn+2

+A5h
αf(tn+1, yn+1) + e1h

5y(5)(ξ),

yn+2 =B1yn−2 +B2yn−1 +B3yn +B4yn+1

+B5h
αf(tn+2, yn+2) + e2h

5y(5)(ξ).

(17)

2) For the approximate form of the system, we have

y∗n+1 =A1y
∗
n−2 +A2y

∗
n−1 +A3y

∗
n +A4y

∗
n+2

+A5h
αf(tn+1, y

∗
n+1),

y∗n+2 =B1y
∗
n−2 +B2y

∗
n−1 +B3y

∗
n +B4y

∗
n+1

+B5h
αf(tn+2, y

∗
n+2).

(18)

Considering

lim
h→0

yn+1 = y∗n+1 and lim
h→0

yn+2 = y∗n+2, (19)

as the convergent criteria for the approximate solutions, the
result obtained by subtracting equation (17) from equation
(18) is

yn+1 − y∗n+1 =A1

[
yn−2 − y∗n−2

]
+A2

[
yn−1 − y∗n−1

]
+A3 [yn − y∗n] +A4

[
yn+2 − y∗n+2

]
+

A5h
α
[
f(tn+1, yn+1)− f(tn+1, y

∗
n+1)

]
+ e1h

5y(5)(ξ),

yn+2 − y∗n+2 =B1

[
yn−2 − y∗n−2

]
+B2

[
yn−1 − y∗n−1

]
+B3 [yn − y∗n] +B4

[
yn+1 − y∗n+1

]
+

B5h
α
[
f(tn+2, yn+2)− f(tn+2, y

∗
n+2)

]
+ e2h

5y(5)(ξ).
(20)

Denoting that |yn+j − y∗n+j | = |dn+j | where j = −2, −1,
0, 1, 2, Theorem 1 is applied in equation (20), which yields:

1) For the first point:

|dn+1| ≤A1 |dn−2|+A2 |dn−1|+
A3 |dn|+A4 |dn+2|+
A5h

αL |dn+1|+
e1h

5R,

(1−A5h
αL) |dn+1| ≤A1 |dn−2|+A2 |dn−1|+

A3 |dn|+A4 |dn+2|+
e1h

5R.
(21)

2) For the second point:

|dn+2| ≤B1 |dn−2|+B2 |dn−1|+
B3 |dn|+B4 |dn+1|+
B5h

αL |dn+2|+
e2h

5R,

(1−B5h
αL) |dn+2| ≤B1 |dn−2|+B2 |dn−1|+

B3 |dn|+B4 |dn+1|+
e2h

5R,
(22)

where R = maxa≤t≤b |y(5)(t)|. Rewriting equations
(21) and (22) based on Theorem 2 will give

(1−Khα) |dn+1| ≤A1 |dn−2|+A2 |dn−1|+
A3 |dn|+A4 |dn+2|+
e1h

5R,

(1−Khα) |dn+2| ≤B1 |dn−2|+B2 |dn−1|+
B3 |dn|+B4 |dn+1|+
e2h

5R.

(23)

Based on the above calculation, |dn+j | ≤ |dn| when h is
approaching zero, it implies that y∗n+j − y∗n ≤ yn+j − yn
for j = 1, 2. Therefore, we can conclude that the proposed
method converges since the conditions in equation (19) are
satisfied.

C. Stability of the Method

In this subsection, we will examine the stability of the
2FBBDF method (8) for α ∈ (0, 1) by analyzing the
following linear test problem.

Dαy(t) = λy(t), λ ∈ C, 0 < α < 1,

y(t0) = y0,
(24)

where y(t) = Eα (λ(t− t0)
α) y0 represents the precise

solution and which can be mathematically represented using
the Mittag-Leffler function:

Eα(t) =

∞∑
k=0

(
tk

Γ(αk + 1

)
. (25)

Equation (24) is then substituted into the corrector formula
(8), which resulted in the stability polynomial of

yn+1 =−
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2

+
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn

+
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2

− 3Γ (5− α)

2α3 − 22α2 + 77α− 72
h̄fn+1,

yn+2 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

yn−2

−
8α

(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

+
12

(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

yn

+
8α

(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1

+
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
h̄fn+2,

(26)

where h̄ = hαλ. Rearranging equation (26) into a matrix
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form yields1 + 3Γ(5−α)
2α3−22α2+77α−72 h̄ − α(α2−10α+27)

4(2α3−22α2+77α−72)

− 8α(α2−13α+48)
α3−11α2+16α+144 1− 12(2α−1)Γ(5−α)

α3−11α2+16α+144 h̄

[
yn+1

yn+2

]

=

 α(2α2−14α+21)
2α3−22α2+77α−72 − 3(5α2−35α+48)

2(2α3−22α2+77α−72)

− 8α(α2−5α−8)
α3−11α2+16α+144yn−1

12(5α2−35α+12)
α3−11α2+16α+144

[
yn−1

yn

]

+

0 − α(α2−8α+13)
4(2α3−22α2+77α−72)

0
α(α2−7α−12)

α3−11α2+16α+144

[
yn−3

yn−2

]
,

(27)

which is equivalent to

AYm = BYm−1 + CYm− 2, (28)

where

A =

1 + 3Γ(5−α)
2α3−22α2+77α−72 h̄ − α(α2−10α+27)

4(2α3−22α2+77α−72)

− 8α(α2−13α+48)
α3−11α2+16α+144 1− 12(2α−1)Γ(5−α)

α3−11α2+16α+144 h̄

 ,

B =

 α(2α2−14α+21)
2α3−22α2+77α−72 − 3(5α2−35α+48)

2(2α3−22α2+77α−72)

− 8α(α2−5α−8)
α3−11α2+16α+144yn−1

12(5α2−35α+12)
α3−11α2+16α+144

 ,

C =

0 − α(α2−8α+13)
4(2α3−22α2+77α−72)

0
α(α2−7α−12)

α3−11α2+16α+144

 , Ym−2 =

[
yn−3

yn−2

]
,

Ym =

[
yn+1

yn+2

]
, Ym−1 =

[
yn−1

yn

]
.

(29)

From equation (29), we calculate the stability polynomial of
the method by using the formula

π(t; h̄) = det(At2 −Bt− C), (30)

where t denotes the root of equation (30), yielding

π(t; h̄) = det(At2 −Bt− C)

= det

1 + 3Γ(5−α)
2α3−22α2+77α−72 h̄ − α(α2−10α+27)

4(2α3−22α2+77α−72)

− 8α(α2−13α+48)
α3−11α2+16α+144 1− 12(2α−1)Γ(5−α)

α3−11α2+16α+144 h̄


t2 −

 α(2α2−14α+21)
2α3−22α2+77α−72 − 3(5α2−35α+48)

2(2α3−22α2+77α−72)

− 8α(α2−5α−8)
α3−11α2+16α+144yn−1

12(5α2−35α+12)
α3−11α2+16α+144


t−

0 − α(α2−8α+13)
4(2α3−22α2+77α−72)

0
α(α2−7α−12)

α3−11α2+16α+144

 .

(31)

From equation (31), we plotted the stability regions of the
method for different values of α by using Maple software,
presenting it as Figure 1. Referring to the definitions from
Lambert [30], we investigated the stability region of the
method.

Based on Figure 1, the unstable regions are presented
inside the circles, while the regions outside the circles
represent the stable regions of the method. Next, we ran a
few numerical tests to verify the stability region of the graphs
in Figure 1. We found that method (8) with α = 0.7, 0.8 and
0.9 are the A-stable and α = 1.0 is the A(µ)-stable for µ at
0◦ (see [30]).

Fig. 1. Stability regions for 2FBBDF with different fractional order, α

Fig. 2. Mechanism of intravenous drug administration in the three-
compartment pharmacokinetics model

IV. MATHEMATICAL MODEL

This section describes the fractional three-compartment
pharmacokinetics model depicted in Figure 2 [13]. The
concentration of drugs is denoted as cab in Compartment
1 (arterial blood), ct in Compartment 2 (tissue), and cvb in
Compartment 3 (venous blood).

According to Khanday et al. [13], medication delivery via
venous blood follows the pattern shown in Figure 2 because
blood flow in the cardiovascular system is unidirectional.
Therefore, the fractional mathematical formulation based on
Figure 2 is presented as

CDα1cab = −kbcab(t),
CDα2ct = kbcab(t)− ktct(t),

CDα3cvb = ktct(t)− kecvb(t),

(32)

where the flow rate of the drug from Compartment 1 to
Compartment 2 is represented by kb and from Compartment
2 to Compartment 3 by kt, while the elimination rate is
denoted by ke with the given starting conditions

cab,0 = c0 ≥ 0, ct,0 = 0, cvb,0 = 0. (33)

As presented in [28], the exact solution of the model (32) is
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TABLE II
PARAMETER VALUE IN THE FRACTIONAL PHARMACOKINETICS MODEL

Parameter Description Case 1 Case 2

cab,0 The beginning state of 500 500
the drug’s concentration in

the arterial blood

ct,0 The beginning state of 0 0
the drug’s concentration in

the tissue

cvb,0 The beginning state of 0 0
the drug’s concentration in

the venous blood

kb The amount of drug transferred 0.9776 0.5000
from Compartment 1

to Compartment 2

kt The amount of drug consume 0.3293 0.2500
between Compartment 2

and Compartment 3

ke Drugs elimination rates 0.2213 0.0500
from the blood

obtained as follows:

cab(t) =c0e
−kbt,

ct(t) =
c0kb

kb − kt

(
e−ktt − e−kbt

)
,

cvb(t) =c0kbkt

(
e−ktt

(kb − kt) (ke − kt)

)
−

c0kbkt

(
e−kbt

(kb − kt) (ke − kb)

)
+

c0kbkt

(
e−ket

(ke − kt) (ke − kb)

)
.

(34)

Then, we solved the model (32) by using the proposed
method (8) and the numerical simulations were demon-
strated. There is a limitation in method comparison, and
the results obtained will be compared with the method
in MATLAB solver fde12.m (FDE12) that was established
by Garrappa [31] for a significant numerical comparison.
The numerical simulations will be plotted together to be
compared. The behavior of drug concentration is studied
by considering the rate constant as presented in [13] and
noting that the value of ke < kt < kb. The two cases of
rate constants are considered in this study and presented in
Table II.

We examine the behavior of the drug concentration in
the model with various constant rates based on Table II. As
presented in Figure 3, the dashed line represents Case 1 while
the solid line represents Case 2. According to the graph, the
constant rate with k ∈ [0.2213, 0.9776] results in quicker
drug absorption in the blood vessel than k ∈ [0.0500, 0.500].

In the subsequent numerical simulations, Case 1 is con-
sidered because the rate of drug absorption in the three
compartments is speedier than in Case 2. Using the data in
Table II, the model (32) was computed using C programming,
and the error was calculated using the following formula.

errori = |yi(t)− yi(tn)| , (35)

where yi(t) and yi(tn) are the exact solution and the ap-
proximate solution, respectively. Then, the maximum error,

Fig. 3. Drug concentration rate in the three compartments solved using
the 2FBBDF method with α = 0.9

MAXE, is calculated as

MAXE = max
0≤i≤NS

(errori) , (36)

where NS is the step number and the average error, AVE, is
determined by

AV E =

∑NS
i=0 (errori)

NS
, (37)

In order to validate the proposed numerical method, subse-
quent simulations were plotted using the MAPLE software.
We set the step size, h = 0.01, and time, t ∈ [0, 6] hours
to generate data for the surveillance of drug behavior in the
body within six hours. Then, we analyzed the influence of the
fractional order α on the drug concentration in each of the
three compartments. Within six hours, the drug concentration
in arterial blood decreases from 500 units to zero units, as
depicted in Figure 4. As shown in Figure 4, the approximate
value of cab approaches 0 units fastest at α = 0.9, followed
by α = 0.8 and 0.7. Figure 5 depicts the concentration of
the drug in the tissue when absorbed from the arterial blood.
As demonstrated in the figure, the concentration of the drug
in the tissue begins to rise between 0 to 2 hours and then
gradually decreases to 0 units after two hours. Thus, the
targeted tissue reacted to the drug positively. In Figure 6, we
plotted the concentration of the drug in the venous blood and
analyzed the pattern of the graphs. As shown in Figure 6, cvb
reaches the peak at t ∈ (4, 5) hours. This demonstrates that
the compartments responded favorably to the drug within six
hours, which is the timeframe doctors advise. After six hours,
the concentrations of the drug in the three compartments
would gradually be cleared from the blood via the liver and
kidneys.

Next, a comparison is made between the 2FBBDF method
and FDE12 by Garrappa [31] in terms of the approximation
values for the three compartments. The model (32) is solved
using the methods of comparison with α = 0.7, 0.8, and 0.9,
and its numerical simulations are presented in Figures 7-9.
As shown in the figures, we discovered that the amount of
drugs in the body is absorbed and excreted more rapidly with
the 2FBBDF method than with FDE12.
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Fig. 4. The amount of drugs in the arterial blood with varying values of
α solved using the 2FBBDF method

 

 

Fig. 5. The amount of drugs in the tissue with varying values of α solved
using the 2FBBDF method.

The fractional model (32) is solved using the 2FBBDF
method with α1 = α2 = α3 = 1, and the numerical
results obtained are presented in Table III, which consist
of the step size (h), MAXE, AVE, and the computational
time (TIME). Based on the table, the MAXE and AVE

 

 

Fig. 6. The amount of drugs in the venous blood with varying values of
α solved using the 2FBBDF method.

Fig. 7. The amount of drugs in the arterial blood with varying values of
α solved using the 2FBBDF method and FDE12

decreases as the step size, h decreases, except for the AVE
at h = 1E-06, where the tolerance error of E-07 indicates
that the maximum improvement limit has been reached at
that h. However, as the error falls within the tolerance, the
outcome is still acceptable. In terms of the computational
time, TIME, the process becomes slower as the step size, h
gets smaller, because the number of iterations, i, increases
as the value of h decreases. Subsequently, the approximation
values generated from the 2FBBDF and FDE12 methods
are compared with the precise solution and displayed in
Table IV. It is evident that the 2FBBDF technique exhibits a
high degree of similarity to the exact answer, in comparison
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Fig. 8. The amount of drugs in the tissue with varying values of α solved
using the 2FBBDF method and FDE12

Fig. 9. The amount of drugs in the venous blood with varying values of
α solved using the 2FBBDF method and FDE12

TABLE III
NUMERICAL RESULTS FOR THE FRACTIONAL MODEL (32) SOLVED USING

2FBBDF AS α1 = α2 = α3 = 1

h MAXE AVE TIME

1E-02 1.32154E-01 4.08596E-02 5.72897E-04

1E-03 1.37676E-03 4.23639E-04 1.09864E-03

1E-04 1.38239E-05 4.25766E-06 2.40807E-03

1E-05 1.38295E-07 4.46724E-08 5.54929E-03

1E-06 1.06907E-07 1.06170E-07 3.52063E-02

to the FDE12 method. The behavior of the exact solution,
the 2FBBDF method, and the FDE12 are illustrated in
Figures 10-12. The curves are plotted with the value of
α1 = α2 = α3 = 1 and with the value of h = 0.1. From the
analysis, the approximate solution of the 2FBBDF method is
plotted closely to the exact solution as α1 = α2 = α3 = 1
compared to the FDE12. Therefore, the 2FBBDF method is
the most appropriate method for solving the model (32).

TABLE IV
METHOD OF COMPARISON FOR THE FRACTIONAL MODEL (32) AS

α1 = α2 = α3 = 1

t Method cab ct cvb

0 FDE12 500.000 0.000 0.000
2FBBDF 500.000 0.000 0.000

Exact 500.000 0.000 0.000

1 FDE12 188.422 258.331 49.151
2FBBDF 306.297 170.100 23.199

Exact 303.265 172.270 24.037

2 FDE12 71.006 283.212 122.521
2FBBDF 185.779 238.006 73.455

Exact 183.940 238.651 74.574

3 FDE12 26.758 240.449 176.007
2FBBDF 112.680 249.367 130.102

Exact 111.565 249.236 131.217

4 FDE12 10.084 186.821 203.831
2FBBDF 68.344 233.030 182.921

Exact 67.668 232.544 183.900

5 FDE12 3.800 139.622 211.081
2FBBDF 41.040 204.420 228.308

Exact 41.047 204.426 228.298

6 FDE12 1.432 102.417 204.470
2FBBDF 24.892 173.343 263.206

Exact 24.896 173.349 263.198

Fig. 10. The behavior of the amount of drugs in the arterial blood as
α1 = 1 and h = 0.1.

Fig. 11. The behavior of the amount of drugs in the tissue as α2 = 1 and
h = 0.1.
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Fig. 12. The behavior of the amount of drugs in the venous blood as
α3 = 1 and h = 0.1.

V. CONCLUSION

In this paper, the 2-point Fractional Block Backward
Differentiation Formula (2FBBDF) is introduced as a new
numerical method that can be used to solve both fractional-
order and integer order problems. The stability analysis
verifies that the derived method (8) for the fractional order α
is convergent and A-stable. Using the 2FBBDF method, the
fractional pharmacokinetics model with three compartments
(32) was solved. Using the 2FBBDF method, the drug
concentration in the three compartments will be excreted
from the kidney (approaching zero units) faster when the
fractional order, α is greater. Furthermore, the 2FBBDF
approach is superior to the FDE12 method proposed by
Garrappa [31] for solving model (32). In addition, when
α = 1.0, the 2FBBDF method returns defects (MAXE and
AVE) within the tolerance h. Due to the memory effects of
the models, the fractional order is recommended for solving
the dynamical system rather than the integer order, even
though the behavior of numerical simulations for all frac-
tional orders is almost identical to that of the integer order.
All numerical solutions (Figures 10-12) are validated against
theoretic outcomes. Consequently, the proposed method can
serve as an alternative solver for other application problems,
such as the SIR model and the prey-predator model.
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