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Abstract—The paper investigated general function projective
finite-time lag synchronization(GFPFTLS) between two cou-
pled networks with different dimensions and unknown outer
disturbances via Razumikhin approach. Basing on finite-time
stabilization theorem of time delay system, the decentralized
feedback control strategy and properties of norm for irregular
matrices, some useful time-delay independent general function
finite-time projective lag synchronization criteria have been
obtained. Numerical simulations showed the effectiveness and
feasibility of the proposed approaches.

Index Terms—general function projective synchronization,
finite-time, time delay system, nonidentical nodes, Razumikhin
approach.

I. INTRODUCTION

IN recent years, complex dynamical networks (CDN)
have garnered significant interest due to their appli-

cations in natural and social fields[1]. Researchers have
focused on problems related to modeling, properties, and
synchronization phenomena. Numerous interesting results
for synchronization of CDNs have been obtained by using
various approaches such as linear feedback[2], adaptive[3,4],
pinning[5], and impulsive control to achieve asymptotic,
function projective[6], and finite-time[7-10] synchronization.

Two coupled networks may be synchronized with dif-
ferent structures of nodes, even with different dimensions
in the real-life world. This can be characterized by ‘func-
tion projective synchronization’ generally. Synchronization
between two coupled CDNs has been discussed in several
works[11-15]. However, more recent studies have focused

Manuscript received December 20, 2022; revised November 5, 2023. This
work was supported by the scientific research project of Shaanxi Education
Department under Grant No.21JK0969, the 13th Five Year Plan of Shaanxi
Educational Science under Grant No.SGH18H370, the Xianyang scientific
research project under Grant No.L2023-ZDYF-SF-024, and the National
College Student innovation Project under Grant No. 202310722012. Natu-
ral Science Foundation of Xianyang Normal University under Grant No.
XSYK20023, the Academic Backbone Project Foundation of Xianyang
Normal University under Grant No. XSYXSGG202101.

Lihong Yan is an associate professor of College of Mathematics and
Statistics, Xianyang Normal University, Shannxi, Xianyang, 712000, PR
China; (e-mail: 092212@163.com)

Weiyuan Zhang is a professor of College of Mathematics and Statistics,
Xianyang Normal University, Shannxi, Xianyang, 712000, PR China; (e-
mail: ahzwy@163.com)

Yanting Yang is a lecturer of College of Mathematics and Statistics,
Xianyang Normal University, Shannxi, Xianyang, 712000, PR China; (e-
mail: yangyanting85@163.com)

Ning Fu is an undergraduate student of College of Mathematics and
Statistics, Xianyang Normal University, Shannxi, Xianyang, 712000, PR
China; (e-mail: 2948232596@qq.com)

Tingting Wang is an undergraduate student of College of Mathematics
and Statistics, Xianyang Normal University, Shannxi, Xianyang, 712000,
PR China; (e-mail: 3496922850@qq.com)

on CDNs with distributed time-delay, stochastic disturbance,
and switching topology[16-19].

Wu and Lu[20] discussed GFPS (lag, anticipated, and
complete) between two complex networks with nonidentical
nodes based on Barbalat lemma. The dynamics of the nodes
of CDNs are any chaotic systems without the limitation of
partial linearity with the same dimensions. In [21], suffi-
cient conditions for synchronization were derived using the
Lyapunov asymptotic stability theory with the strategy of
adaptive control for a CDN with constant time delay and
identical nodes. However, finite-time synchronization was not
taken into account, along with constant but not time-varying
delay in the meantime. Dai et al. [22] investigated the prob-
lem of finite-time generalized function matrix projective lag
synchronization(GFMPLS) between two different coupled
dynamical networks with different dimensions. They used
the double power function nonlinear feedback control method
but did not consider the influence of time delay. Furthermore,
the nodes in each isolate network had the same dimensions,
although the dimensions were different from each other
between the drive and response network. Tan[3] constructed
a time-delay coupled network model by nonidentical nodes
with different state dimensions and realized the stabilization
and synchronization of such complex networks. However,
general function projective finite-time lag synchronization of
this network has not been considered so far.

In addition, many large Internet companies such as Aliba-
ba Amazon and Google, have built data centers worldwide to
provide users with high-quality cloud services. Within such a
data center, thousands of servers are connected through a data
center network with high bandwidth and low latency. There
are many delay-sensitive real-time applications running in the
data center, such as social networking, retail, e-commerce
and more. When the network flow bursts instantaneously,
congestion will easily occur at the receiving end of the flow,
and inappropriate routing will also lead to unbalanced flow
within the network, resulting in internal congestion, which
will lead to delay or packet loss. Requests of real-time users
need to be responded to as soon as possible, and higher
response latency will seriously affect the user experience,
thereby reducing the company’s operating revenue.

Also in the field of power systems, as the non-linear load in
a power system increases, and with the extensive application
of high-frequency switch gear, the network structure becomes
more complex, and the number of nodes and branches in a
power grid is generally not equal [23]. Achieving synchro-
nization for CDNs in finite time for time-delay systems with
external disturbances is crucial in engineering applications
for power systems, as it can help to improve the stability
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and reliability of power grids.
Hence, the existence of state delays in complex dynamical

network nodes is inevitable. Time delays are ubiquitous in
control systems, and if the stability analysis is time-delay
independent, the results are much more conservative. In
addition, finite-time stability has much quicker convergence
speed and better robustness and interference immunity, con-
sidering that external disturbances exist widely in engineer-
ing. Therefore, achieving synchronization for complex dy-
namical networks in finite time for time-delay systems with
external disturbances is crucial in engineering applications.

This paper presents a Razumikhin analytical approach to
achieving general function projective finite-time lag syn-
chronization (GFPFTLS) between two coupled dynamical
networks with nodes of different dimensions based on the
finite-time stability theorem of nonlinear time-varying dy-
namical systems. Which is a widely used method in the
analysis of stability and convergence for time-delay systems.
The key idea of the Razumikhin approach is to divide the
time-delay system into two parts: the delayed part and the
non-delayed part. The delayed part is characterized by the
time delay, while the non-delayed part is characterized by
the current state of the system. The Razumikhin approach
then uses the Lyapunov-Krasovskii functional to analyze
the stability and convergence properties of the delayed and
non-delayed parts separately. The Razumikhin approach has
several advantages over other methods for analyzing time-
delay systems. First, it is relatively easy to implement and
does not require complex mathematical tools. Second, it can
handle nonlinear time-delay systems with unknown functions
and parameters. Third, it can provide sufficient conditions for
stability and convergence that are easy to verify.

There have been few results about finite-time synchroniza-
tion of coupling CDNs with nonidentical node dynamics by
the Razumikhin approach so far. The proposed approach can
effectively handle the influence of time delay and external
disturbances, which are ubiquitous in engineering applica-
tions.

So the main contribution is to derive sufficient conditions
for achieving GFPFTLS in coupled dynamical networks
with nonidentical node dynamics. The theoretical results
are supported by numerical simulations, which demonstrate
the validity of the proposed approach. Finally, we show
that the results of general function projective finite-time lag
synchronization contain a large amount of basic conclusions
proposed before.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following coupled CDNs, the drive network
with external disturbances is:

ṁi(t) = fi(mi(t)) +
N∑
j=1,
j ̸=i

cij(Γ
(1)
ij mj(t)− Γ

(1)
ii mi(t))+ωi(t),

i = 1, 2, · · · , N.
(1)

Where mi(t) = (mi1(t),mi2(t), · · · ,min(t))
T ∈ Rni is the

state variable of the i−th node, fi : Rni → Rni is a smooth
nonlinear function, describes the local dynamics of each node
of the drive network. C = (cij)N×N is the outer coupling

strength and satisfy cii = −
N∑

j=1,j ̸=i
cij , i = 1, 2, · · · , N , and

Γ
(1)
ij ∈ Rni×nj is the inner coupling matrix from node j

to i, ωi(t) ∈ Rni are the unknown external time-varying
disturbances.

And the response network with different dimensions and
numbers of nodes is:

ṡi(t) = gi(si(t)) +
N∑
j=1,
j ̸=i

dij(Γ
(2)
ij sj(t)− Γ

(2)
ii si(t))+ϖi(t)

+ui(t), i = 1, 2, · · · , N.
(2)

Where si(t) = (si1(t), si2(t), ., siqi(t))
T ∈ Rqi is the state

variable of node i, gi : Rqi → Rqi is a smooth nonlinear
function which describes the local dynamics of each node of
the response network. D = (dij)N×N is the outer coupling

strength and satisfy dii = −
N∑

j=1,j ̸=i
dij , i = 1, 2, · · · , N is

the inner coupling matrix from node j to node i. ϖi(t) ∈
Rqi are the unknown external time-varying disturbances and
ui(t), i = 1, 2, · · · , N is the outer input controller.

Let’s denote the time-delay error ϱi(t) of the drive-
response dynamical network (1) and (2) as following,

ϱi(t) = si(t)− Λi(t)mi(t− dτ (t)),

So the general function projective time-delay error dynam-
ical system between the networks (1) and (2) is as following: ϱ̇i(t) = ṡi(t)− Λ̇i(t)mi(t− dτ (t))

−Λi(t)(1− ḋτ (t))ṁi(t− dτ (t)),
ϱi(ϑ) = φ(ϑ), ∀ϑ ∈ [−dτ , 0].

(3)

Where Λi(t) = (aikj(t)) ∈ Rqi×ni , i = 1, 2, · · · , N are
some bounded continuously differentiable function matrices.
And φ : [−dτ , 0] → Rn is the continuously function with
finite norm ||φ||dτ = sup−dτ≤t≤0||φ(t)||. dτ (t) is time-
varying delay and satisfies the following assumption 1.

Assumption 1 The derivation of time delay dτ (t) is
bounded. There exist a positive constant τ , such that ḋτ (t) ≤
dτ .

It is worth noting that the upper bound need not to be
less than 1, without the constraint, the conclusions presented
in the paper is much more general. Also the two external
disturbances satisfy assumption 2, the unknown external
time-varying disturbances ωi(t) and ϖi(t) are bounded.

Assumption 2 There exist non-negative constants γ1 and
γ2, such that,{

∥ωi(t)∥ ≤ γ1
∥ϖi(t)∥ ≤ γ2

i = 1, 2, · · · , N.

Where || · || stands for the 1- norm.
Assumption 3[24] There exists a positive constant λ, such

that ||Λi(t)|| ≤ λ.
Where ||Λi(t)||, i = 1, 2, · · · , N are the spectral norm of

matrix Λi(t).
Furthermore, lets denote Lτn be the space of continuously

function with τ > 0, and Lδ := {ψ ∈ Ln : ∥ψ∥Lτ
n
< δ} with

∥ψ∥Lτ
n
= sup−τ≤s≤0∥ψ(s)∥n and ∥ψ(s)∥n is the Eulidean

norm in Rn.
We will design proper controllers ui(t), i = 1, 2, · · · , N to

realize GFPFTLS between the drive and response networks
(1) and (2) soon follow. As we can see, general function pro-
jective finite-time lag synchronization between the networks
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(1) and (2) is equal to the time-delay error system (3) is
stable at the origin in a finite time.

The definition of GFPFTLS between drive-response net-
works (1) and (2) is as following.

Definition 1 The drive-response networks (1) and (2)
can realize general function projective finite-time lag syn-
chronization, if there exists δ > 0 such that, for any
ψ ∈ Lδ , there exists 0 ≤ T (ψ) < +∞ which satisfies
lim

t→T (ψ)
∥si(t)− Λi(t)mi(t− dτ (t))∥ = 0, and when t ≥

T (ψ), ∥si(t)− Λi(t)mi(t− dτ (t))∥=0.
There followed a designed proper controller, add it to the

error dynamical equation (3) and investigate the GFPFTLS
of drive-response network (1) and (2). For further discussion,
the following lemmas about finite-time stability of time-delay
system will be introduced.

Lemma 1[24, 25] For the system

{
ṁ(t) = f(m(t),m(t− τh)),
m(ϑ) = ψ(ϑ), ∀ϑ ∈ [−τh, 0],

(4)

which has unique solution in forward time. If there exist a
Class-K function σ, real numbers ℓ > 0, α > 1 and a C1

Lyapunov function V (m) of system (4) such that

(1)σ(∥m∥) ≤ V (m),

(2)V̇ (m) ≤ −ℓV 1
α (m),m ∈ Ω

hold, then the above system (4) is finite-time stable.
If V̇ (m) ≤ −ℓV 1

α (m),m ∈ Ω and σ is a Class-K∞
function, then the origin is a globally finite-time stable
equilibrium of the system (5). What’s more, the settling time
of the system (4) with respect to the initial condition ϕ ∈ Lα

satisfies T0(ϕ) ≤ α
ℓ(1−α) · V

α−1
α (ϕ) for all t > 0. Where

settling time T0(ϕ) = inf{T (ϕ) ≥ 0 : m(t, ϕ) = 0, ∀t ≥
T (ϕ)}.

Remark 1 In reference[25], the author pointed out that
lemma 1 in paper [24] is incorrect, and showed that if we
delete the Razumikhin condition whenever V (m(t + ϑ)) ≤
V (m(t)), for ϑ ∈ [−τh, 0], the corrected conclusion is
presented in Lemma 1. Also the author put forward a another
necessary condition to realize finite-time stability for time-
delay systems as following.

Lemma 2[25] Let ṁ(t) = f(mt), t ≥ 0,m ∈ Rn,mt ∈
C[−τ̃ , 0] be finite-time convergent in Ω, then

∀t ∈ Γm0 : F [0,m(t,m0)] = 0 (5)

for any initial value m0 ∈ Ω.
Where mt = m(t − dτ (t)) is a continuous function,

and there is a non-empty set of time instants Γm0={t ∈
[T0(m0) − τ̃ , T0(m0)] : m(t,m0) ̸= 0} and f(ϕ) =
F (ϕ(0), ϕ(−τ̃))with the help of the definition of T0(m0),
where F : R2n → Rn is continuous in Rn .

Notations: For convenience, lets denote In be
n−dimension identity matrix. And the matrices

Γ̄(1),Λ(t), Γ̄(2), L separately are:

Γ̄(1) =


c11Γ

(1)
11 c12Γ

(1)
12 · · · c1NΓ

(1)
1N

c21Γ
(1)
21 c22Γ

(1)
22 · · · c2NΓ

(1)
2N

...
...

...
...

cN1Γ
(1)
N1 cN2Γ

(1)
N2 · · · cNNΓ

(1)
NN

 ,

Λ(t) =


Λ1(t)

Λ2(t)
. . .

ΛN (t)

 ,

Γ̄(2) =


d11Γ

(2)
11 d12Γ

(2)
12 · · · d1NΓ

(2)
1N

d21Γ
(2)
21 d22Γ

(2)
22 · · · d2NΓ

(2)
2N

...
...

...
...

dN1Γ
(2)
N1 dN2Γ

(2)
N2 · · · dNNΓ

(2)
NN

 ,

L =


l1Iq1 0 · · · 0
0 l2Iq2 · · · 0
...

...
...

...
0 0 · · · lNIqN

 .

III. GENERAL FUNCTION PROJECTIVE FINITE-TIME LAG
SYNCHRONIZATION BETWEEN TWO COUPLED NETWORKS

In this part, we consider GFPFTLS between coupled
complex dynamical network (1) and (2) with Razumikhin
approach. In order to drive the achieve the objective (3) to
zero in a finite time, the injected adaptive controller ui(t)
for the i−th node are designed as follows,

ui(t) =



(1− ḋτ (t))Λi(t)fi(mi(t− dτ (t)))− gi(si(t))

− 1
4ε

∥m(t−dτ (t))∥2

||ϱi(t)||2 ϱi(t)− liϱi(t)

− η√
21+κ

sign(ϱi(t))|ϱi(t)|κ + Λ̇i(t)mi(t− dτ (t))

−(γ2 − λγ1(1 + dτ ))sign(ϱi(t)),
ifϱi(t) ̸= 0,

0, ifϱi(t) = 0.
(6)

Where |ϱi(t)|κ = (|ϱi1(t)|κ, |ϱi2(t)|κ, · · · , |ϱini(t)|κ)T ,
sign(ϱi(t)) = (sign(ϱi1(t)), sign(ϱi2(t)), · · · , sign(ϱini(t)))

T ,
i = 1, 2, · · · , N . m(t − dτ (t))= (mT

1 (t − dτ (t)),m
T
2 (t −

dτ (t)), · · · ,mT
N (t − dτ (t)))

T . And κ (0 < κ < 1) is
the adjusted controller parameter. With the controller (6),
a sufficient condition for controlled complex network
can realize general function projective finite-time lag
synchronization between coupled complex dynamical
network (1) and (2).

Remark 2 The controller (6) is determined by the non-
identical dimensions of the heterogeneity of complex dynam-
ical network modelling, similar literature [3] and [22] can be
referred.

Substitute the dynamical network equations (1) and (2)
which satisfying the dissipative coupling conditions to the
error dynamical equation (3), the error equation can be
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derived,

ϱ̇i(t) = ẏi(t)− Λ̇i(t)mi(t− dτ (t))

− Λi(t)(1− ḋτ (t))ṁi(t− dτ (t))

=gi (si(t)) +
N∑

j=1,j ̸=i
dij(Γ

(2)
ij sj(t)− Γ

(2)
ii si(t))

+ϖi(t) + ui(t)− Λi(t)(1− ḋτ (t))fi(mi(t− dτ (t)))

− Λi(t)(1− ḋτ (t))
N∑
j=1

cijΓ
(1)
ij mj(t− dτ (t))

− Λi(t)(1− ḋτ (t))ωi(t− dτ (t)))− Λ̇i(t)mi(t− dτ (t))

=gi (si(t))− Λ̇i(t)mi (t− dτ (t))+ϖi(t) + ui(t)

− Λi(t)(1− ḋτ (t)) (ωi(t− dτ (t)) + fi(mi(t− dτ (t))))

+
N∑

j=1,j ̸=i
dij

(
Γ
(2)
ij ϱj(t)− Γ

(2)
ii ϱi(t)

)
+

N∑
j=1

(
dijΓ

(2)
ij Λj(t)− (1− ḋτ (t))cijΛi(t)Γ

(1)
ij

)
mj(t− dτ (t))

(7)
Theorem 1 Suppose that Assumptions 1 holds, if there
exist positive constants κ, η, ε and proper constants li, i =
1, 2, · · · , N , such that Ω = Γ̄(2) + εQTQ− L < 0, then the
two coupled networks (1) and (2) with controllers (6) can re-
alize general function projective finite-time lag synchroniza-
tion. Furthermore, the synchronization settling time between
the drive-response networks (1) and (2) with respect to the

initial condition ϕ ∈ Lδ satisfies: T (ϕ) ≤ 2
η(1−κ)V

1−κ
2

ϱ (ϕ).
Proof. Choose the Lyapunov function Vϱ(t) as following,

Vϱ(t) =
1

2

N∑
i=1

ϱTi (t)ϱi(t)

Then one gets

V̇ϱ(t) =
N∑
i=1

ϱTi (t)ϱ̇i(t)

If ||ϱi(t)|| ̸= 0 , substituting the first part of controller (6) to
the error system (7), one can have

ϱ̇i(t) = gi (si(t))− Λ̇i(t)mi (t− dτ (t))+ϖi(t)

− Λi(t)(1− ḋτ (t))(ωi(t− dτ (t)) + fi(mi(t− dτ (t))))

+
N∑

j=1,j ̸=i
dij

(
Γ
(2)
ij ϱj(t)− Γ

(2)
ii ϱi(t)

)
+

N∑
j=1

(
dijΓ

(2)
ij Λj(t)−

(
1− ḋτ (t)

)
cijΛi(t)Γ

(1)
ij

)
mj (t− dτ (t))

+(1− ḋτ (t))Λi(t)fi(mi(t− dτ (t)))− gi(si(t))− liϱi(t)

− 1
4ε

∥m(t−dτ (t))∥2

||ϱi(t)||2 ϱi(t)− (γ2 − λγ1(1 + τ))sign(ϱi(t))

+ Λ̇i(t)mi(t− dτ (t))− η√
21+κ

sign(ϱi(t))|ϱi(t)|κ

=− η√
21+κ

sign(ϱi(t))|ϱi(t)|κ − liϱi(t)+ϖi(t)

+
N∑
j=1

(
dijΓ

(2)
ij Λj(t)−

(
1− ḋτ (t)

)
cijΛi(t)Γ

(1)
ij

)
ϱj (t− dτ (t))

− 1
4ε

∥m(t−dτ (t))∥2

||ϱi(t)||2 ϱi(t)− Λi(t)(1− ḋτ (t))ωi(t− dτ (t))

+
N∑

j=1,j ̸=i
dij

(
Γ
(2)
ij ϱj(t)− Γ

(2)
ii ϱi(t)

)
− (γ2 − λγ1(1 + dτ ))sign(ϱi(t)).

(8)
Obviously, the necessary condition Lemma 2 is satisfied.
Then combining the above equation with the derivative of

Vϱ(t), we get

V̇ϱ(t)=
N∑
i=1

ϱTi (t)

(
N∑

j=1,j ̸=i
dij

(
Γ
(2)
ij ϱj(t)− Γ

(2)
ii ϱi(t)

)
+ϖi(t)

)
+

N∑
i=1

ϱTi (t)
N∑
j=1

dijΓ
(2)
ij Λj(t)mj (t− dτ (t))

−
N∑
i=1

ϱTi (t)
N∑
j=1

(
1− ḋτ (t)

)
cijΛi(t)Γ

(1)
ij mj (t− dτ (t))

−
N∑
i=1

ϱTi (t)
(
− 1

4ε
∥m(t−dτ (t))∥2

||ϱi(t)||2 ϱi(t)− liϱi(t)
)

−
N∑
i=1

ϱTi (t)
η√
21+κ

sign(ϱi(t))|ϱi(t)|κ

−
N∑
i=1

ϱTi (t)Λi(t)(1− ḋτ (t))ωi(t− dτ (t))

−
N∑
i=1

ϱTi (t)(γ2 − λγ1(1 + dτ )) · sign(ϱi(t))
(9)

With the bound of outer disturbances Assumption 2, one has∥∥∥ϖi(t)− Λi(t)(1− ḋτ (t))ωi(t− dτ (t))
∥∥∥

≤ ∥ϖi(t)∥+
∥∥∥−Λi(t)(1− ḋτ (t))ωi(t− dτ (t))

∥∥∥
≤ ∥ϖi(t)∥+ ∥Λi(t)∥ ·

∣∣∣−(1− ḋτ (t))
∣∣∣ · ∥ωi(t− dτ (t))∥

≤ γ2 + λ(1 + dτ )γ1.
(10)

So

N∑
i=1

ϱTi (t)
(
ωi(t)− Λi(t)(1− ḋτ (t))ωi(t− dτ (t))

)
−

N∑
i=1

ϱTi (t)(γ2 − λγ1(1 + dτ ))sign(ϱi(t))

≤
N∑
i=1

∥∥ϱTi (t)∥∥ · ∥∥∥vi(t)− Λi(t)(1− ḋτ (t))ωi(t− dτ (t))
∥∥∥

−
N∑
i=1

ϱTi (t)(γ2 − λγ1(1 + dτ ))sign(ϱi(t))

≤
∥∥∥ϖi(t)− Λi(t)(1− ḋτ (t))ωi(t− dτ (t))

∥∥∥ · ∥ϱ(t)∥
− (γ2 − λγ1(1 + dτ )) ∥ϱ(t)∥
≤ 0.

(11)
With the denotations of matrices Γ̄(1), Γ̄(2),Λ(t), let

P (t) = (ϱ1(t), ϱ2(t), · · · , ϱN (t)), rewriting the second part
of (9) to the vector form, the following results holds,

N∑
i=1

ϱTi (t)
N∑
j=1

dijΓ
(2)
ij Λj(t)mj (t− dτ (t))

−
N∑
i=1

ϱTi (t)
N∑
j=1

(
1− ḋτ (t)

)
cijΛi(t)Γ

(1)
ij mj (t− dτ (t))

= ϱT (t)(Γ̄(2)Λ(t)−
(
1− ḋτ (t)

)
Λ(t)Γ̄(1))m (t− dτ (t)) ,

(12)
With the help of young’s inequality, one can see there exist

a positive constant ε such that

ϱT (t)(Γ̄(2)Λ(t)−
(
1− ḋτ (t)

)
Λ(t)Γ̄(1))m (t− dτ (t))

≤ εϱT (t)QTQϱ(t) + 1
4εm

T (t− dτ (t))m (t− dτ (t)) ,
(13)

Where QT = Γ̄(2)Λ(t)−
(
1− ḋτ (t)

)
Λ(t)Γ̄(1).
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Substitute (11) and (13) to (9), one get

V̇ϱ(t)=
N∑
i=1

ϱTi (t)

(
N∑

j=1,j ̸=i
dij

(
Γ
(2)
ij ϱj(t)− Γ

(2)
ii ϱi(t)

))
−

N∑
i=1

liϱ
T
i (t)ϱi(t)−

η√
21+κ

|ϱi(t)|κ+1

+εϱT (t)QTQϱ(t) + 1
4ε∥m (t− dτ (t))∥2

−
N∑
i=1

ϱTi (t)

(
1
4ε

N∑
i=1

mT
i (t− dτ (t))mi(t− dτ (t))

ϱi(t)
||ϱi(t)||2

)
=

N∑
i=1

ϱTi (t)

(
N∑

j=1,j ̸=i
dij

(
Γ
(2)
ij ϱj(t)− Γ

(2)
ii ϱi(t)

))
+εϱT (t)QTQϱ(t)−

N∑
i=1

liϱ
T
i (t)ϱi(t)−

η√
21+κ

|ϱi(t)|κ+1
.

By simplification, the following results are obtained,

V̇ϱ(t) ≤ PT (t)(Γ̄(2)+εQTQ−L)P (t)− η√
21+κ

N∑
i=1

|ϱi(t)|κ+1.

(14)
Let’s denote Ω = Γ̄(2) + εQTQ− L, then one get

V̇ϱ(t) ≤ PT (t)ΩP (t)− η√
21+κ

N∑
i=1

|ϱi(t)|κ+1.

In addition, basing on the property of inequality∑n
i=1 ∥mi∥θ ≤

(∑n
i=1 ∥mi∥2

)θ/2
(0 < θ < 2), the follow-

ing result can be achieved,

V̇ϱ(t) ≤ PT (t)ΩP (t)− η

(
N∑
i=1

1
2∥ϱi(t)∥

2

)κ+1
2

= PT (t)ΩP (t)− ηV
1+κ
2

ϱ (t).

(15)

Combining the conclusion (15), if there exist large enough
feedback gains li, i = 1, 2 · · · , N such that Ω < 0, then we
have

V̇ϱ(t) ≤ −ηV
1+κ
2

ϱ (t). (16)

Obviously, the constructed Lyapunov function Vϱ(t) sat-
isfies the conditions (1) and (2) of Lemma 1, then in the
light of Lemma 1, one can obtain the error system (3)
will be stabilized in a finite time, that is, the drive and
response complex dynamical networks (1) and (2) could
realize function projective finite-time lag synchronization
in a finite time. At the same time, the synchronization
settling time between drive-response networks (1) and (2)
with respect to the initial condition ϕ ∈ Lδ satisfies:

T (ϕ) ≤ 2

η(1− κ)
V

1−κ
2

ϱ (ϕ). (17)

One can see that the derivative item ḋτ (t) is used in
Theorem 1, but time delay dτ (t) is not always known previ-
ously, and it is not easy to obtain precise information of time
delay in practical applications, in addition, the calculation of
matrix inequality Γ̄(2)+εQTQ−L < 0 will increase control
cost, although it can be calculated by Schur complement
theorem via Matlab software. So next we will investigate
the synchronization condition basing on the definition and
properties of norm for irregular matrices, making it easy to be
verifiable and applied for engineering and scientific research.

Next we will give a corollary which is an simplified
representation of Theorem 1 according to the spectral norm
and its properties of irregular matrices.

For the matrix inequality Ω = Γ̄(2) + εQTQ− L, we can
see that when the matrix Ω < 0, then L > Γ̄(2)+εQTQ. fur-
thermore, it means lmin ≥ λmax{Γ̄(2)}+ελmax{QTQ}, and
the highest eigenvalue for the matrix λmax{QTQ} =∥Q∥2 ,
where ∥Q∥ is the spectral norm of matrix Q. While according
to the deduced inequality (13), the norm of Q equals to
||Γ̄(2)Λ(t)−

(
1− ḋτ (t)

)
Λ(t)Γ̄(1)||, basing on compatibility

conditions of norm for irregular matrix and Assumption 3,
one can obtain

∥Q∥= ||Γ̄(2)Λ(t)−
(
1− ḋτ (t)

)
Λ(t)Γ̄(1)||

≤ ||Γ̄(2)Λ(t)||+ || −
(
1− ḋτ (t)

)
Λ(t)Γ̄(1)||

≤ ||Γ̄(2)|| · ||Λ(t)||+ (1+dτ )||Λ(t)|| · ||Γ̄(1)||
=λ(µ2+(1+dτ )µ1)

(18)

Where µi, i = 1, 2 are the upper bounds of ||Γ̄(i)||, i = 1, 2.
Thus, another GFPFTLS results for drive-response dynamical
networks (1) and (2) will be presented.

Corollary 1 Suppose that Assumptions 1 holds, if there
exist positive constants κ, η, ε and proper constants li, i =
1, 2, · · · , N , such that

lmin ≥ λmax{Γ̄(2)}+ελ2(µ2+(1+dτ )µ1)
2 (19)

Where lmin = min{li}, i = 1, 2, · · · , N . Then the two
coupled networks (1) and (2) with controllers (6) can re-
alize general function projective finite-time lag synchroniza-
tion. Furthermore, the synchronization settling time between
drive-response networks (1) and (2) with respect to the initial
condition ϕ ∈ Lδ satisfies: T (ϕ) ≤ 2

η(1−κ)V
1−κ
2 (ϕ).

Remark 3 The above results about GFPFTLS between the
drive-response networks contain a lot of projective synchro-
nization cases in papers[3,6,9,10]. Such as:
1. If dτ (t) = 0, the drive-response network (1) and (2)
realize general function finite-time projective synchroniza-
tion(GFFTPS) with different dimensions of nodes.
2. If dτ (t) = 0, qi = ni,M = N,Λ(t) = I , the network (1)
and (2) can realize function projective finite-time synchro-
nization(FPFTS).
3. If dτ (t) ̸= 0,M = N , the drive-response network (1)
and (2) can realize general function projective finite-time
lag synchronization(GFPFTS) with different dimensions of
nodes.

In all, Theorem 1 contains a large amount of synchro-
nization cases as to the presented drive-response dynamical
networks (1) and (2).

IV. NUMERICAL SIMULATIONS

Without loss of generality, in this section, we will de-
sign some numerical simulation examples with MATLAB
software to illustrate the proposed approaches to realize
GFPFTLS for complex networks (1) and (2) with 4 het-
erogeneous chaos as the node dynamics respectively. The
four nodes of driven network (1) separately are sprott-O,
hyperchaotic Lv, Lorenz and Duffing systems. The dynamical

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 262-268

 
______________________________________________________________________________________ 



equations of the drive network are as following, ṁ11

ṁ12

ṁ13

 =

 m12

m11 −m13

m11 +m11m13 + 2.7m12

 ,
ṁ21

ṁ22

ṁ23

ṁ24

 =


36(m22 −m21) +m24

−m21m23 + 20m22

m21m22 − 3m23

m21m23 +m24

 ,

 ṁ31

ṁ32

ṁ33

 =

 10(m32 −m31)
28m31 −m31m33 −m32

m31m32 − 8/3m33

 ,(
ṁ41

ṁ42

)
=

(
m42

−0.25m41 −m3
41 + 11cos(t)

)
.

(20)

The response network with 4 nodes are chosen as Sprott-
O, duffing and rosslor and Chen chaotic attractor as follows, ṡ11

ṡ12
ṡ13

 =

 s12
s11 − s13

s11 + s11s13 + 2.7s12

 ,(
ṡ21
ṡ22

)
=

(
s22

−0.25s21 − s321 + 10 cos(t)

)
, ṡ31

ṡ32
ṡ33

 =

 s32 − s33
0.2s32 − s31

0.2 + s33(s31 − 5.7)

 , ṡ41
ṡ42
ṡ43

 =

 −8/3s41 + s42s43
10(s43 − s42)

−15s42 − s42s41 − s43

 .

(21)

We can see that the parameters m = n = 4. The two outer
coupling matrices are chosen as follows,

C =


−3 1 1 1
0 −2 1 1
1 2 −3 0
1 0 0 −1

 ,

D =


−1 0 0 1
1 −3 2 0
1 1 −2 0
0 0.5 1 −1.5

 .

The inner coupling matrices of network (1) and (2) are
respectively designed as:

Γ
(1)
12 =

 1 0 0 0
0 1 0 0
0 0 1 −1

 ,

Γ
(1)
14 = Γ

(2)
12 = Γ

(2)
32 = Γ

(2)
42 =

 1 0
0 1
0 −1

 ,

Γ
(1)
24 =


1 0
0 1
0 −1
1 0

 ,Γ
(1)
22 = I4,Γ

(1)
32 = Γ

(1)
12 ,

Γ
(1)
21 = Γ

(1)
23 =

(
Γ
(1)
12

)T
,Γ

(1)
34 = Γ

(2)
32 = Γ

(1)
14 ,

Γ
(1)
41 = Γ

(1)
43 = Γ

(2)
21 = Γ

(2)
23 = Γ

(2)
24 =

(
Γ
(1)
14

)T
,

Γ
(1)
44 = Γ

(2)
22 = Γ2,Γ

(1)
ij = Γ

(1)
ji = I3, i, j = 1, 3

Γ
(1)
42 =

(
Γ
(1)
24

)T
,Γ

(1)
11 = Γ

(1)
33 = Γ

(2)
11 = Γ

(2)
31 =

Γ
(2)
33 = Γ

(2)
34 = Γ

(2)
41 = Γ

(2)
43 = Γ

(2)
44 = I3.

By calculation, we can see that ||Γ̄(1)|| =2.099,
||Γ̄(2)||=0.839, so the upper bounds are µ1 = 2.1 µ2 = 0.9.
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Fig. 1. Error evolution of the first node between the drive-response network
(20) and (21)
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̺ 21

̺ 22

Fig. 2. Error evolution of the second node between the drive-response
network (20) and (21)

For convenience, the function projective matrices are
chosen as Λ1(t) = Λ3(t) = I3 respectively, while Λ2(t) =(

1 0 1 −1
0 −1 1 0

)T
, Λ4(t) =

(
1 0 1
0 0.5 1

)T
.

Moreover, by calculation of the matrix norm, we can
get λ = 1.91. The time delay dτ (t) = 0.1sin(t), so
the bound of time delay are dτ = τ̃ = 0.1. Matrices
Qi are identity matrices, i.e.Q3 = Q4 = I3, Q2 = I2.
The external disturbances of drive and response network
are respectively:ω1 = 0.1 sin(10t);ω2 = 0.1;ω3 =
0.2 sin(4t);ω4 = sin(4t);ω4 = 0.15 cos(5t);ϖ1 =
0.1 sin(2t);ϖ1 = 0.05 cos(10t);ϖ3 = 0;ϖ4 = 0.04 sin(5t).
Basing on the condition of Corollary 1, one can have
that η = 0.4, κ = 0.6, ε=0.5, the feedback gains are
chosen as l1=20, l2 = 25, l3 = 30, l4= 25. Choosing initial
values randomly in [−10, 10], since t0 = 0, the GFPFTLS
of the drive-response network (1) and (2)with controller
(6) is achieved, and the time needed is consistent with
theoretical results (18) . The states error curves between the
complex network (1) and (2) are showed in Figure 1-4.
From the simulation results, we can found that the error
will tend to 0 in a finite time when the controller (6) is
added to the coupled dynamical network (2). Also if we
choose larger feedback gains, li, i = 1, 2, 3, 4, the less time
needed to realize general function projective finite-time lag
synchronization.

V. CONCLUSIONS

We investigated GFPFTLS problems of CDNs with d-
ifferent dimensions of nodes here. Based on finite-time
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Fig. 3. Error evolution of the third node between the drive-response network
(20) and (21)
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Fig. 4. Error evolution of the fourth node between the drive-response
network (20) and (21)

stabilization theorem of time-delay system, some useful time-
delay independent GFPFTLS criteria have been obtained
with Razumikhin analytical approach.

Also an illustrative example with MATLAB numerical
simulation basing on the different dimensions of nodes was
given to demonstrate the feasibility of the proposed synchro-
nization methods. In the simulations setction, the author took
heterogeneity of nodes and time-varying delay caused by
information transmission into account. As the whole systems’
error needed for the controller designed rather than the isolate
node error of each network, much larger feedback gains are
needed in some cases.

With the help of the Razumikhin approach, considering the
systems’ general function prescribed/fixed-time projective
lag synchronization with distributed time delay, stochastic
noise which is agreement with the branches of science and
industry will be the author’s future work. Also how to expand
the theoretical results to the practical industrial and medical
applications will be taken into account next.
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