
 

  

Abstract—The development of a more effective model and 

the prediction of trends in shorelines were the two goals of this 

study. For simulations of shoreline evolution utilizing the 

straight twin groin structure, we used two mathematical 

models. A one-dimensional evolution model makes up the 

initial model. The first model is transformed into a non-

dimensional evolution model in the second model. We propose 

a method for transforming one-dimensional models into non-

dimensional models, that involves creating initial and 

boundary conditions for each model. The forward time 

centered space (FTCS) technique and the Saulyev finite 

difference technique were applied to approximately represent 

shoreline evolution each year. Their simulation results 

demonstrate that when the engineering structure was built on 

the nearby shorelines, shoreline evolution accelerated annually. 

As the Saulyev finite difference technique is not restricted by 

the stability conditions, it produces better simulations. 

 
Index Terms— finite difference method, mathematical 

model, non-dimension model, shoreline evolution, twin-groin 

structure 
 

I. INTRODUCTION 

HE issue of coastal erosion is a natural process that 

changes the shoreline's physical qualities. The processes 

of wind, waves, currents, changes in sea level, and the 

imbalance of sand sediment all have an influence on there. 

The shoreline models require being analyzed and 

qualitatively evaluated in order to predict future topographic 

changes.  

Mathematical models are used to solve a wide variety of 

problems in both science and engineering. For example, the 

problems of transportation pollution [1], [2], salinity in 

rivers, streams, and groundwater [3], [4], and the 

distribution of contaminants in the waking lake [5], [6]. 

These problems can be explained by the diffusion equations.  

The most popular coastline transformation model has seven 
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models: 1) ONELINE model (One-line Model), 2) 

GENESIS model (Generalized model for simulating 

shoreline change), 3) LITPACK model (Littoral processes 

and coastline kinetics) [7], 4) UNIBEST model (Uniform 

beach sediment transport), 5) GENCADE model (Genesis 

and cascade), 6) SMC model (Sistema de modelado costero) 

[8], and 7) BEACHPLAN model. Each model is suitable for 

sandy or pebbly beaches and subject to different limitations 

associated with its use. In [9], they describe the development 

of a coastal morphological model. Recommended for the 

full and time-based simulation of the evolution of the 

coastline in which the coastline is governed by practical and 

reliable structures and boundary conditions. Additionally, 

the capabilities of the ONELINE model were tested by 

comparing the results with actual measured data. In [10], 

they introduced a numerical modeling region called 

GENESIS, which is used to model long-term coastal 

changes caused by spatial and temporal changes. The 

objective of the research [11] was to determine the optimal 

values for the coefficients K1 and K2 so that the predicted 

coastal changes had an acceptable correlation with the 

results of satellite data processing. The results showed that 

the predictions were well correlated with the data and the 

numerical models. GENESIS was applicable not only for 

coastal predictions on sandy beaches but also for muddy 

beaches. In [12], they describe the hypothesis and the 

development of governing equations in a general form. In 

addition, they present a technique used to obtain more than 

25 analytical solutions, which cover situations related to 

both structured and unstructured shoreline change. For 

example, beach filling of initial shape, sand mining, river 

discharge, groin and jetty and breakwater etc. In [13], they 

describe an extension of the concept for analytical solutions 

of existing single-line models taking into account arbitrary 

time-varying wave conditions. In addition, it gives an initial 

shoreline shape an arbitrary function of coastline distance 

which in practice can be determined by survey. An explicit 

solution is obtained from the technique of integral 

transformation. This new semi-analytical solution has a 

more complex expression form than the previous analytical 

expression obtained from steady-state waves. The general 

expression of the semi-analytical solution can be used to 

describe time-varying wave conditions for the initial beach 

shape as a function of arbitrary position and for the source 

of sediment as a known function that depends on time and 

space. But these solutions are extremely effective and have a 
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few errors. Moreover, the new solution provides a valuable 

tool to extend the range of solutions by which it can test the 

accuracy and convergence of time-dependent finite-

difference numerical models. 

In [14], they introduced a one-dimensional model of 

shoreline evolution with two or three groin structures. They 

have also extended the concept by taking the wavelength 

influence on the structure into account in the system. In 

research [15], they introduced a governing model called a 

non-dimensional model. This model was used to simulate 

the change in coastlines when a single groin was built and 

used to manipulate physical parameters. It is useful in terms 

of computational time and reduced budget. Moreover, they 

also introduced an unconditionally stable explicit numerical 

technique to estimate the model's solution. 

In this research, we have two objectives: the first is to 

study the model's effectiveness. We developed the model to 

achieve higher efficiency and faster computation time by 

converting it to a non-dimensional model. Thus, there are 

two governing models: one-dimensional and non-

dimensional shoreline evolution models. The last is to 

predict the trend in long-term erosion and deposition along 

shores where the twin groins are constructed. Moreover, we 

also introduced the determination of initial and boundary 

conditions suitable for the model. The finite difference 

techniques are used to approximate the model's solution. 

II. A SHORELINE EVOLUTION MODEL 

A. The Governing Equation 

A fundamental mathematical model for describing coastal 

change was developed under the conservation of sand 

volume and two primary assumptions: 

1) The beach profile retains the average shape of the 

coastline. Although, it is constantly moving seaward and 

shoreward. For all points on this profile, it is enough to 

determine the location of the entire profile with respect to a 

baseline. So, one contour-line can used to describe the 

change in the shape and volume of a beach plan. In addition, 

we use this contour-line to identify it easier to the coastline; 

2) The profile moves within two well-defined limiting 

heights i.e., the berm height 
BD  and the depth of closure 

CD . Both heights were measured from the vertical datum, 

this is the mean sea-level (MSL), etc. 

Thus, we obtain the following differential equation for 

shoreline evolution: 
 

 
1

B C

y Q

t D D x

  
= − 

 +  
 , (1) 

 

where y  is the cross-shore position of shoreline (m), x  is 

the longshore distance (m), t  is time (day), CD  is the depth 

of closure (m), BD  is the berm height (m), and Q  is the 

longshore transport rate (m3/day). The model state variable 

is the position of the shoreline ( ),y x t , which is a function 

of time t  and coordinate x .  

The longshore sand transport rate is the quantity created 

by a wave that strikes the coastline obliquely. The coastal 

engineering research center [16] has recommended the 

general term for longshore sand transport rates Q  as 

follows: 
 

 ( )0 sin 2 bQ Q =  , (2) 
 

where 
0Q  is the amplitude of the long-shore sand transport 

rate, and 
b  is the impact angle between breaking wave 

crests angle with local shoreline. The quantity 
0Q  is derived 

empirically, it is expressed as a functional relationship with 

parameters in which can written as [17]: 
 

 ( )
( )( )

2

0
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b bg
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K
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=

− −
 , (3) 

 

where the subscript b  represent the value at the point 

breaking,   is the density of sea water (kg/m3), 
s  is the 

density of the sediment (kg/m3), n  is the porosity, K  is the 

dimensionless coefficient which is a function of particle 

size, H  is the wave height (m), and 
gc  is the wave group 

velocity (m/day). Equation (3) is called the empirical 

predictive formula for the amplitude of the long-shore sand 

transport rate.  

The impact angle between breaking wave crests angle 

with local shoreline 
b can be written as: 

 

 
1

0 tanb

y

x
  −  

= −  
 

 , (4) 

 

where 
0  is the angle between breaking wave crests and the 

x-axis (degree). For a beach with a slight slope, the angle of 

incidence that the breaking waves make against the 

shoreline is negligible. Therefore, it is assumed that 
 

 ( )sin 2 2b b   , (5) 

and 

 
1tan

y dy

x dx

−    
   

   
 . (6) 

 

Substituting (4) into (2), and using the assumptions for the 

angle of incidence (5)-(6), we obtain (7) as follows: 
 

 0 02 2
y

Q Q
x


 

= − 
 

 . (7) 

 

Substituting (7) into (1), we obtain (8) as follows: 
 

 

2

2

y y
D

t x

 
=

 
, (8) 

 

for all ( ),x t    such that    0, 0,L  =  , 360 Yt = , 

0L  , 0  , where 
Yt  is time (years), L  is the distance of 

shoreline (m) and 
 

 
02

B C

Q
D

D D
=

+
 . (9) 

 

Equation (8) is a parabolic partial differential equation, so 

we have to define initial and boundary conditions under this 

problem. The coefficient D  is a coefficient describing the 

time scale of the shoreline change after wave action. 

Therefore, a high amplitude of long-shore sand transport 

rate 0Q  will enable rapid shoreline responses. On the other 
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hand, a large depth of closure 
CD  will slow the response of 

the coastline. The concept of shoreline evolution with a 

straight twin groin structure is illustrated in Figs. 1-2 below. 
 

 
Fig. 1.  The shoreline begins with a straight twin groin structure. 

 

 
Fig. 2.  Shoreline evolution with a straight twin groin structure. 

 

B. The Initial and Boundary Conditions of the One-

Dimensional Model 

Suppose that the initial shoreline contour is in equilibrium 

where it is parallel to the x-axis and that every location has 

the same wave incidence angle. Therefore, the expression of 

the initial condition is 
 

 ( ),0 0y x =  , (10) 
 

for all  0,x L . The expressions of left and right boundary 

conditions are defined as follows: 
 

 ( )0tan
y

x



= −


 at 0x =  , (11) 

 

                 ( )0tan
y

x



=


 at x L=  , (12) 

for all  0,t  .  

Both of these expressions can be used to immediately 

indicate the position of shorelines on groins when structures 

are used to block the transport of sand. The above setting 

conditions are illustrated in Figs. 3-4. 
 

 
Fig. 3.  Breaking wave crests impact angle (the version is redrawn based 

on [15]). 

 
Fig. 4.  Setting initial and boundary conditions. 

III. A NON-DIMENSIONAL MODEL 

A. The Non-Dimensional Shoreline Evolution Model 

Applying the dimensionless technique [18] to (8), where 

the variables /X x L=  and */Y y Y=  are defined as the 

non-dimensional variables and applying the chain rules of  
 

 
1y y

x X L

   
=  

   
 , (13) 

 

 

2 2

2 2 2

1y y

x L X

 
=

 
 . (14) 

 

We obtain 
 

 

2

2 2

Y D Y

t L X

 
=

 
 . (15) 

 

Dividing by the coefficient of the highest order derivative 

term and setting 2/T Dt L=  or 2 /t L T D= . Then we 

substitute t  on the left-hand side of (15), we obtain the 

following non-dimensional shoreline evolution equation: 
 

 

2

2

Y Y

T X

 
=

 
 , (16) 

 

for all ( ),X T    such that    0,1 0, =   , 
2

D

L


 =  

and 0  , where 
*Y  is the expected evolution (m),  

 

 
*

y
Y

Y
=  , (17) 

 

 
x

X
L

=  , (18) 

 

 
2

Dt
T

L
=  . (19) 

 

B. The Initial and Boundary Conditions of the Non-

Dimensional Model 

In order for all the conditions of both models to be 

corresponding, we apply dimensionless technique [18] to 

those conditions in (10)-(12). The initial condition becomes 
 

 ( ),0 0Y X =  . (20) 
 

The left and right boundary conditions become 
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 ( )0

*

tan
Y L

X Y



= −


 at 0X =  , (21) 

and 

 ( )0

*

tan
Y L

X Y



=


 at 1X =  . (22) 

 

IV. NUMERICAL TECHNIQUES 

In this section, we begin by considering dividing the 

domains   into the mesh-grids, where we divide the closed 

interval [0,1]  into M  sub-intervals and the closed interval 

 0,  into N  sub-intervals, which means that 1M X =  

and N T  =  respectively. Any point on the grid ( ),m nX T  

is defined by mX m X=   and nT n T=   for all indices 

0,1, ,m M=  and 0,1, ,n N= , in which both M  and 

N  are non-negative integers, X and T  are the X-axis 

and the T-axis increments (step size). Therefore, we can 

substitute the approximation at any point on the grid by 

( ),m nY X T , or we can write it using the notation 
n

mY . The 

solutions of the model in section III are numerically 

approximated using the forward time centered space (FTCS) 

techniques and the Saulyev finite difference (Saulyev) 

technique. 
 

A. The Forward Time Centered Space (FTCS) Technique 

Applying the forward time centered space (FTCS) 

technique [19] to (16). We have the following finite 

difference approximation [15]: 
 

 ( ), n

m n mY X T Y  , (23) 

 

 

1n n

m mY YY

T T

+ −


 
 , (24) 

 

 
1 1

2

n n

m mY YY

X X

+ −−


 
 , (25) 

 

 

2
1 1

2

2n n n

m m mY Y YY

XX

+ −− +



 . (26) 

 

Substituting (23)-(26) into (16), we obtain the following 

finite difference equation: 
 

 
( )

1

1 1

2

2n n n n n

m m m m mY Y Y Y Y

T X

+

+ −− − −
=

 
. (27) 

 

The equation (27) can be arranged in the explicit finite 

difference form as follows: 
 

 ( )1

1 11 2n n n n

m m m mY Y Y Y  +

+ −= + − +  , (28) 

 

where 1,2, , 1m M= −  , 0,1, , 1n N= −  and 

( )
2

T

X



=


. 

 

B. The Saulyev Finite Difference (Saulyev) Technique 

Applying the Saulyev finite difference technique [20] to 

(16). We have the following finite difference approximation 

[21]: 
 

 ( ), n

m n mY X T Y  , (29) 

 

 

1n n

m mY YY

T T

+ −


 
 , (30) 

 

 
1 1

2

n n

m mY YY

X X

+ −−


 
 , (31) 

 

 

( )

1 12
1 1

2 2

n n n n

m m m mY Y Y YY

X X

+ +

+ −− − +


 
 . (32) 

 

Substituting (29)-(32) into (16), we obtain the following 

finite difference equation: 
 

 
( )

1 1 1

1 1

2

n n n n n n

m m m m m mY Y Y Y Y Y

T X

+ + +

+ −− − − +
=

 
 . (33) 

 

The equation (33) can be arranged in the explicit finite 

difference form as follows: 
 

 ( ) ( )
11 1

1 11 1n n n n

m m m mY Y Y Y   
−+ +

+ −
 = + + − +   , (34) 

 

where 1,2, , 1m M= −  , 0,1, , 1n N= −  and 

( )
2

T

X



=


. 

 

C. The Application of the Traditional Forward Time 

Centered Space (FTCS) Technique to the Left and Right 

Boundary Conditions 

In this problem, we have a Neumann left and right 

boundary condition. At the left boundary and right boundary 

points on the domain, we cannot approximate using (28) and 

(34) because those equations generate points outside of the 

domain. Those points are called the fictitious points. We 

approximated the solution by applying the forward time 

centered space (FTCS) technique [19] to (16). We have the 

following finite difference approximation: 
 

 ( ), n

m n mY X T Y  , (35) 

 

 

1n n

m mY YY

T T

+ −


 
 , (36) 

 

 
1 1

2

n n

m mY YY

X X

+ −−


 
 , (37) 

 

 

2
1 1

2

2n n n

m m mY Y YY

XX

+ −− +



 . (38) 

 

Substituting (35)-(38) into (16) and rearranging it in the 

explicit finite difference form as follows: 
 

 ( )1

1 11 2n n n n

m m m mY Y Y Y  +

+ −= + − +  , (39) 

 

for all  1,2, , 1m M= −  , 0,1, , 1n N= −  and  
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( )
2

T

X



=


, 

( )

*

2L X

Y



= . 

 

For 0m = , we eliminate the fictitious point 1

nY−  using the 

central finite difference technique with the Neumann left 

boundary condition. We obtain the approximation at the 

fictitious point: 
 

 ( )1 1 0tann nY Y  − = − −  . (40) 

 

Substituting (40) into (39) and rearranging it in the explicit 

finite difference form as follows: 
 

 ( ) ( )1

1 02 1 2 tann n n

m m mY Y Y   +

+= + − − −  . (41) 

 

For m M= , we eliminate the fictitious point 1

n

MY +  using 

the central finite difference technique with the Neumann 

right boundary condition. We obtain the approximation at 

the fictitious point: 
 

 ( )1 0tann n

M MY Y  + = −  . (42) 

 

Substituting (42) into (39) and rearranging it in the explicit 

finite difference form as follows: 
 

 ( ) ( )1

1 01 2 2 tann n n

m m mY Y Y   +

−= − + +  . (43) 

 

Equations (41) and (43) can be used to find approximate 

solutions on the left boundary and right boundary points on 

the domain. 
 

V. NUMERICAL EXPERIMENT AND RESULT 

Consider the shoreline evolution occurring between a 

straight twin groin structure as shown in Figs. 1-2. Let y  be 

the position of the shoreline (m). The distance between the 

structures is 600L =  m. The expected evolution over 1-25 

years is 
* 60Y = m.  

The sediment density is 1700s = kg/m3. The sea water 

is 1020 =  kg/m3. The porosity is 0.406n = . The non-

dimensional coefficient of particle size is 0.375K = . The 

averaged berm height is 2BD =  m. The averaged closure 

depth is 28CD =  m. The relevant physical parameters are 

listed in Table I below.  
 

 
 

Field data of the wave group velocity and the wave height 

for each month over a year measured in the Gulf of Thailand 

[14] are shown in Table II below. 
 

 
 

The amplitudes of the long-shore sand transport rate are 

calculated by (3) and they are listed in Table III and Fig. 5 

below.  
 

 
 

 
 

Fig. 5.  Amplitude of the long-shore sand transport rate. 
 

In our assumption, we assume that the amplitudes of the 

long-shore sand transport rate are equal every year, so their 

average is 
0 1334.40Q =  m/day. The angle impact of the 

breaking wave is 
0 0.02 =  (degree). The T-axis increment 

is ( )0.0002471 9000T N = = . The X-axis increment is 

( )0.0416667 24X M = = . We will approximate the 

solution of (16) under the constraints corresponding to the 

TABLE III 

THE AMPLITUDE OF THE LONG-SHORE SAND TRANSPORT RATE 

Month ( )0 /Q m day  

January 1191.99 
February 931.96 

March 86.80 
April 921.61 

May 84.63 

June 82.07 
July 1095.34 

August 1246.07 
September 1825.95 

October 5580.26 

November 1448.57 
December 1515.60 

Average 1334.40 

 

TABLE II 

THE WAVE GROUP VELOCITY AND THE WAVE HEIGHT 

Month ( )/gc m day  ( )H m  

January 8951.04 1.5 
February 6998.40 1.5 

March 5866.56 0.5 
April 6920.64 1.5 

May 5719.68 0.5 

June 5546.88 0.5 
July 8225.28 1.5 

August 1246.07 1.5 
September 1825.95 1.5 

October 5580.26 2.5 

November 1448.57 1.5 
December 1517.60 1.5 

 

TABLE I 
PARAMETERS 

Meaning Symbol (Unit) Values 

The sediment density ( )3/s kg m  1700 

The sea water ( )3/kg m  1020 

The porosity n  0.406 

The non-dimensional coefficient which 

is a function of particle size 
K  0.375 

The averaged berm height ( )BD m  2 

The averaged closure depth ( )CD m  28 
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initial and boundary conditions (20)-(22) by using two 

numerical techniques: the forward time centered space 

(FTCS) and the Saulyev finite difference (Saulyev) 

techniques. For the internal points of the domain, we use 

(28) and (34), respectively. As for the remaining points of 

the domain (left and right boundary), we use (41) and (43), 

respectively. Since we now have a dimensionless solution. 

To convert our solutions to one-dimensional solutions, we 

can easily find them by using the relation of the variables 

(17)-(19): 
*y YY= , x XL= , and 2 1t L D T−= . 

 

 

 
Fig. 6.  The approximated shoreline evolution over 1 year. 

 
Fig. 7.  The approximated shoreline evolution over 5 years. 

 
Fig. 8.  The approximated shoreline evolution over 10 years. 

 
Fig. 9.  The approximated shoreline evolution over 15 years. 

 

TABLE IV 
COMPARISON OF THE STABILITY OF EACH TECHNIQUE WHEN CHANGING 

THE GRID SIZES. 

x  X  t  T  
Stability 

FTCS Saulyev 

25 0.0417 

1 0.0002 S S 
5 0.0012 U S 

10 0.0025 U S 

15 0.0037 U S 
30 0.0074 U S 

50 0.0833 

1 0.0002 S S 

5 0.0012 S S 
10 0.0025 S S 

15 0.0037 U S 
30 0.0074 U S 

100 0.1667 

1 0.0002 S S 

5 0.0012 S S 
10 0.0025 S S 

15 0.0037 S S 

30 0.0074 S S 

150 0.2500 

1 0.0002 S S 

5 0.0012 S S 

10 0.0025 S S 
15 0.0037 S S 

30 0.0074 S S 

200 0.3333 

1 0.0002 S S 

5 0.0012 S S 

10 0.0025 S S 
15 0.0037 S S 

30 0.0074 S S 

300 0.5000 

1 0.0002 S S 
5 0.0012 S S 

10 0.0025 S S 
15 0.0037 S S 

30 0.0074 S S 

Note: U := Unstable and S := Stable 

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 296-304

 
______________________________________________________________________________________ 



 

 
Fig. 10.  The approximated shoreline evolution over 20 years. 

 

 

 
Fig. 11.  The approximated shoreline evolution over 25 years. 

 

 
Fig. 12.  Comparison of annual shoreline evolution approximated using 

the FTCS technique. 

 
Fig. 13.  Comparison of annual shoreline evolution approximated using 

the Saulyev technique. 

 

The value of approximated shoreline evolution, which 

uses the forward time centered space (FTCS) and the 

Saulyev finite difference (Saulyev) techniques, are listed in 

Tables V-VI. The absolute and the total-absolute differences 

between the two techniques for each year are listed in Table 

VII. 
 

 
 

 

VI. DISCUSSION 

The measurements of shoreline position (shoreline 

evolution) can be simulated into dimensional and non-

dimensional mathematical models. In which both models 

can be defined parameters that correspond to reality are not 

different.  

TABLE V 

THE APPROXIMATED SHORELINE EVOLUTION OVER 20 YEARS USING 

THE FORWARD TIME CENTERED SPACE (FTCS) TECHNIQUE. 
Time 

(Years) 

Distances (m) 

0 50 100 150 200 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 4.0955 3.1836 2.4469 1.8818 1.4834 

5 12.6734 11.7567 11.0066 10.4231 10.0064 

10 23.3501 22.4333 21.6832 21.0998 20.6831 
15 34.0267 33.1100 32.3599 31.7764 31.3597 

20 44.7034 43.7866 43.0365 42.4531 42.0364 
25 55.3800 54.4633 53.7132 53.1297 52.7130 

Time 

(Years) 

Distances (m) 

250 300 350 400 450 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 1.2468 1.1683 1.2468 1.4834 1.8818 

5 9.7564 9.6730 9.7564 10.0064 10.4231 

10 20.4330 20.3497 20.4330 20.6831 21.0998 
15 31.1097 31.0263 31.1097 31.3597 31.7764 

20 41.7863 41.7030 41.7863 42.0364 42.4531 

25 52.4630 52.3796 52.4630 52.7130 53.1297 

Time 

(Years) 

Distances (m) 

500 550 600   

0 0.0000 0.0000 0.0000   
1 2.4469 3.1836 4.0955   

5 11.0066 11.7567 12.6734   
10 21.6832 22.4333 23.3501   

15 32.3599 33.1100 34.0267   

20 43.0365 43.7866 44.7034   
25 53.7132 54.4633 55.3800   
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Two numerical techniques, namely the forward time 

centered space (FTCS) and the Saulyev finite difference 

(Saulyev) techniques were used. The results are listed in 

Tables V-VI, respectively. 

For the FTCS and Saulyev techniques after 1 year as 

illustrated in Fig. 6, the highest shoreline position was 

4.0955 and 4.1233 m, respectively, and the lowest shoreline 

position was 1.1638 and 1.1718 m, respectively. 

For the FTCS and Saulyev techniques after 5 years as 

illustrated in Fig. 7, the highest shoreline position was 

12.6734 and 12.6771 m, respectively, and the lowest 

shoreline position was 9.6730 and 9.6759 m, respectively. 

For the FTCS and Saulyev techniques after 10 years as 

illustrated in Fig. 8, the highest shoreline position was 

23.3501 and 23.3529 m, respectively, and the lowest 

shoreline position was 20.3497 and 20.3525 m, respectively. 

For the FTCS and Saulyev techniques after 15 years as 

illustrated in Fig. 9, the highest shoreline position was 

34.0267 and 34.0296 m, respectively, and the lowest 

shoreline position was 31.0263 and 31.0292 m, respectively. 

For the FTCS and Saulyev techniques after 20 years as 

illustrated in Fig. 10, the highest shoreline position was 

44.7034 and 44.7062 m, respectively, and the lowest 

shoreline position was 41.7030 and 41.7058 m, respectively. 

For the FTCS and Saulyev techniques after 25 years as 

illustrated in Fig. 11, the highest shoreline position was 

55.3800 and 55.3829 m, respectively, and the lowest 

shoreline position was 52.3796 and 52.3825 m, respectively. 

As in Fig. 12-13, if we compare each year, it will be 

found that shoreline evolution tends to increase 

continuously. In addition, we also found that the results 

obtained from the two numerical techniques were close as 

listed in Table VII. Therefore, there was no difference in 

choosing from either of these two techniques. But if the 

stability conditions ( 0 0.5  ) are taken into account, 

the Saulyev technique may be a better choice since it is not 

constrained by the stability conditions as listed in Table IV. 

VII. CONCLUSION 

We demonstrate how the shoreline changes as a straight 

twin-groin construction is constructed. A one-dimensional 

model and a non-dimensional model, both of which may 

evaluate local shoreline lengths and physical parameters, 

make up the proposed shoreline evolution model. Here, we 

also describe a process for transforming a one-dimensional 

model into a non-dimensional model, which includes initial 

and boundary conditions. The forward time-centered space 

(FTCS) and Saulyev finite difference techniques were 

employed for the numerical approximation method. The 

results of the modeling show the following: 1) The shoreline 

evolution accelerated annually when the engineering 

structure was constructed on the nearby shorelines; 2) Twin 

groins have a higher evolution efficiency than single groins; 

3) The non-dimensional model provides great computational 

flexibility; 4) The Saulyev method is an unconditionally 

explicit finite difference method. Therefore, this method 

yields highly accurate calculation results and reduces the 

calculation time when large time increments are required. 

Therefore, this method yields highly accurate calculation 

results and reduces the calculation time when large time 

increments are required. The proposed computational 

techniques are able to be applied in several oceanic 

scenarios and other types of groins.  
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