
 

  

Abstract—Earlier and more accurate diagnosis of ischemic 

stroke is crucial in enhancing the therapeutic outcome for 

patients. CT technology currently stands as the most rapid 

diagnostic modality in clinical medicine. Due to the diverse and 

complex shape of ischemic stroke lesions, accurate 

segmentation remains a challenging task for automated 

diagnosis systems. This paper, proposes an ischemic stroke 

lesion segmentation network, LiU-Net. It based on KiU-Net, 

which improves network performance and is more suitable for 

practical lesion segmentation applications. Firstly, KiU-Net 

combines the undercomplete network U-Net and the 

overcomplete network Kite-Net. It can simultaneously learn 

both image detail features and global structural features. 

Secondly, LiU-Net combines the axial self-attention module 

with KiU-Net. The introduction of attention can make the 

network achieve both segmentation accuracy and efficiency. In 

addition, to improve the flexibility of axial self-attention, a gate 

factor is introduced within the module to encode information 

about spatial structure of image. Finally, to address the issue of 

gradient vanishing, we incorporated residual connection into 

the network to bolster the feature maps at each depth level and 

facilitate effective cross depth feature integration. Since there 

are few publicly available datasets of CT images of ischemic 

stroke in medical images. We applied to Longcheng District 

People's Hospital, and processed the obtained images to form a 

dataset of ischemic stroke. The experimental results shown, 

LiU-Net is more accurate in segmenting different shapes of 

ischemic stroke lesions. Compared with KiU-Net, LiU-Net 

improves the Dice, Acc, and mIoU metrics by 2.44%, 3.4%, and 

3.89% respectively. Therefore, LiU-Net is highly suitable for 

ischemic stroke lesion segmentation, and effectively assist 

computers in this task. 

 
Index Terms—Ischemic Stroke, Medical Image Segmentation, 

KiU-Net, Residual Connection, Axial Self-Attention Machine. 

 

I. INTRODUCTION 

Ischemic stroke is a cerebrovascular disease [1], and it is 

also one of the most common death and disability diseases 

today. It can occur at any age, but primarily affects 

individuals aged 50-70 [2]. The hallmark symptom of 

ischemic stroke is the abrupt onset of focal neurological 

impairment, such as dysphasia, hemianopsia, and sensory 

loss. These symptoms can potentially evolve into chronic 
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conditions like dementia and hemiplegia.  
In clinical practice, the severity of stroke is determined 

based on the location, size, and density of the infarction. 

Stroke has no obvious warning signs, and its progression of 

the disease can be rapid. Within hours of onset, the patient's 

body mechanism can be seriously affected. This can lead to 

hypoxia in the brain, thrombosis in the carotid or internal 

carotid artery, and widespread cerebral infarction. At present, 

the first six hours after onset are considered the ‘golden hour’ 

[3]. Durning this period, both short-term and long-term 

treatment are very ideal, and the patient has the possibility of 

complete recovery. The timeliness of diagnosis is crucial for 

treatment, requiring rapid localization and quantification of 

the lesion after onset. This process can be influenced by 

subjective factors such as doctor's experience, resulting in 

diagnostic errors, or even missing the optimal opportunity for 

treating ischemic stroke patients. Therefore, how to save the 

time and energy of doctors while observing ischemic stroke 

lesions in CT, and is still an urgent computer-aided diagnosis 

method in clinical practice [4-6]. 

In the past, there have been many methods for the 

segmentation of stroke lesions. For example, texture-based 

feature extraction algorithms are widely used in the 

segmentation of brain lesions in medical imaging [7]. 

Another approach is to use the Gray Level Co-occurrence 

Matrix [8] (Gray Level Co-occurrence Matrix, GLCM) to 

extract the features of the image, and then classifying these 

features using neural network models. In recent years, many 

stroke lesion segmentation methods based on random forest 

[9-11], which have yielded favorable outcomes. But they rely 

heavily on manual feature extraction and have more complex 

steps. However, most of these methods can only analyze and 

apply to ischemic stroke MRI images and low-level image 

features, lacking robustness for CT images with low 

signal-to-noise ratio and artifacts. U-Net [12] is a classic 2D 

segmentation network, which is used in many medical image 

lesion segmentations, but it still lacks attention to image 

features. Some scholars have improved U-Net deficiency, 

and proposed KiU-Net [13], which further captures edges and 

minute anatomical structures that are often overlooked by 

other approaches.  

Although there have been improvements in image 

segmentation networks for ischemic stroke in recent years, 

their segmentation accuracy still requires more in-depth 

research and improvement. In this paper, we presented 

LiU-Net network for segmentation of ischemic stroke. 

Compared to previous networks, LiU-Net network differs 

from them in the following aspects. First, LiU-Net network 

synthesizes the strengths of both undercomplete U-Net and 

overcomplete network Kite-Net, which can learn image 

detail features and global structural features at the same time. 

LiU-Net: Ischemic Stroke Lesion Segmentation 

Based on Improved KiU-Net 

Yingwei Li, Xiaoxia Zhang, Luzhou Liu 

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 369-378

 
______________________________________________________________________________________ 



 

Second, the axial self-attentive module is embedded into 

KiU-Net network, which endows the network with a 

powerful image spatial structure encoding ability, and 

enables the network to better learn the characteristics of 

ischemic stroke lesions. In addition, we introduced gate 

factors into the axial self-attention module, enabling the 

network to acquire more accurate feature information during 

upsampling and downsampling. Finally, during the training 

process, as the network structure is getting deeper and deeper, 

the gradient of KiU-Net network disappears. To heighten the 

feature maps at different depths of the network, we 

introduced residual connection modules. This approach 

allowed for the integration of features at various levels, 

resulting in effective fusion. The parallel network 

architecture with these changes is the proposed LiU-Net. To 

validate the efficacy of the improved network in ischemic 

stroke segmentation, we applied to the Longcheng District 

People's Hospital of Chaoyang City, Liaoning Province. We 

obtained ischemic stroke slice samples under the guidance of 

professional doctors with 30 years of experience to form an 

ischemic stroke dataset, and annotated by MITK Workbench 

software. The finding of the experiment indicate that the 

performance of LiU-Net is better than that of the original 

U-Net, KiU-Net, and some recent new networks. It has 

achieved remarkable results in the segmentation small 

anatomical landmarks and fuzzy noise boundaries. 

II. MATERIALS AND METHOD 

A. U-Net Segmentation Network 

U-Net is an FCN-based segmentation network proposed by 

Ronneberger et al. [14] in 2015 for the ISBI Challenge in 

2015. U-Net increases the number of channels by upsampling, 

which allows it to propagate contextual information to higher 

resolution. By cleverly combining high-level and low-level 

information through residual connections, and the deep 

abstract information at the decoding layer can better utilize 

the shallow information transmitted by the encoding layer, 

making the image segmentation effect better [15]. 

U-Net consists of two parts, the left side is the contraction 

path, and the right side is the expansion path. The purpose of 

the contraction path is to capture content, while the role of the 

expansion path is to aid in precise positioning. As shown in 

Fig. 1, its expansion path is symmetrical to the contraction 

path, forming a U-shaped segment, hence the name U-Net. 

 Its emergence to some extent solves the problems of 

Convolutional Neural Network (CNN [16]) that require a 

large amount of labeled data for training, and the high cost of 

data labeling for medical images. By establishing different 

scale feature fusion channels between the symmetrical 

encoder and decoder, the network can better capture both 

global and local features of images. It is also suitable for 

medical image segmentation tasks with limited data 

annotation. 

The convolution structure used in the standard U-Net 

network structure is unified into 3x3 convolution kernels, 

followed by four pooling layers, with a total of five scales 

used for dimensionality reduction. The total number of 

feature channels in U-Net can reach thousands, resulting in a 

large number of training parameters. During training, the 

encoding and decoding paths need to extract deep features 

repeatedly. Due to the abstraction and low-resolution 

characteristics of deep features, the difficulty of training 

increases, and even the training is unstable and insufficient. 

  Compared with U-Net, the current U-Net3+ [17] has 

limitation such as excessive parameter quantity and 

redundancy, which may have some drawbacks for small 

sample and small target ischemic stroke lesion segmentation. 

B. Multi-branch Network KiU-Net 

U-Net is an outstanding deep learning model, and has been 

widely used in medical image segmentation in recent years. 

However, in previous studies, its detection results have 

decreased in terms of reference value when detecting smaller 

anatomical structures with fuzzy noise boundaries. Vishal M. 

Patel et al. [18] proposed an overcomplete network 

architecture called Kite-Net (Ki-Net) [19] to solve this 

problem. In terms of spatial representation, it can project data 

into higher dimensions. Because the shape of Ki-Net is 

similar to that of a kite, it is called Kite Net. The knowledge 

acquired by Ki-Net enables to capture better shape contours 

and edges in comparison to the entire network. At the same 

 

 
 

Fig. 1.  U-Net network structure. 
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time, Vishal M. Patel et al. used a new cross-scale fusion 

strategy to effectively combine the advantages of Ki-Net and 

U-Net, and proposed a new architecture KiU- Net, as shown 

in Fig. 2. 

KiU-Net is a parallel network architecture that employs 

parallel processing, dividing the input image into 2 branches 

for simultaneous analysis. One branch is Ki-Net, and the 

other is U-Net. The former is suitable for capturing the edge 

details of low-level features, while the latter is suitable for 

capturing high-level features of the entire image. 

Additionally, to more effectively combine features at various 

level, Vishal M. Patel et al. proposed Cross Residual Fusion 

Block (CRFB) [20]. 

 
CRFB use two branches to extracts complementary 

features, and sends them separately through each brach, as 

shown in Fig.3. Feature maps from two networks i

UF  (U-Net) 

and 
i

i

KF  (Ki-Net) are combined, it first estimates cross 

residual feature i

UR and 
i

i

KR through a set of convolutional 

layers. Then, these crossed residual features are added to the 

original features i

UF and 
i

i

KF , resulting in complementary 

features ˆ i

UF and ˆ
i

i

KF , that is, ˆ i i i

U U UF F R= +  and 

ˆ
i i i

i i i

K K KF F R= + . Finally, the decoders are added to both 

branches, forwarded through a 1x1 conv layer, to generate the 

final segmentation mask. 

KiU-Net combines the characteristics of undercomplete 

and overcomplete networks, better capturing image 

information that U-Net's encoder-decoder architecture. This 

helps achieve accurate segmentation, and obtain better 

overall performance. It has achieved significant improvement 

in segmenting small anatomical   structures and blurred noise 

boundaries. 

III. THE PROPOSED METHODS  

A. Overall Structure of the Network 

In order to enhance the performance of KiU-Net and 

prevent gradient vanishing, we have introduced residual 

connections [21] in the branch U-Net of KiU-Net in this 

paper, naming this network as RKiU-Net. Moreover, we have 

introduced a gate factor to improve axial self-attention 

mechanism, forming a new attention module IASA. Finally, 

IASA attention module is introduced into RKiU-Net network 

to form a new segmentation network, LiU-Net, as shown in 

Fig.4. Compared with KiU-Net, our proposed LiU-Net has 

improved the accuracy and efficiency of global feature 

extraction. 

LiU-Net is composed of two parts: the overcomplete 

architecture Ki-Net, and the U-Net architecture that 

introduces the improved axial self-attention mechanism. 

Ki-Net is better at capturing the edge details of lesion features, 

while U-Net with the improved axial self-attention 

mechanism is responsible for capturing the overall features of 

lesions. The axial self-attention encoding channel is mainly 

responsible for improving the location correlation features 

between pixels in the image. The introduction of residual 

connections can avoid gradient vanishing caused by network 

deepening. 

In both branches of LiU-Net, we have 3-layer conv blocks 

in encoder and decoder. Each encoder in KiU-Net branch 

consists of a single 2D conv. After the 2D conv, bilinear 

interpolation with a scaling factor of 2 is added, followed by 

applying ReLU for nonlinear activation on this encoder. 

Likewise, each decoder is also composed of a single 2D conv. 

Instead of bilinear interpolation, a max pooling layer with a 

pooling coefficient of 2 is added after 2D conv. In addition, in 

the U-Net branch, an "encoder-decoder" structure is used. 

The image passes through the encoding convolution module 

to extract low-level features, and then enters two 

downsampling blocks in sequence to reduce the spatial size 

and obtain advanced features.  

After each downsampling block, the number of channels is 

doubled. Then, the downsampling end is sent to the improved 

axial self-attention module to aggregate global information 

 

 
 

Fig. 2.  Overview of KiU-Net architecture. 
 

 

 
 

Fig. 3.  Cross residual fusion block architecture. 
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and generate the output of the encoder. Correspondingly, the 

decoder uses three upsampling blocks to restore its 

corresponding feature images. In each level of the encoder 

and decoder of both branches of LiU-Net, residual 

connections are incorporated into each conv block. The 

architectural details of LiU-Net are illustrated in Fig.4, where 

residual connections are represented by solid line arrows.  

To adapt the segmentation task of ischemic lesions with 

different positions, shapes, and sizes for LiU-Net, we 

enhance the attention of the segmentation network to position 

encoding information. By adding an improved axial 

self-attention mechanism in the long connections of the 

branch U-Nets, it has a specific structure to process encoded 

position information, pays more attention to locations with 

rich feature information, and improves the segmentation 

performance of the network. 

B. Introducing KiU-Net with Residual Connection 

Residual connections are mainly used in the training of 

deep neural networks, especially when the number of layers 

in the network is large. The basic idea is to use multi-layer 

convolution to fit a residual mapping F(x), which is easier to 

optimize than directly learning an approximate identity 

mapping. Assuming the input variable is x, residual 

connections enable the direct transmission of the input 

variable x to the output through a "shortcut connection", 

serving as the initial outcome, and the output result is: 

( ) ( )H x F x x= +                             (1) 

When F(x)=0, H(x)=x, which is also known as the identity 

mapping. In this case, the learning objective of the residual is 

no longer a complete output, but the difference between the 

target value H(x) and x, namely: 

( ) ( )F x H x x= −                               (2) 

The way of "shortcut connection" can skip one or multiple 

layers and perform an identity mapping. This method can 

avoid problems such as gradient vanishing caused by 

network deepening, making the network better optimized.  

KiU-Net may not achieve idea results during training due 

to the small size of lesions and limited experimental data. 

Therefore, this paper introduces residual connections in the 

convolutional layer, which call RKiU-Net as shown in Fig.5. 

 
First, residual connections can solve the problem of 

gradient vanishing. When segmenting small lesions in stroke 

 

 
 

Fig. 5.  RKiU-Net network structure. 

 

 
 
Fig. 4.  LiU-Net network structure. 
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patients, as the depth of neural networks increases, the 

propagation of gradients is easily affected by gradient 

vanishing, making training difficult. Residual connections 

can provide a shortcut through direct connecting across 

layers, thus mitigating gradient vanishing. Second, due to the 

ability of residual connections to provide direct connections 

across layers, it can help models learn features better, further 

improving model performance.  Finally, residual connections 

can accelerate model training and reduce training difficulty, 

making it easier for models to converge and reducing the 

consumption of computing resources. 

C. Improved Axial Self-Attention IASA 

Self-attention mechanism [22] is usually used as a module 

to enhance the output of CNN, and has been successfully 

applied in many computers vision tasks. When the input 

feature map is complex, self-attention mechanism has a high 

computational complexity, thus limiting its application in 

some scenarios. In addition, self-attention mechanism does 

not contain any location information, when calculating 

non-local context dependency, but location information is 

very critical in vision tasks. To overcome these two 

limitations and retain the advantages of the self-attention 

mechanism, Jonathan Ho [23] et al. proposed a module called 

axial self-attention, which deconstructs the two-dimensional 

self-attention into two One-dimensional self-attention, the 

schematic diagram of the structure is shown in Fig.6. 

However, since the axial attention mechanism needs to 

calculate the relative position codes of each position, and 

other positions, the fixed-position code method is used. The 

network has problems such as high computational 

complexity, and insufficient flexibility to adapt to different 

positions of lesions. 

To improve the shortcomings of the network and enhance 

its efficiency, we introduce gate factors into the axial 

self-attention mechanism [24], forming improved axial 

self-attention (IASA), which a structure shown in Fig. 7. By 

improving computational efficiency and flexibility, we aim 

to enhance the performance of the model while also enabling 

it to have strong ability to encode spatial structural 

information of images.  

For a given input feature map x∈Rhxwxdin, where h is the 

height, w is the width, and din is the number of channels, the 

expression for the self-attention mechanism along the x-axis 

with position encoding is as follows:  

( ) ( )( )
1

T T q T k v

0 l o l Q o l o K l l o l V l ol m o
y soft max q k G q r G k r v G r

 − − − 
= + + + (3) 

Where w represents the local grid area of pixels. The 

qo=WQxo represents Queries. The ko=WKxo represents Keys. 

The vo=WVxo is the linear projection of all xo(ꓯo∈w). WQ, WK, 

and WV are the transformation matrices for these three 

projections. The Softmaxl represents a softmax activation 

function applied at position l=(a,b)∈w in l. The w1xm(o) is 

the x-axis area where position o=(i,j) is located. The 

learnable vectors r
q
p-o∈R

dq，r
q
l-o∈R

d
k , and rv

l-o∈R
d

v  are added 

relative positional encodings. The inner product qo
T
r

q
p-o and 

k
l

Tr
k
l-o represent key and query dependencies on relative 

positional encodings. 

 
In expression (3), the input feature map x is transformed 

through WQ, WK, and WV to generate qo
T
, k

l

T, and vl. The 

corresponding structural diagram in Fig.7. corresponds to 

expression (3). "⨂" represents multi-dimensional matrix 

multiplication. "" represents element-by-element addition 

of multidimensional matrices. rQ, rK, and rV represent 

learnable relative positional encodings, and y is the output 

feature map. softmax means use softmax activation function 

for the last dimension of multidimensional matrix. rQ, rK, rV 

are learnable relative position codes, y is the output feature 

map. The green diamond box contains GQ, GK, GV ∈R, 

which are the learnable gate factors introduced in this paper 

based on the position-sensitive axial attention. Together, they 

control the influence of learning relative position encodings 

on encoding global context information. If the relative 

positional encoding is learned more accurately, the 

 

 
 
Fig. 7.  IASA attention structure. 

 

 
 
Fig. 6.  Axial self-attention module. 
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corresponding gate weight will be higher; conversely, if it is 

less accurate, it will be lower. This enables more accurate 

learning of relative positional encoding information on 

small-scale medical image datasets. Similarly, the calculation 

method for the y-axis is similar. 

IV. EXPERIMENT 

A. Datasets Information 

In the experiment, the dataset for segmentation ischemic 

strokes includes 245 sets of CT images. Each 3D brain CT 

images contains 24 to 32 two-dimensional axial slices. All 

slices were shuffled, totaling 6862 two-dimensional CT 

image slices. Among them, there are a total of 2314 sample of 

two-dimensional CT images with ischemic areas, 2314 

labeled sampled, and a resolution of 512x512. To save 

computing resources and facilitate network training, the 

resolution of each two-dimensional image slice in the dataset 

was adjusted to 128x128. Finally, the training set, validation 

set, and test set were split into 3 parts in ratio of 6:2:2.  

In this paper, the dataset used was annotated on the x-axis 

of CT image slice using the brush mode of the MITK 

Workbench software [25] to mark lesions present in ischemic 

stroke lesions as a reference standard for segmentation. The 

images of ischemic stroke lesions have issues such as blurred 

edges and diffuseness that require guidance and verification 

by professional neuroradiologists to ensure accuracy of 

labeling. Through the MITK Workbench software, we can 

obtain a binary gold standard image in NIFTI format from the 

original CT image. In order to better process it, we also 

convert the DICOM format data of the original CT into 

NIFTI. We record the category of each patient (1 means 

ischemic stroke patients, 0 means non-ischemic stroke 

patients) and the corresponding CT data file in the form of 

XML file. 

B. Evaluation Indicators 

In order to evaluate the performance of the LiU-Net, this 

paper adopts Dice coefficient (Dic), mean Intersection over 

Union (mIoU), precision (Pre), recall (Rec), and accuracy 

(Acc) as evaluation metrices. In the experiments, ischemic 

stroke can be categorized as true negative/positive or false 

negative/positive. True Positives (TP) indicates that both the 

predicted result and the actual result are ischemic strokes. 

True Negatives (TN) indicates that the predicted result is not 

ischemic stroke while the actual result is. False Positive (FP) 

indicates that the predicted result is ischemic stroke while the 

actual result is not. False Negative (FN) indicates that both 

the predicted result and the actual are not ischemic strokes. 

Precision and recall, which are often used to evaluate the 

robustness of binary classification models. In (4) and (5), X 

represents the predicted result value, and Y represents the real 

label value. 

Dice is used to evaluate the overall accuracy of the 

network, which can provide a more intuitive analysis of the 

network's strengths and weaknesses. Dice is shown in (4): 

2
X Y

Dic
X Y


=

+

                               (4) 

mIOU is a widely used segmentation metric for calculating 

the ratio of intersection and fusion between predicted and true 

segmentation. It can be defined as follows: 

X Y
mIoU

X Y


=


                               (5) 

Precision is a measure of the ability of the classifier to 

correctly identify samples. It represents the proportion of 

correctly predicted samples out of all positively identified 

samples, and is calculated as (6）： 

 TP
Pr e

TP FP
=

+
                                (6) 

Recall is the ratio of the number of Positive samples 

correctly predicted by the classification network to all true 

Positive samples, as shown in (7): 

TP
Rec

TP FN
=

+
                                 (7) 

Accuracy is the proportion of pixels correctly assigned to 

the objective region or background in the whole image, as 

shown in (8): 

TP TN
Acc

TP FN TN FP

+
=

+ + +
                      (8) 

C. Experimental Environment Settings 

In this paper, LiU-Net was used to segment lesions in the 

ischemic stroke dataset to prove the effectiveness of this 

network in dividing lesions in ischemic stroke. In addition, to 

prevent overfitting, the use of an early-stop training strategy 

was implemented to avoid overfitting of the model. If the 

network’s performance fails to enhance after an additional 10 

training epochs, the network training is terminated. The 

experimental environment used in this experiment is based 

on the Pytorch framework and Python 3.6. The experiments 

were conducted in a computer with Intel core i5-12600f CPU, 

16.0 GB RAM, and NVIDIA GeForce RTX 2080Ti GPU.  

Adam optimization method is used to optimize parameters, 

and the learning rate is set to 1x10-4, with a batch size of 10, 

and the training is performed for 100 iterations. 

D. Experimental Results 

U-Net is considered to be the baseline for image 

segmentation tasks, and KiU-Net is an extension of U-Net 

and Ki-Net architectures based on parallel networks. 

Therefore, we compare LiU-Net with KiU-Net to 

demonstrate its effectiveness on the stroke dataset. To verify 

the contributions of residual connections and improved axial 

attention self-attention (IASA) to ischemic stroke 

 

TABLE I 
RESULTS OF ABLATION EXPERIMENTS ON THE ISCHEMIC STROKE DATASET 

Method 
Residual 

Connection 
IASA Acc Dic mIoU Pre Rec 

KiU-Net   0.9189 0.8901 0.8312 0.8814 0.8992 

Network 1 √  0.9245 0.8943 0.8446 0.8831 0.9058 

Network 2  √ 0.9389 0.9004 0.8564 0.8876 0.9136 

Network 3 √ √ 0.9501 0.9118 0.8635 0.8962 0.9279 
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segmentation, we conducted ablation experiments, network 

comparison experiments, and comparative experiments with 

different network models facing varying degree of 

complexity in lesions segmentation. 

We first conducted ablation experiments, detailed results 

are shown in Table I. In the network model, the encoder 

features include a lot of local information, while the decoder 

includes more semantic information. Combining these two 

types of features will cause redundant feature information 

between local and semantic information. This paper 

introduces residual connections to alleviate this issue. 

Comparing with evaluation metrics of KiU-Net and Network 

1, all indicators have improved. Similarly, IASA improved 

the high computational complexity and inflexibility in 

adapting to different positions of lesions, enhanced useful 

features and suppressed weak features to improve 

representation ability. 

When comparing KiU-Net with Network 2, using IASA 

improved the model's attention to relevant features. ACC 

increases by 2.18%, Dic increases by 1.16%, mIoU increases 

by 3.03%, Pre increases by 0.7%, and Rec increases by 1.6%. 

In Network 3, applying residual connections and IASA to 

KiU-Net yielded even more significant improvements 

compared to adding only one of these modules individually. 

Specifically, ACC increases by 3.4%, Dic increases by 2.44%, 

mIoU increases by 3.89%, Pre increases by 1.68%, and Rec 

increases by 3.19%.  

The experimental results show that through the improved   

feature extraction method, LiU-Net increases the attention to 

relevant features and obtains the distinct characteristics of 

different receptive fields. It effectively improves the 

performance of ischemic stroke lesion segmentation, making 

the segmented boundary smoother and closer to the Ground 

Truth. 

To better understand the segmentation effect of each 

network in the ablation experiment, the segmentation results 

of the baseline and the network model after introducing 

different modules on the dataset are shown in Fig.8, where 

Fig.8 (a) is the Ground Truth. By comparing the results, 

before improving the network, the segmentation of the lesion 

edges was relatively rough and the segmentation of details 

was poor, resulting in insufficient segmentation, as shown in 

the result of Fig.8 (b). After adding the residual connections 

to the baseline, the edge segmentation became closer to the 

identified lesion, as shown in Fig.8 (c). However, for the case 

of lesion edges, insufficient segmentation still occurred, 

which was far from the Ground Truth and could not meet the 

needs of practical segmentation tasks. The result in Fig.8 (d) 

was obtained by introducing both residual connections and 

IASA into the network model, making it pay more attention 

to visually relevant areas and suppressing irrelevant areas, 

thereby reducing the probability of mis-segmentation. It can 

be seen that the result in Fig.8 (d) is closer to the manual 

segmentation result and has more accurate segmentation of 

lesion boundary details. This indicates that LiU-Net has more 

accurate segmentation results and meets the practical needs 

of applications. 

Through ablation experiments, it is also confirmed that the 

modules introduced in this paper can improve the 

segmentation validity of network model and have a positive 

effect on ischemic stroke segmentation. 

In addition, in order to further verify the effectiveness of 

 

 

(a) Ground Truth                                                        (b) KiU-Net segmentation result 

 

(c) RKiU-Net segmentation result                                          (d) LiU-Net segmentation result 

 
Fig. 8. Comparison chart of segmentation results. 
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LiU-Net and evaluate its performance, we compared the 

results of LiU-Net with those of recent state-of-the-art 

semantic segmentation algorithms on the ischemic stroke 

dataset, including U-Net, AU-Net, U-Net3+, and KiU-Net. 

The test results of LiU-Net and other network models on the 

ischemic stroke dataset are shown in Table II. 

 

From the results on the ischemic stroke dataset, it can be 

seen that LiU-Net outperforms other network models in most 

segmentation performance metrics. The advantages in Dice 

and mIoU, two core evaluation metrics, are more significant. 

LiU-Net has a Dice that is 2.44% higher than KiU-Net and an 

mIoU that is 3.89% higher. It terms of Acc and Rec, LiU-Net 

alse shows improvements over KiU-Net, with Acc being 

1.11% higher and Rec being 0.59% higher. The Pre result of 

LiU-Net is 0.8876, which is 4.97% higher than KiU-Net3+. 

All evaluation metrics indicate superiority over other 

network models. 

Finally, in order to visually observe the segmentation 

effect, we divided the experimental data of ischemic stroke 

into simple lesions and complex lesions for training, and 

compared the output results of the selected network models 

with Ground Truth. The effectiveness of different network 

models in segmenting simple and complex lesions is shown 

in Fig.9 and Fig.10, while Table III and Table V correspond 

to the experimental results of simple and complex lesions 

respectively. 

 
In Fig.9, the lesions have clear edges. The segmentation 

results have similar contours to manual segmentation. When 

the lesion area is relatively complex or there are multiple 

lesions, as shown in Fig.10. UNet3+ and KiU-Net have 

segmentation results that are highly similar to Ground Truth, 

while U-Net and AU-Net have more segmentation error areas, 

resulting in larger differences between the segmentation 

results and Ground Truth, as shown in columns (a) and (b). 

These network models have issues of over-segmentation and 

under-segmentation.   

Although U-Net3+ and KiU-Net perform better than the 

above two models, when faced with images with blurred 

 

TABLE II 
EVALUATION OF SEGMENTATION RESULTS FOR DIFFERENT NETWORKS 

Method Acc Dic mIoU Pre Rec 

U-Net 0.8560 0.7528 0.6988 0.7365 0.7500 

AU-Net 0.8755 0.7984 0.7343 0.7623 0.8125 

U-Net3+ 0.9165 0.8433 0.7904 0.7963 0.8630 

KiU-Net 0.9397 0.8901 0.8312 0.8465 0.9225 

LiU-Net 0.9501 0.9118 0.8635 0.8876 0.9279 

 

 

TABLE III 
EXPERIMENTAL RESULTS OF DIFFERENT NETWORKS FOR 

SEGMENTING SIMPLE LESIONS 

Method Acc Dic mIoU Pre 
F1 

score 

U-Net 0.8825 0.8282 0.7462 0.8082 0.8282 

AU-Net 0.8997 0.8483 0.7689 0.8247 0.8483 

U-Net3+ 0.9278 0.8654 0.8128 0.8404 0.8654 

KiU-Net 0.9488 0.8918 0.8401 0.8696 0.8918 

LiU-Net 0.9621 0.9263 0.8689 0.9122 0.9263 

 

 

      Groud Truth                    (a)                            (b)                           (c)                            (d)                            (e) 

 
 

Fig. 9.  Comparison of segmentation results for simple lesions. (a) segmentation result from U-Net; (b) segmentation result from AU-Net; (c) segmentation 

result from U-Net3+; (d) segmentation result from KiU-Ne t; (e) segmentation result from LiU-Net. 
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edges, U-Net3+ does not have sufficiently smooth edges 

segments, and KiU-Net does not segment irregular edge 

details as well as LiU-Net does. As shown in column (e), 

LiU-Net can well preserve detailed features of the lesion edge. 

It not only reduces the classification errors of noise pixels, 

but also provides segmentation results closer to Ground Truth 

for images, with tiny lesion areas and complex lesion edges. 

V. CONCLUSION 

In this paper, a new segmentation network model called 

LiU-Net is proposed for the complex features of ischemic 

stroke lesions, such as blurred edges and varied shapes. 

LiU-Net introduces residual connections and an improved 

axial self-attention (IASA). By incorporating residual 

connections, the problem of gradient disappearance caused 

by deepening the network can be avoided, and the training 

speed can be accelerated while reducing the difficulty of 

training. The attention mechanism enables U-Net to focus on 

and utilize low-level features extracted at different levels, and 

then fuse them with high-level features. This allows the 

segmentation network to pay attention to lesion regions and 

non-lesion regions, boundary features, and feature channel 

information, thereby fully learning the characteristics. 

Therefore, LiU-Net can better learn features and further 

improve the performance of the model, making it more 

accurate in segmentation while addressing optimization 

difficulties. 

 Public datasets on ischemic stroke are difficult to obtain, 

so we built our own datasets for training, testing, and 

validation. This dataset includes not only simple cases but 

also challenging ones. It contains small size lesion images 

with unclear boundaries, as well as many interferences such 

as noise and other parts of cells that can affect the 

segmentation results. For some complex lesion images, the 

boundaries of the focus are very blurry and difficult to 

distinguish, and the shape, size, structure, and location of the 

lesions vary greatly. These factors make this dataset the most 

challenging one. 

Both for simple lesions and those with challenges, LiU-Net 

outperforms the state-of-the-art network models. Through 

extensive experiments, it has been shown that there are still 

many shortcomings when using U-Net and KiU-Net for 

segmentation. When using LiU-Net, there are improvements 

in Dice, Acc, and mIoU metrics compared to U-Net of 

15.90%, 9.14%, and 16.47%, respectively. Compared to 

KiU-Net, there are improvements of 2.44%, 3.40%, and 

3.89% in these metrics respectively. LiU-Net achieves higher 

segmentation accuracy, with results closer to Ground Truth. 

U-Net and KiU-Net may completely lose the segmented 

object. In contrast, LiU-Net is more reliable and robust. It can 

detect blurred boundaries and avoid noise interference. Even 

in challenging cases, LiU-Net demonstrates stronger ability 

to capture details. 

In conclusion, the proposed LiU-Net in this paper has 

 
TABLE V 

EXPERIMENTAL RESULTS OF DIFFERENT NETWORKS FOR 

SEGMENTING COMPLEX 

Method Acc Dic mIoU Pre 
F1 

score 

U-Net 0.8522 0.7689 0.6879 0.7496 0.7489 

AU-Net 0.8699 0.7822 0.7328 0.7588 0.7822 

U-Net3+ 0.9122 0.8233 0.7826 0.7969 0.8233 

KiU-Net 0.9184 0.8469 0.8102 0.8204 0.8469 

LiU-Net 0.9422 0.9002 0.8469 0.8768 0.9002 

 

Groud Truth                     (a)                            (b)                           (c)                            (d)                            (e) 

 
 

Fig. 10.  Segmentation results comparison of complex lesions. (a) segmentation result from U-Net; (b) segmentation result from AU-Net; 

(c) segmentation result from U-Net3+; (d) segmentation result from KiU-Net; (e) segmentation result from LiU-Net. 
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advantages such as high segmentation accuracy, fast speed, 

and no need for manual intervention. A specific brain stroke 

automatic segmentation network model is designed for 

patients with ischemic stroke. Based on this network model, 

computer-aided diagnosis systems have certain reference 

significance in the medical field, which can further assist 

doctors in objectively diagnosing, evaluating lesions, and 

planning treatments. 
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