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Abstract—The detection of small objects in UAV (Unmanned
Aerial Vehicle) target acquisition is a persistent difficulty,
mainly because of the abundance of small targets, significant
mutual obstruction, limited feature statistics, and the intricate
background in the target area. These factors collectively result
in low detection accuracy. In order to tackle this challenge, we
provide a small target recognition model dubbed YOLOv7X+
(You Only Look Once v7X+), which aims to improve the
capability of detecting small targets by UAVs while also ensuring
its operational effectiveness. The model effectively addresses
the issue of significant mutual occlusion among small objects
by integrating the Conv2Former module, which enhances the
extraction of spatial information features with more precision.
Concurrently, we present a Bi-level routing attention technique
that is based on cavity convolution. This mechanism regulates
the process of extracting and transmitting features at various
levels, hence expanding the range of perception. It improves
the model’s ability to understand and recognize the connections
between closely grouped small targets by analyzing individual
pixels. This makes the model more resistant to recognizing
these targets within complex and changing scenarios. Moreover,
it saves crucial contextual details to enhance the precision
of differentiation. Finally, the model incorporates multiple
dimensions of input data obtained from beneath the UAV by
dynamically modulating the size of the convolution kernel.
This improves the algorithm’s ability to adjust to the specific
demands of real-world scenes. The YOLOv7X+ model attains a
mean average precision (mAP50) of 60.3% with a validation test
Intersection over Union (IoU) criterion of 0.5. The mean average
precision (mAP) of the enhanced YOLOv7X model has been
increased by 4.9%. and surpasses five other modern sophis-
ticated detection methods. The data from experiments clearly
shows that the model effectively handles the identification of
small targets in complicated circumstances, achieving a good
compromise between accuracy and efficiency.

Index Terms—UAV small target detection, YOLOv7X, atten-
tion mechanism, Conv2Former, Dynamic Conv.

I. INTRODUCTION

THE maturation of UAV technology with its convenience,
high flexibility, efficiency, and multi-perspective capa-

bilities, has become indispensable in numerous industries.
For instance, in disaster prevention and investigation, drones’
efficient, multi-perspective view enables rapid disaster area
detection and real-time data acquisition, significantly enhanc-
ing the effectiveness and precision of disaster prevention ef-
forts. Regarding circuit maintenance, drones can substantially
reduce manual inspection time and costs, minimizing human
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resource wastage. In military applications, drones excel in
conducting prolonged and extensive surveillance, thereby
enhancing defense capabilities. Small target detection has
consistently posed a challenging issue in UAVs’ myriad
target detection tasks. The limited feature information of
small targets, coupled with complex backgrounds and other
factors in the target area, leads to suboptimal detection
accuracy. Furthermore, UAV-based target detection exhibits
characteristics such as a high density of small targets, sig-
nificant scale variations between different categories, and
intricate backdrops, all of which substantially impact the
detection process. Traditional target detection methods rely
on manual features like color, shape, and texture, which
can yield satisfactory results. However, these techniques
often require a substantial amount of time and suffer from
limited and non-uniform accuracy of detection, especially
in complex scenes with significant occlusion. As a result,
it is vital to develop a highly effective network model for
improving the precision of detecting small targets in UAV-
related contexts.

In the past few years, the advancements in deep learning
theories and technologies have rapidly progressed, and they
have surpassed traditional methods in general-purpose target
detection tasks. Deep learning-based general-purpose target
detection algorithms can be classified into two-stage algo-
rithms like RCNN [1] and single-stage algorithms like YOLO
[2] and SSD [3]. Whereas single-stage detectors excel in
providing end-to-end efficiency, they usually exhibit compro-
mised accuracy when it comes to localizing and identifying
small targets. On the other hand, two-stage target detectors,
which first localize and then recognize, achieve superior
accuracy but may lag in real-time execution. Integrating
generic target detection algorithms directly into UAV-based
target detection tasks often results in poor model generaliza-
tion and a decline in detection performance. In response to
UAV images featuring numerous small targets and significant
occlusions, researchers have primarily focused on enhancing
small target detection accuracy. They have pursued targeted
improvements in areas such as data augmentation, anchor-
less methods optimization, and lightweight networks.

Sommer leveraged Fast-RCNN, a two-stage network
known for its efficacy in detecting small objects, to detect
vehicles in drone photos. They fine-tuned anchor frame sizes
and feature map resolutions to enhance small object detec-
tion. Nonetheless, the precision of detecting small objects
remained subpar due to extensive feature map detail loss
caused by convolution and pooling techniques [4]. To enable
feature extraction across various scales and enhance small
target detection performance, Lin devised a feature pyramid
structure. This network enables the integration of detailed
lower-level characteristics with high-level semantic informa-
tion from top features, ultimately improving small object
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recognition capabilities [5]. Liang introduced a perceptual
generative adversarial network (GAN) to produce high-
resolution representations of small objects. This approach
leverages the association between large and small objects to
strengthen the visual depiction of small objects, making them
resemble illustrations of larger objects [6]. Hu identified that
pooling operations can distort the configuration of small ob-
jects. As a remedy, they introduced a novel context-aware Re-
gion of Interest (ROI) pooling approach [7]. Chen introduced
the ResNeXt-d fusion architecture, which enhances small
object perception and subsequently enhances the detection of
small and densely packed objects [8]. Tang designed a coarse
anchor-free detector called CPEN to address the challenge
of detecting densely packed small objects, achieving re-
markable results [9]. Yang introduced the SCRNet++ model,
pioneering the integration of denoising concepts into target
detection. This model conducts instance-level denoising on
feature maps, resulting in improved small target detection
in drone images [10]. Liao introduced the UGGNet model,
which employs a local localization LLM to predict target
distributions. It subsequently generates dense target areas of
interest using an uncontrolled grouping module for detection,
significantly reducing the time required for small target
detection [11]. Singh presented a significant enhancement
to the YOLOv5-based algorithm. They incorporated a novel
feature fusion layer with a compact field of receptivity into
the YOLOv5 feature pyramid, enabling the capture of fine
details in the feature map. Additionally, this layer introduced
a horizontal connection from the network’s shallow portion to
preserve feature map resolution and prevent information loss
in the deeper layers. These combined measures markedly im-
proved small target detection performance [12]. Xu devised a
locally aware Swin-Transformer backbone that amalgamates
Transformer and Convolutional Neural Network advantages
to enhance the performance of the small object detection
[13]. While the aforementioned algorithms have enhanced
target detection in drone applications, they endure encounter
substantial challenges.

As a consequence, this article presents an advanced version
of the YOLOv7X model. It addresses the challenges of
significant target occlusion and dense small targets effec-
tively by incorporating Conv2Former, RES-DBAConv, and
ODConv into the feature extraction process. These challenges
are commonly encountered in complex backgrounds of high-
angle images captured by drones. Furthermore, we validated
the efficiency and real-time capabilities of the suggested
approach by using the VisDrone2019-DET dataset.

The chapter structure is as follows: Chapter 2 offers an
overview of the structure and characteristics of the orig-
inal YOLOv7X model. Chapter 3 introduces the network
structure of our enhanced YOLOv7X model. In the final
chapter, Chapter 4, we offer a comparative analysis of
our model with YOLOv7X and other deep learning-based
models, highlighting its superior performance.

II. RELATE WORK

Among the YOLO series target detection algorithms,
YOLOv7X [14] stands out for enhancing the fine details of
small targets when compared to its predecessors. YOLOv7X
incorporates novel algorithms, network architectures, and

introduces methods like multi-scale feature fusion and cross-
scale feature transfer. These innovations enhance its ability to
capture intricate characteristics of small targets and elevate
detection accuracy. YOLOv4 [15] and YOLOv5 [16] have
also implemented new techniques to enhance the detection
accuracy of small targets, including the utilization of tech-
niques like SPP Block and PANet [17]. Furthermore, distinc-
tions in the nuanced characteristics of small targets among
these algorithms are evident in their data set selection, data
processing methods, and parameter configurations employed
during the training phase. Additionally, distinctions among
these algorithms concerning the nuanced characteristics of
small targets are manifest in their selection of datasets, meth-
ods of data processing, and parameters chosen for training.
Overall, although all of the aforementioned algorithms, while
all of these algorithms possess certain advantages in detecting
small targets, YOLOv7X excels in the capture and processing
of fine-grained details of small targets.

YOLOv7X network can be dissected into three key seg-
ments for a clearer understanding of its architecture. These
segments consist of the backbone network, neck network,
and head network. Moving on to the backbone network,
YOLOv7X adopts a state-of-the-art structure, perhaps build-
ing upon the success of previous YOLO versions or intro-
ducing entirely novel architectures. This backbone network
is designed to effectively generate feature layers through
the integration of various structures, potentially including
Conv2D BN SiLU (CBS), ELAN, MP and SPPCSPC struc-
tures. These components work together to produce feature
maps that will be crucial for object detection. The neck
network in YOLOv7X plays a pivotal role in enhancing the
feature layers and facilitating their fusion. This is achieved
through the construction of a Feature Pyramid Network
(FPN) or a similar mechanism, ensuring that the model can
effectively utilize the features extracted by the backbone net-
work. Finally, in the head network of YOLOv7X, the model
fine-tunes the number of channels and makes predictions
based on the processed features.

III. IMPROVED YOLOV7X ALGORITHM

Although the YOLOv7X model offers advantages in
drone-based target detection, it has certain limitations in
capturing specific details and ensuring accuracy when dealing
with small targets. Despite YOLOv7 incorporating technolo-
gies like multiple scales merging of features and cross-scale
feature transmission to enhance the precision and efficiency
of small target detection. However, in drone-based target
detection, factors such as severe target occlusion, dense target
distribution, and high-angle shooting can lead to significant
variations in target size, shape, posture, and motion direc-
tion. Traditional convolutional neural networks are unable to
address problems like missing information in local regions
and target occlusion. Consequently, issues related to false or
missed detections persist in the results, necessitating further
optimization of the algorithm and model structure. Fur-
thermore, in more complex scenarios, YOLOv7’s accuracy
might be compromised, demanding superior data support
and additional model refinements to enhance its performance
concerning detailed features and accuracy.
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Fig. 1. Network structure of the enhanced YOLOv7 model

A. YOLOv7X+ model architecture

In response to these challenges, we enhanced YOLOv7X,
leading to the development of a novel model named
YOLOv7X+.

The introduction of the Conv2Former [18] element enables
the extraction of spatial linkages and global details. which
can automatically adapt various representations of features,
effectively addressing object occlusion issues and enhancing
object detection accuracy and efficiency. Furthermore, the
Mixed Residual Hole Convolutional Attention Module (RES-
DBAConv) can dynamically select and merge features from
various levels, leveraging distinctions in local and global
information within drone images. Particularly for the de-
tection of densely populated small targets, the utilization of
the Bi-level routing attention mechanism [19] allows for im-
proved extraction of pertinent information from small targets,
achieved through the amalgamation of dual-layer attention
mechanisms. Lastly, the introduction of ODConv [20] to
cater to targets of varying sizes enables adaptive adjustments
to the convolutional kernel size, enhancing the capability to
capture small target features and thereby improving detection
accuracy and robustness. Figure 1 illustrates the enhanced
model, YOLOv7X+.

B. Conv2Former

Due to the abundance of high-resolution photos contain-
ing obscured small targets in the UAV dataset, we have
opted to utilize the Conv2Former module for feature ex-
traction instead of the conventional convolution module.
Its architecture is illustrated in Figure 2, representing a
transformer-style convolutional network with a pyramid-like
configuration that includes varying numbers of convolutional
blocks across four stages. Each stage presents unique feature
map resolutions, with a patch-embedding block incorporated

between Successive phases to lower the resolution. The
core of this approach revolves around the convolutional
modulation operation, shown in Figure 4 and Equation
(1). It employs deep convolutional features exclusively as
weights for representation modulation, combined with the
Hadamard product to streamline the self-attention mechanism
and enhance the effectiveness of large kernel convolution.
Conv2Former replaces the ELAN-F convolution block in
the original YOLOv7 Backbone. Compared to the original
structure, Conv2Former can more effectively capture the
network’s global information and contextual semantic infor-
mation, thereby obtaining rich features for fusion operations
and improving network performance.

z = A⊙ V

A = DConvk×k (W1X)

V = W2X

(1)

Here ⊙ represents the Hadamard product, W1 and W2

denote the weight matrices of the two linear layers, and
DConvk×k signifies depth convolution with a kernel size
of k × k. This convolutional modulation operation permits
each spatial location, denoted as (h,w), to be linked with all
pixel levels within a k× k square region centered at (h,w).
Information interplay among channels is accomplished via
the linear layers. The result at each spatial point is the total
of the pixel values inside the specified square region, with
each pixel value weighted accordingly.

Considering the superior performance of Conv2Former-L
over the other five variants of Conv2Former, we opted to
combine it with the benchmark model YOLOv7X. Our find-
ings indicate that the Conv2Former module excels at dealing
with occluded targets. Moreover, this module enhances com-
puting efficiency, particularly when handling catastrophic
images like those found in VisDrone2019.
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Fig. 2. Overall architecture of Conv2Former

Fig. 3. RES-DBAConv network structure

Fig. 4. Convolutional modulation

C. RES-DBAConv

Conventional convolution calculations primarily capture
information from nearby regions and can lack sensitivity in
the detection of small objects. Dilated convolution separates
pixels within the convolution kernel, thereby enlarging the
receptive field. This allows the network to effectively gather
distant information. Dilated convolutional neural networks
offer improved accuracy in analyzing local image regions,
mitigating the issue of local information loss in small target
detection and enhancing small target information capture.
Furthermore, during convolutional feature generation, two-
layer routing the Bi-Level Routing attention technique can
able to applied to selectively exclude less relevant regions at
a broader level while preserving essential routing locations.
This enhances the precision of detecting small targets de-
tection but lowers detection error and missed detections for
densely packed small targets, all while maintaining network
reliability. By leveraging the strengths of dilated convolution

Fig. 5. ODConv network structure

with Bi-level routing attention, this study introduces a novel
hybrid residual void convolution attention module (RES-
DBAConv), illustrated in Figure 3.

Bi-Level Routing is a technique that dynamically and
efficiently handles attention in a sparse manner, allowing
for querying and retrieval of information. Its fundamental
concept is as follows: for a feature map X ∈ RH×W×C

produced by a null convolution, it is initially separated into
non-overlapping S×S regions. Subsequently, the feature map
is converted to Xr ∈ RS2×H×W

S2 ×C . Next, linear projections
are applied to derive Q,K, V . Utilizing these linear projec-
tions of Q,K, the Qk,Kr values of key regions are obtained.
This information is used to deduce the adjacency matrix of
these key regions, denoted as Ar = Qr(Kr)T . As serves
as a metric for measuring semantic similarity between two
regions. Subsequently, the routing index matrix I is generated
to selectively keep the initial K connections in each of
the regions. To circumvent memory constraints, the gather
operation is employed to combine the tensors K and V .
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This results in Kg = gather(K, Ir), V g = gather(V, Ir).
Lastly, Kg and V g are utilized in the attention mechanism
O = Attention(Q,Kg, V g)+LCE(V ), with the local con-
text enhancement mechanism LCE(V ) assisting the network
in preserving finer, details at lower-level. This proves partic-
ularly beneficial for detecting information in tasks involving
densely clustered small targets in images. Given that low-
level feature mappings share a comparable resolution with
the input image, offering higher spatial resolution and often
containing precise accurate details, it enhances the perception
of small targets’ details and provides more exact location
information.

Consequently, we integrate this concept by creating a novel
residual structure, RES-DBAConv. This structure is formed
via a Bi-level routing attention mechanism combined with
a dilated convolution (rate of 3) applied to the YOLOv7X
backbone network’s shallow layer. This integration enhances
YOLOv7X+ in learning feature dependencies and compre-
hensively understanding small targets, ultimately rendering
it better suited for detecting densely packed small targets.
This results in enhanced detection accuracy and efficiency.

D. ODConv
In UAV scenarios, the varying positions and angles of

UAV shots result in images of the same target having diverse
sizes, shapes, and complex background clutter. This presents
challenges for detecting and recognizing small targets. Tradi-
tional CNN models are typically limited to processing multi-
dimensional image data, making it challenging to accommo-
date the multi-dimensional input data from UAVs.

ODConv(Onmi-Dimensional Dynamic Convolution) ad-
justs the dimensions of the convolutional kernel to accom-
modate varying target sizes. This capability enables ODConv
to effectively manage the complexity of UAV scenarios and
changing lighting conditions. This is particularly crucial
for small target detection under UAV conditions, where
small targets are susceptible to environmental disturbances.
Consequently, full-dimensional dynamic convolution can sig-
nificantly aid in small target detection under UAV conditions,
enhancing accuracy and efficiency of detection, and bolster-
ing model versatility. ODConv can be described as illustrated
in Figure 5 and defined by Equation (2).

y =(αwi ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙Wi + . . .

+αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙Wn) ∗ x
(2)

ODConv incorporates a multi-dimensional attention mech-
anism to comprehend the convolution kernel space’s four
dimensions. This is achieved through a parallel approach that
combines these four categories of attention, making them
mutually reinforcing. By sequentially applying convolution
with varying attention across location, channel, filter, and
kernel dimensions, the convolution process is able to adapt
to the input dimensions, enhancing its ability to capture
rich contextual information. This significantly enhances the
feature extraction capabilities of convolution. We opt to
integrate ODConv and PANet at the neck, enabling the
adaptive capture of spatial structure and object features
through the convolutional kernel’s dynamic size and shape.
This enhances the model’s capability to recognize intricate
scenes and objects, subsequently enhancing its resilience to
multi-angle data.

E. Improvement of Activation Function

The selection of an adequate activation function is crucial
for enhancing the model’s performance, considering the
computational efficiency. The activation function Hardswish
was first introduced in MobileNetV3 [21]. Compared to
the SiLU activation function, Hardswish offers advantages
such as lacking lower and upper bounds, flatness, and non-
monotonicity. These characteristics enhance the expressive
capacity of the neural network. Hardswish is preferred over
SiLU because of its substitution of the computationally inten-
sive sigmoid function with a piecewise linear approximation
that is less taxing on computational resources than SiLU.
The Hardswish activation function, represented by Equation
(3), utilizes the input value x.

HardsWish =


0, if x ≤ −3

x, if x ≥ +3
x(x+3)

6 , otherwise

(3)

IV. EXPERIMENTS AND ANALYSIS

This experiment assesses the improved YOLOv7X model’s
enhanced detection performance for identifying densely
packed small targets, such as vehicles and pedestrians, in
highly complex backgrounds. Initially, we compared the im-
proved YOLOv7X model with the original YOLOv7X model
to assess the impact of our modifications. Subsequently, we
evaluated the enhanced YOLOv7X model against various
other Deep Learning-based target detection models to derive
comprehensive experimental findings.

A. Dataset Processing

Training target detection model algorithms necessitates an
ample dataset, and prominent UAV image datasets for this
purpose comprise VisDrone [22], UAVDAT [23], DOTA [24],
and others.

In this study, we utilize the VisDrone2019-DET dataset
for our experimentation. The VisDrone dataset consists of
photos acquired by several unmanned aerial vehicle (UAV)
cameras. The dataset was acquired by the AISKYEYE team
from the Machine Learning and Data Mining Laboratory
at Tianjin University. It comprises photos obtained from a
diverse range of drone cameras. It encompasses 141 urban
landscapes in China and encompasses 10,000 images with
2.6 million annotations. Several images in this dataset boast
resolutions as high as 2000×1500 pixels. The training dataset
contains 6471 images with corresponding annotations, while
the validation set comprises 1115 images with annotations,
and the test set includes 547 original images. The dataset
encompasses 10 categories, notably, the pedestrians and
people classes, which are prone to confusion. Additionally,
as depicted in Figure 6, the VisDrone2019-DET dataset
features a substantial quantity of detected objects, including
a substantial quantity of diminutive, scattered large targets,
an imbalanced dataset scatter, a substantial count of densely
packed objects, and significant occlusion of objects. These
factors present considerable challenges in algorithm design.
Furthermore, it remains a demanding dataset for detection
and tracking tasks.
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Fig. 6. Statistics of VisDrone dataset category instances

B. Experimental environment

The experimental server was equipped with an Intel(R)
i7-6850K CPU, 64GB of RAM, and an NVIDIA GeForce
RTX 3090 GPU, running on the operating system Windows
10. Our experimental code is built upon an enhanced initial
release of Ultralytics’ YOLOv7 project. It offers compatibil-
ity with both cfg and yaml model files, and all algorithms
used here are adapted from the official model in this project.
During the training process, we iterated the model for 300
epochs, with a batch size of 16 and a learning rate of 0.01,
using a one-cycle learning rate decay strategy. While keep-
ing other parameters at their default values. The enhanced
YOLOv7X model was subsequently employed to train the
VisDrone2019 training dataset, and its performance was
evaluated through validation on the VisDrone2019 validation
dataset.

C. Evaluation Criteria

To effectively access the detection ability of deep convo-
lutional models on images captured in UAV circumstances,
this work employs Mean Average Precision (mAP), a widely
established metric for for evaluating target detection. The
mAP is calculated as the average of precision (P) and recall
(R) across various dataset instances. Definitions for these
metrics are provided in Equation (4), where TP represents
the count of true positives.

R =
TP

TP + FP

P =
TP

TP + FN

map =
1

N

N∑
i−1

APi

(4)

We employed the COCO [25] evaluation criteria along
with the Pyecotools tool for evaluating and analyzing the

detection results. If the Intersection over Union (IOU) be-
tween the detection box and the ground truth exceeds 0.5,
we consider the target as accurately detected.

D. Ablation Experiments

1) Conv2Former module comparison experiment: To as-
sess the Conv2Former module’s impact on detection ac-
curacy, this study employs YOLOv7X as the benchmark
model. A comparative test was conducted by integrating the
Conv2Former module into the ELAN module, utilizing de-
fault experimental parameters and resolution settings. Table
I clearly evident that the Conv2Former module achieved a
2.5% increase in accuracy and a 3.6% increase in mAP
compared to the original YOLOv7X model, as observed in
rows 1 and 3.

2) Comparison Experiment of the RES-DBAConv Module:
To validate the performance of the RES-DBAConv mod-
ule, we maintain YOLOv7X as the reference model and
incorporate it into the shallow network of YOLOv7X to
collect precise data on small targets for comparative trials.
Furthermore, integrating Bi-Level Routing attention with the
feature fusion module, it minimized the chances of incorrect
identifications and overlooked detections for small targets.
The circumstances of the experiment remain consistent with
the previous setup. Table II demonstrates that RES-DBAConv
improves the model’s mean average precision (mAP) by
1.1% and recall by 2.1% in rows 1 and 4.

3) Comparison Experiment of the ODConv Module: To
assess the impact of the ODConv module on the accuracy
of model detection, this study employs YOLOv7X as the
benchmark model. The ODConv module is integrated into
PANet to address the challenge of various scale variations
in the target. As indicated in rows 1 and 4 of Table I,
ODConv enhances the mAP by 0.4%, and there is a slight
improvement in core retrieval precision.

E. Comparative Experiments

TABLE II
PERFORMANCE OF THE ENHANCED YOLOV7X+ MODEL

COMPARED WITH THE OTHER MODELS

Method ImageSize(x) mAP BFLOPS

YOLOv5 640× 640 49.33 50.4
THP-YOLOv5 [26] 640× 640 57.31 -

YOLOvX-S [27] 640× 640 53.5 -
ClusDet [28] 640× 640 56.2 -

MobileNetv3 [29] 640× 640 55.4 23.8
MobileViT [30] 640× 640 55.5 -

YOLOv7X+ 640× 640 60.3 56.8

TABLE I
ABLATION EXPERIMENTAL RESULTS OF THE IMPROVED YOLOV7X+ ALGORITHM

Method Conv2Former RES-DBAConv ODConv mAP Precision/% Recall/%

YOLOv7 - - - 55.4 63.3 53.3

YOLOv7
√

- - 57.9 66.9 54.4

YOLOv7 -
√

- 56.5 64.8 55.4

YOLOv7 - -
√

55.8 63.6 53.5

YOLOv7
√ √ √

60.3 70.3 58.7
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Fig. 7. Comparison of the detection of the model in this paper and the YOLOv7X model

With the intention of assessing the efficacy of the method
suggested in this research, we performed comparisons with
various popular algorithms to showcase the superiority of the
YOLOv7X+ model. We compared YOLOv7X+ and other
widely used models using the VisDrone dataset, and the
results are presented in Table II. Upon comparison, it was
found that the benchmark model YOLOv7X achieves a
mAP@.50 accuracy of 55.4% at a resolution of 640 × 640.
The YOLOv7X+ model that we introduced in this paper
has shown superior capability in accurately detecting real
targets within significantly overlapping target groups from
a distance. Furthermore, the YOLOv7X+ model exhibits
superior detection accuracy and robustness when identifying
small distant targets.

F. Analysis of Model Visualization

YOLOv7X+ has demonstrated its effectiveness in detect-
ing small objects in real-world scenarios by identifying rep-
resentational and elaborate images within the VisDrone2019

dataset. This article evaluates and visually presents various
approaches to detecting small targets. Figure 7 shows com-
parative detection results between the original YOLOv7X
and YOLOv7X+ for dense small targets under varying
conditions, including rapid camera rotation, occlusion and
high-altitude photography. Compared to the original model,
the enhanced YOLOv7X+ exhibits superior recognition and
detection capabilities when handling small targets with di-
verse characteristics. In summary, the outcomes affirm that
YOLOv7X+ is more robust in detecting small targets with
diverse characteristics.

V. CONCLUSION

In summary, the outcomes affirm the enhanced robustness
of YOLOv7X+ in detecting small targets with diverse char-
acteristics. YOLOv7 is currently a widely used deep learning
framework for object detection. This study introduces an
improved model called YOLOv7X+, designed for object
detection in drone target detection in complex scenarios
using the YOLOv7X framework. Its goal is to exactness the
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accuracy of detecting small and densely-packed targets in un-
manned aerial vehicle circumstances, rendering it appropriate
for precise aerial small target detection tasks. In our research,
we analyzed the distribution patterns of targets within the
VisDrone2019 dataset within the context of drone shooting
situations. Firstly, the RES-DBAConv is integrated into the
superficial layer of the YOLOv7X backbone network. This
enhances the model’s precision in identifying densely packed
small targets and captures the finer features of the tar-
gets. Secondly, the Conv2Former architecture was introduced
into the YOLOv7X backbone network. This addition gener-
ates feature maps with more extensive global information,
strengthening the model’s competence to learn from the
entire feature space and improving the detection accuracy of
obscured small targets. Lastly, through the fusion of ODConv
convolution and the PANet structure, the model can effec-
tively handle variations in target size and angle resulting from
drone capture at diverse angles. Experimental results demon-
strate that the enhanced YOLOv7X+ model notably enhances
model accuracy, achieving an average accuracy increase of
4.9% as opposed to the benchmark YOLOv7X model on
the VisDrone2019-DET dataset. However, YOLOv7X+ still
encounters instances of missed detections and false positives
for tiny targets. In future research, our focus will be further
optimization of this model to improve small target detection
results and exploration of methods for creating lightweight
network models without compromising detection accuracy.
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