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Abstract—We analyzed the existence of solutions for a sixth-
order boundary value problem. Initially, we established the op-
erator that redefines the problem as a fixed-point problem and
elucidated its main properties. Subsequently, we investigated
the existence of solutions within the function space C1[0, 1],
employing the robust framework of Krasnoselskii’s fixed-point
theorem. Additionally, we introduced an innovative numerical
methodology to explore solutions to this problem. This approach
involves discretizing the problem, thereby formulating a non-
linear system. We proposed a solution strategy through the
application of mathematical programming techniques for the
determination of numerical solutions.

Index Terms—sixth-order, fixed point, Krasnoselskii, numer-
ical solution.

I. INTRODUCTION

IN this study, we have examined the conditions requisite
for the existence of solutions in the sixth-order boundary

value problem. We consider a more generalized equation
compared to the one investigated in [1] and [2]. The sixth-
order boundary value problem considered here can be de-
scribed as follows:

u(6) + f(t, u, u′) = 0, 0 < t < 1, (1)

with the boundary conditions:

u(0) = u′(0) = u′′(0) = 0, u′(1) = u′′′(1) = u(5)(1) = 0.
(2)

Naturally, f : R3 → R is a continuous function.
Within the existing literature, several studies have tradi-

tionally explored the sixth-order boundary value problem,
focusing on both qualitative and quantitative aspects of the
solutions. Noteworthy references in this area include [3], [4],
[5], [6], [7], [8], [9], and the citations therein.
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In [1] and [2], the authors analyzed the conditions neces-
sary for solution existence through the application of fixed-
point theorems. In [1], the authors considered a simplified
version of the problem where f depends solely on u and t.
They demonstrated the existence of a solution by employing
Krasnoselskii’s fixed point theorem.

In [2], the authors consider the same equation as given
in (1)-(2), yet they demonstrate the existence of multiple
solutions using the Avery-Peterson Theorem. It is important
to draw a distinction here. Techniques grounded in fixed-
point theorems within cones become more intricate when
we encounter the presence of derivatives in the argument of
f . This complexity essentially stems from the construction
of fixed-point operators and, most crucially, the design of
the cone in which this operator will operate. Moreover,
even though the Avery-Peterson Theorem is a powerful
tool for establishing the existence of multiple solutions, its
assumptions end up demanding more conditions from the
problem compared to the traditional Krasnoselskii Theorem
(for examples of the potential use of both fixed point theorem
mentionated here, we recommend [10] and [11]).

Hence, while in [1], the authors employ a simplified equa-
tion by omitting terms involving derivatives and utilize the
Krasnoselskii Theorem, and in [2], the authors consider such
terms but employ the Avery-Peterson theorem, a gap arises
concerning the application of the Krasnoselskii Theorem in a
more generalized equation like the one presented in (1)-(2).

Concerning numerical aspects of the proposed problem,
there are only a limited number of papers that delve into
investigations of the sixth-order problem. Consequently, the
exploration of numerical solutions for this type of problem
remains relatively undeveloped. To address this scarcity, we
propose an innovative approach that entails a numerical study
employing nonlinear programming methods.

In a nutshell, we can succinctly summarize the contribu-
tions of this study as follows:

• A novel result establishing the existence of a solution for
the equation defined by (1)-(2) through the application
of the Krasnoselskii Theorem (Section 2).

• A fresh algorithm devised to tackle the problem (1)-(2),
grounded in a nonlinear optimization method (Section
3).

• Instances that serve to illustrate both the existence and
numerical facets (Section 2 and 3).

II. EXISTENCE OF SOLUTION

As presented in [1], we can represent the problem (1)-
(2) by representing it as a fixed point of the operator
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Fig. 1. Graph illustration of G(t, s), p(t)G(1, s) e. p(t)G(1, s), in the
figure we can see the relationship described in the equation (7).

T : C1[0, 1] → C1[0, 1]. This operator forms the bedrock
of our exploration into the existence of a solution within the
function spaces C1[0, 1], and its formulation is presented as
follows:

Tu(t) =

∫ 1

0

G(t, s)f(s, u, u′)ds (3)

where G is the Green’s function:
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where
H(ζ) =

{
1, ζ ≥ 0
0, ζ < 0

. (6)

In sequence, we have listed some properties of the Green
function G and its derivative ∂

∂tG that will be useful. As
presented in [2], we enunciate the Property 1.

Propriety 1. How G(1, s) = s3

960 (20 − 25s + 8s2) ≥ 0
following as presented in [1] there are polynomials p(t) and
q(t) such that:

p(t)G(1, s) ≤ G(t, s) ≤ q(t)G(1, s), (7)

where p(t) = 4t− 4t2 + t4, q(t) = t3

3 (20− 25t+ 8t2).
Figure 1 illustrates a comparison among the graphs of

G(t, s), p(t)G(1, s), and p(t)G(1, s). This analysis allows
us to validate Property 1.

As ∂
∂tG is restricted to the interval [0, 1]× [0, 1], we can

conclude that:
∂

∂t
G(0, t) ≤ ∂

∂t
G(t, s) ≤ max

t∈[0,1]

[
∂

∂t
G(t, s)

]
, (8)
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Fig. 2. Graph of ∂
∂t

G(t, s) = Gt(t, s) for different values of t,

highlighting the graph of max
t∈[0,1]

∂

∂t
G(t, s) = max

t∈[0,1]
Gt(t, s).

Figure 2 illustrates the graph of ∂
∂tG(t, s) for various

values of t: t = 0, 0.1, 0.2, . . . , 1. Additionally, the figure

highlights the plot of max
t∈[0,1]

∂

∂t
G(t, s). It can also be ob-

served that the function max
t∈[0,1]

∂

∂t
G(,̇s) presents changes in

its graph as t varies, starting as a null function at t = 0,
approaching the maximum around t ∈ [0.5, 0.6], and then
returning to a null function at t = 1.

To determine the existence of multiple solutions, let’s
consider the cone

E={u ∈ C1[0, 1] : u(0)=u′(0)=0, u(t) ≥ 0,∀t ∈ [0, 1]},

where C1[0, 1] is the Banach space of continuously differ-
entiable functions in [0, 1] equipped with

∥u∥E = max{∥u∥∞, ∥u′∥∞}.

Remark 1. If u ∈ E then Tu satisfies the condition Tu(0) =
0. Moreover ∥(Tu)′∥∞ ≥ ∥Tu∥E and ∥u∥∞ ≤ ∥u∥E =
∥u′∥∞. In fact, since u(0) = 0 one has from the mean value
theorem that

u(t) = u(t)− u(0) ≤ t∥u′∥∞, 0 ≤ t ≤ 1.

Therefore,
∥u∥∞ ≤ ∥u′∥∞

.

To establish the continuity and complete continuity of the
integral operator T , we will present the Proposition 1, as in
[2].

Proposition 1. The operator T is continuous and completely
continuous.

Proof: Continuity can be inferred by employing the
Lebesgue dominated convergence theorem, combined with
the fact that

|T (u)(t)− T (un)(t)| ≤
∫ 1

0

G(t, s)|f(s, u(s), u′(s))
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−f(s, un(s), u
′
n(s))|ds,

≤
∫ 1

0

G(t, s)
∣∣f(s, u(s), u′(s))− f(s, un(s), u

′
n(s))

∣∣ ds,
≤

∫ 1

0

q(t)G(1, s)
∣∣f(s, u, u′(s))− f(s, un(s), u

′
n(s))

∣∣ ds,
≤

∫ 1

0

G(1, s)
∣∣f(s, u(s), u′(s))− f(s, un(s), u

′
n(s))

∣∣ ds.
with un, u ∈ E. To show complete continuity we will use

the Arzela-Ascoli’s theorem. Let Ω ⊆ E be bounded, in other
words, there exists Λ0 > 0 with ∥u∥ ≤ Λ0 for each u ∈ Ω.
Now if u ∈ Ω, we have

|(Tu)(t)| ≤
∫ 1

0

|G(t, s)|HΛ0
(s)ds

where HΛ0
is determined by the bounded set and the function

u. It is immediate that HΛ0(s) ∈ L1[0, 1]. Consequently,
it follows that T (Ω) forms a bounded and equicontinuous
family over the interval [0, 1]. As a result, the Arzelà-Ascoli
theorem can be applied to establish the complete continuity
of the operator T : E → E.

Our existence result will be demonstrated using the Kras-
noselskii fixed point theorem for the compression of a cone,
as detailed in [1].Consequently,

Theorem 1. (Krasnoselskii) Let E be a cone in a Banach
space C and let Ω1 and Ω2 be open subsets of C, with
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose that T : E ∩ (Ω2 Ω1) → E is
a completely continuous operator such that

• ∥Tu∥ ≥ ∥u∥ if u ∈ E ∩ ∂Ω1 and

• ∥Tu∥ ≤ ∥u∥ if u ∈ E ∩ ∂Ω2.

Then T has a fixed point in E ∩ (Ω2 − Ω1).

To establish the existence of solutions, it is necessary to
consider some fundamental assumptions.
(H1) Assuming the existence of a positive constant d1 for
the problem defined in (1)-(2), such that

• For all (s, u, v) ∈ [0, 1]× [0, d1]× [0, d1] then
0 ≤ f(s, u, v) ≤ d

r1
;

• r1 =

∫ 1

0

max
t∈[0,1]

[
∂

∂t
G(t, s)

]
ds;

• Exist s ∈ (0, 1), such that f(s, 0, 0) > 0.
The lemma presented below will be crucial for the demon-

stration of our main result.

Lemma 1. Suppose that (H1) holds. Then there exists
positive constant d2 < d1 such that

∥Tu∥E ≥ ∥u∥E

for all u ∈ E satisfying ∥u∥E = r.

Proof: Suppose the inequality ∥Tu∥E ≥ ∥u∥E is false
for all u ∈ E ∩Ω1 with ∥u∥E = d2, 0 < d2 < d1. Then for
each positive integer n with 1

n > d1, there exists un ∈ E
such that

∥un∥E =
1

n
and ∥Tun∥E <

1

n
.

Consequently, we have constructed a sequence un such that
un → 0 and Tun → 0. Since T is continuous, one has
T0 = 0, which is a contradiction in view of (H1). In fact,

T0 =

∫ 1

0

G(t, s)f(s, 0, 0)ds ≥
∫ 1

0

p(t)G(1, s)f(s, 0, 0)ds,

since p(t)G(1, s)f(s, 0, 0) ≥ 0, ∀s ∈ [0, 1]. Now, the
functions p and G(1, s) do not cancel each other in (0, 1).
Therefore, since f(s, 0, 0) is not identically zero, we obtain
that T0 is not identically zero. Consequently, there must exist
a value d2 such that 0 < d2 < d1, satisfying the conditions
∥Tu∥E ≥ ∥u∥E , ∥u∥E = d2.

Theorem 2. Suppose that (H1) holds. Then 1 and 2 has a
positive solution u ∈ E and d2 ≤ ∥u∥E ≤ d1

Proof: Consider u ∈ E with |u|E ≤ d1. By applying
(H1), we can obtain:

∥Tu∥E = max
t∈[0,1]

∣∣∣∣ ∂∂t (Tu)(t)
∣∣∣∣ ,

≤ max
t∈[0,1]

∫ 1

0

∣∣∣∣ ∂∂tG(t, s)

∣∣∣∣ |f(s, u(s), u′(s))|ds

≤
∫ 1

0

max
t∈[0,1]

[
∂

∂t
G(t, s)

]
|f(s, u(s), u′(s))|ds

≤ d

r1

∫ 1

0

max
t∈[0,1]

[
∂

∂t
G(t, s)

]
ds

≤ d.

By combining Lemma 1 and Krasnoselskii Theorem, we
can conclude that the problem (1)-(2) possesses a positive
solution, which corresponds to a fixed point of the operator
T .

Example 1. Let us consider (1)-(2) with

f(t, u, v) = t+ 20u4 + 30v4.

Choosing the constant d = 2. Calculating

r1 =

∫ 1

0

max
t∈[0,1]

[
∂

∂t
G(t, s)

]
ds = 0.00239740,

it is straightforward to verify that under these conditions, the
hypothesis (H1) is satisfied.

III. NUMERICAL SOLUTION

In this section, we present a method based on optimization
techniques that uses the finite difference approximation for
the derivatives of the problem (1)-(2). That is, the approach
involves discretize the domain of the desired solution using
a mesh and replacing the derivatives with approximations
obtained via finite differences. By considering the prob-
lem (1)-(2) defined on a mesh, we can define a problem
equivalent to a system of nonlinear equations, which can be
solved using optimization techniques. To discretize the Sixth-
Order Boundary Value Problem, we need to approximate the
derivatives that compose the problem defined in (1) and (2).

We will consider f a real function differentiable at a point
x and in a neighborhood of this point. Also, we will use
approximations based on classical finite difference schemes.
For the first derivative of u we can use these formulas:
Central Finite difference:

u′(t) ≈ u(1)(t, h) =
u(t+ h)− u(t− h)

2h
,
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Finite difference forward :

u′(t) ≈ u
(1)
+ (t, h) =

u(t+ h)− u(t)

h
,

Finite difference backward:

u′(t) ≈ u
(1)
− (t, h) =

u(t)− u(t− h)

h
.

For the second order derivative we will also consider approx-
imations obtained by finite differences.
Finite Difference forward:

u′′(x) ≈ u
(2)
+ (t, h) =

u(t+ 2h)− 2u(t+ h) + u(t)

h2
.

For the third order derivative we will also consider approxi-
mations obtained by finite differences.
Finite difference backward:

u′′′(x) ≈ u
(3)
− (t, h) =

1

h3
[u(t)− 3u(t− h)

+3u(t−2h)−u(t−3h)].

For the fifth order derivative we will also consider approxi-
mations obtained by finite differences.
Finite difference backward:

u(5)(x) ≈ u
(5)
− (t, h) =

1

h5
[(−u(t)+5u(t−h)−10u(t−2h)

+10u(t−3h)−5u(t−4h)+u(t−5h))].

For the sixth order derivative of a real function using finite
differences is given by:

u(6)(x) ≈ u(6)(t, h) =
1

h6
[−u(t+ 3h) + 6u(t+ 2h)

−15u(t+h)+20u(t)−15u(t−h)+6u(t−2h)−u(t−3h)].

Considering points just to the right, we can use the formula:

u(6)(x) ≈ u
(6)
+ (t, h) =

1

h6
[(−u(t+ 6h) + 6u(t+ 5h)

−15u(t+4h)+20u(t+3h)−15u(t+2h)+6u(t+h)−u(t))].

For points on the left, we use the formula:

u(6)(x) ≈ u
(6)
− (t, h) =

1

h6
[(−u(t)+6u(t−h)−15u(t−2h)

+20u(t−3h)−15u(t−4h)+6u(t−5h)−u(t−6h))].

In all the formulas above, h represents the distance be-
tween consecutive points.

To understand how our numerical approach works, it is
necessary to understand the discretized problem model in
terms of optimization. In this sense, let’s consider {tj , j =
0, 1, ..., n} a discretization of [0, 1] by an equal spaced mesh
where h = tj+1 − tj , j = 0, 1, ..., n − 1 and uj ≈ u(tj),
j = 0, 1, ..., n, and define the vector u = (u0, u1, . . . , un).
Replacing the classical finite difference schemes in (1) and
(2) we obtain the nonlinear system R(u) = 0, where R :
Rn+1 → Rn+7 is defined as:

Ri(u) = u
(6)
+ (ti, h) + f(ti,u, u

(1)
+ (ti, h)) = 0, i = 0, 1, 2

Ri(u) = u(6)(ti, h) + f(ti,u, u
(1)(ti, h)) = 0, 3 ≤ i ≤ n− 3

Ri(u) = u
(6)
− (ti, h) + f(ti,u, u

(1)
− (ti, h)) = 0, n− 2 ≤ i ≤ n

Rn+1(u) = u0 = 0

Rn+2(u) = u
(1)
+ (t0, h) = 0

Rn+3(u) = u
(2)
+ (t0, h) = 0

Rn+4(u) = u
(1)
− (tn, h) = 0

Rn+5(u) = u
(3)
− (tn, h) = 0

Rn+6(u) = u
(5)
− (tn, h) = 0

The nonlinear system R(u) = 0 gives rise to a set of
n+7 equations. Assuming u0 = 0, our goal is to determine
u1, u2, ..., un, thus seeking to find n+1 variables. Tradition-
ally, numerical solutions rely on fixed-point methods. In this
case, the method is defined by an iterative sequence based
on operator (3). We recommend referring to [2], [12], and
[13] for further insight.

In this article, we propose a method that hinges on the
Gauss-Newton approach [14]. It’s worth noting that the
expansive potential of the Gauss-Newton method extends to
wider applications as well, as exemplified in works such as
[15] and [16].

An algorithm for solving the nonlinear system is described
below.

Algorithm 1 Gauss-Newton
1: Define an uniformly distributed mesh {tj} in [0, 1];
2: Define an initial approximation u0 (so that u0

j ≈ u(tj))
and tolerance ε > 0;

3: k=0;
4: while ∥uk+1 − uk∥∞ > ε or k = 0 do
5: Compute vector Rk = R(uk) and matrix

Ak =


∇R0(u

k)
∇R1(u

k)
...

∇Rn+6(u
k)


6: Find ∆k such that:

(AT
kAk)∆k = −AT

kRk

7: To satisfy the Armijo’s condition, we need to deter-
mine the appropriate value of αk.

8: Compute uk+1 = uk + αk∆k.
9: end while

10: output: uk.

Subsequently, examples are provided to demonstrate the
potential of Algorithm 1.

Example 2. Consider in problem (1) - (2):

f(t, u, v) = u2 + v2

The analytical solution of (1) - (2) is u∗(t) = 0. The
results of applying Algorithm 1 in this example are presented
in Table I, and illustrated in Figure 2.

Example 3. Now let us consider the same function given in
Example 1.

The simulation results were obtained using MatLab 8.0
software running on Windows 10 Home Single Language
operating system.

We apply the Algorithm 1 considering the stopping cri-
terion the condition ∥uk − uk−1∥ < 10−4 and consider
h = 0.05, tj+1 − tj = h,∀j.

In Table I, we have the results obtained through the
application of Algorithm 1 to Examples 2 and 3. It is evident
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TABLE I
PERFORMANCE OF ALGORITHM 1

Problem Iterations Precision (∥uk − u∗∥) ∥uk − uk−1∥
Example 2 5 3.5696e-14 4.1475e-09

Example 3 7 - 3.4531e-06
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Fig. 3. Graph illustration of the solution provided by Algorithm 1 to
Example 3.

that the method exhibits good performance, achieving a high
degree of accuracy even with a minimal number of iterations.
This outcome substantiates the effectiveness of the strategy
involving problem (1)-(2) discretization and the subsequent
application of non-linear programming methods.

The graph depicted in Figure 3 illustrates the approximate
solution, revealing that it adheres closely to the anticipated
conditions of the problem (1)-(2). This alignment with ex-
pectations bolsters the credibility of the obtained solution.

IV. CONCLUSION

This work presents a study where we investigate whether
the problem (1), (2) admits a solution under specific con-
ditions for the function f , as stipulated by Krasnoselskii
theorem. Our approach involves thorough analysis, the im-
plementation of a method rooted in non-linear programming
techniques, rigorous testing, and the presentation of non-
trivial examples that were meticulously examined.

It’s noteworthy that the scope of the problem under
consideration extends beyond that of the investigations con-
ducted in the previous works [1] and [2]. In this study, we
introduce an additional layer of complexity by considering
the impact of the increment of u′ in the function f within
(1). This augmentation necessitates enhanced control over
the constituent functions of the problem to demonstrate the
existence of a solution. Remarkably, the results we have
obtained demonstrate the existence of solutions akin to those
highlighted in the simpler problem presented in [1].
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