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Abstract—This paper investigates the problem of neuroadap-
tive fixed-time control for full-state constrained strict-feedback
nonlinear systems subject to actuator faults. A fixed-time
control strategy combined with barrier Lyapunov functions and
neuroadaptive backstepping is proposed, and a neural network
is employed to approximate the packaged unknown nonlinear
terms and nonlinear actuator faults. By constructing barrier
Lyapunov functions, it can be ensured that none of the strict-
feedback systems’ states will transgress their constraint bounds.
Additionally, a fixed-time controller is designed such that all the
signals in the closed-loop system are bounded, and the output
is driven to track the reference signal to a small neighborhood
within a fixed time. The benefits and feasibility of the proposed
control method are also confirmed by simulations.

Index Terms—Fixed-time stability, Neuroadaptive, Strict-
feedback systems, Actuator faults, Full-state constraints

I. INTRODUCTION

The problem of fixed-time control for strict feedback sys-
tems has attracted widespread considerable attention in the
field of control theory. Actual system design often involves
actuator failures, state constraints, and input saturation, a-
mong other factors, and the research results have mostly
focused on stable system tracking under the abovementioned
complex conditions[1], [2], [3], [4], [5], [6], [37].

In an actual engineering system, during long-term opera-
tion, actuator faults will inevitably occur. If a failure is not
addressed in a timely and effective manner, the entire system
may collapse. Therefore, it is necessary to establish a fault
tolerant control (FTC) scheme. In view of this consideration,
many neural network or fuzzy adaptive control schemes
have been proposed, see, for example [7], [8], [9], [10],
[34], [36] and the references cited therein. Nevertheless, the
abovementioned system faults are linear faults, and these
methods are not suitable for nonlinear faults. In addition,
the status constraint, as a physical constraint, ensures the
safety of equipment operation. To limit the system states to
within the desired interval, a barrier Lyapunov function is
introduced [11], [12], [13], [14], [15], [16], [38].
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Over the past decades, finite-time control has attracted
interest from researchers due to its advantages, which in-
clude its fast convergence speed and strong anti-disturbance
ability[17], [18], [19], [35]. The convergence time of finite
time control depends on system’s the initial state. In terms
of degree, this phenomenon hinders the practical application
of this method because an actual system’s initial state cannot
always be known in advance. Fortunately, reference [20]
provides a fixed-time control method, where it is assumed
that the convergence time is uniformly ultimately bounded
and is independent of the initial state. In [21], aiming at
the attitude tracking problem of four-rotor UAV (Unmanned
Aerial Vehicle), a practical fixed-time disturbance rejection
controller was proposed and considering the output constraint
and input saturation of a pure-feedback system, a neuroadap-
tive fixed-time control scheme was provided in [22]. In [23],
[24], [25], a fixed-time stable high-order nonlinear system
was applied to the consensus for multi-agent systems.

To the best of our knowledge, the neuroadaptive fixed-time
control of full-state constrained strict-feedback nonlinear sys-
tems with actuator faults cannot be designed or prespecified.
The main contributions of this article in comparison with
existing works are summarized as follows:

• A neuroadaptive controller that enables the nonlinear
system to tracking a given desired trajectory within a
fixed time and ensures that all variables in the closed-
loop system are bounded is constructed.

• The neural network is used to approximate nonlinear
actuator faults, which often appear during actual system
operation.

• During the design process, a barrier Lyapunov function
is introduced to constrain all state variables to within
specified regions. Finally, the simulation results verify
the effectiveness of the proposed control scheme.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System description

Consider the strict-feedback systems with actuator faults
described by:

ẋ1 = x2 + f1(x1)
ẋi = xi+1 + fi(xi)
ẋn = u+ fn(xn) + κ(t− T0)χ(x, u)
y = x1, i = 2, ..., n− 1

(1)

where X = [x1, ..., xn] represents the system state vector and
is subject to ∥ X ∥< kb1 and ∥ Ẋ ∥< kb2, where kb1 and
kb2 are the given positive constants. fi(X) is an unknown
smooth nonlinear function. u and y are control input and
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output, respectively. κ(t − T0) represents the time function
of the actuator failure at time T0, which is described as

κ(t− T0) =

{
1− e−ν(t−T0), t ≥ T0
0, otherwise

(2)

where ν > 0 is the evolution rate of the unknown fault.
χ(q, u) is an unknown fault function.

Remark 1: This paper is concerned with nonlinear actuator
faults, which are different from the linear faults discussed in
references [7], [26], [27] and are more in line with actual
actuator faults.

Control objective: to design an adaptive NN (Neural
Network) control law for the strict feedback system (1) under
actuator failure and full state constraints to ensure that the
output x1 of the strict feedback system (1) is along the
desired trajectory xd while the tracking error is stabilized
in a small residual set at a fixed time.

B. Preliminaries

To convenient for the control system design, some assump-
tions and lemmas are imposed on system (1).

Assumption 1 ([28]): The reference signal xd and its
derivatives ẋd and ẍd are bounded.

Assumption 2 ([29]): There is an unknown non-negative
function g(x, u), and

| fn(xn) + κ(t− T0)χ(x, u) |≤ g(x, u) (3)

Lemma 1: Radial basis function neural networks (RBFNN)
can approximate unknown continuous nonlinear functions
f(Z) with arbitrary precision on a compact set Ω.

f(Z) =WTΦ(Z) + δ(Z) (4)

where W = [W1,W2, ...,Wℓ] is the optimal weight of
RBFNN, δ(Z) is the approximation error, satisfies | δ(Z) ≤
ε |, and ε > 0 is a constant. ℓ is the number of NN nodes.
Φ(Z) = [Φ1(Z),Φ2(Z), ...,Φℓ(Z)] is a known and bounded
basis function, and chosen as the Gaussian function form

Φi(Z) = exp[
−(Z − ςi)

T (Z − ςi)

r2i
] (5)

where ςi = [ς1, ς2, ..., ςℓ]
T denotes the center of the receptive

field, and ri represents the width of the Gaussian function.
Remark 2: Here we define an unknown constant Θi as

Θi = ∥Wi ∥2/b, i = 1, 2, ..., n.
Definition 1 ([30]): Consider the nonlinear dynamical

system
ẋ = f(x), x(0) = x0 (6)

where x is the system state and f(x) is a smooth nonlinear
function. Then, assume that the origin is an equilibrium point.

Lemma 2([22]): For system (1), suppose there is a Lya-
punov function V (x), so that the following inequality holds

V̇ (x) ≤ −ρ1V α(x)− ρ2V
β(x) + ζ (7)

where ρ1 > 0, ρ2 > 0, ζ > 0, α ∈ (0, 1), and β ∈ (1,∞).
Then the origin of system (1) exhibits practical fixed-time
stability and the settling time satisfies

T ≤ Tmax :=
1

ρ1θ(1− α)
+

1

ρ2θ(β − 1)
(8)

where θ is a constant and satisfies θ ∈ (0, 1). The residual
set of the solution in (7) is expressed as

x ∈ {V (x) ≤ min{( ζ

(1− θ)ρ2
)

1
β , (

ζ

(1− θ)ρ1
)

1
α }} (9)

Remark 3: From (8), the advantage of fixed-time control over
finite-time control is that the upper bound of the fixed-time
convergence time is independent of the initial conditions and
is only related to the design parameters.

Lemma 3([31]): For any scalars Γi ∈ R, i = 1, 2, ..., N ,
0 < ρ1 < 1, and ρ2 > 1. There holds

(

N∑
i=1

| Γi |)ρ1 ≤
N∑
i=1

| Γi |ρ1 (10)

(
N∑
i=1

| Γi |)ρ2 ≤ Nρ2−1
N∑
i=1

| Γi |ρ2 (11)

Lemma 4([32]): For any positive real number a, b, and
ψ(µ, ν) > 0, the following relationship holds

| µ |a| ν |b≤ aψ | µ |a+b

a+ b
+
bψ− a

b | ν |a+b

a+ b
(12)

III. CONTROL SCHEME

To realize the stability analysis of the system (1), introduce
the change of coordinates:

z1 = x1 − xd

zi = xi − si

ϖi = si − ϱi−1, i = 2, ..., n

(13)

where z1 and zi are virtual error surfaces, ϱi−1 is virtual
control signals, and ϖi is error signals. si denotes the state
variables, which are obtained by first-order filtering of the
virtual control signal varrhoi−1. Therefore, the stability of
ϖi is constructed and analyzed using n steps based on the
backstepping technique.

Step 1: It follows from (1) and (13), that

ż1 = ẋ1 − ẋd

= x2 + f1(x1)− ẋd
(14)

Consider the following Lyapunov function candidate as

V1 =
1

2
log

k2b1
k2b1 − z21

+
b

2γ1
Θ̃2

1 (15)

where γ1 is the design parameter and Θ̃1 = Θ1 − Θ̂1, Θ̂1 is
the estimated value of Θ1.

Taking the derivative of V1 with respect to (w.r.t.) z1 and
Θ̃1, one has

V̇1 =
z1

k2b1 − z21
(x2 + f1(x1)− ẋd)−

b

γ1
Θ̃1

˙̂
Θ1

=
z1

k2b1 − z21
(z2 +ϖ2 + ϱ1 + f̂1(Z1))−

1

2
(

z1
k2b1 − z21

)2

− b

γ1
Θ̃1

˙̂
Θ1

(16)

where f̂1(Z1) = f1(x1)− ẋd+ 1
2 (

z1
k2
b1−z2

1
). According to (4),

one has
f̂1(Z1) =WT

1 Φ1(Z1) + δ1 (17)
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where δ1 ≤ ε1. By utilizing Young’s inequality, one has

f̂1(Z1)
z1

k2b1 − z21
≤ bΘ1

2a21
(

z1
k2b1 − z21

)2ΦT
1 (Z1)Φ1(Z1) +

a21
2

+ bc13(
z1

k2b1 − z21
)2 +

ε21
4bc13

(18)

z1
k2b1 − z21

ϖ2 ≤ 1

2
(

z1
k2b1 − z21

)2 +
1

2
ϖ2

2 (19)

By combining (17), (18), and (19), it is readily shown that

V̇1 ≤ bΘ1

2a21
(

z1
k2b1 − z21

)2ΦT
1 (Z1)Φ1(Z1)

+
a21
2

+ bc13(
z1

k2b1 − z21
)2 +

ε21
4bc13

+
1

2
ϖ2

2

+
z1

k2b1 − z21
ϱ1 −

b

γ1
Θ̃1

˙̂
Θ1 +

z1
k2b1 − z21

z2

(20)

To proceed, we define the virtual control input ϱ1 as:

ϱ1 = −c11(
z21

k2b1 − z21
)

α−1
2 z1 − c12(

z21
k2b1 − z21

)β−1z1

− Θ̂1

2a21
(

z1
k2b1 − z21

)2ΦT
1 (Z1)Φ1(Z1)− c13(

z1
k2b1 − z21

)

(21)

With (21), (20) can be continued as follows:

V̇1 ≤ bΘ̃1

γ1
[
γ1
2a21

(
z1

k2b1 − z21
)2ΦT

1 (Z1)Φ1(Z1)− ˙̂
Θ]

+
a21
2

+
ε21

4bc13
+

1

2
ϖ2

2 − c11(
z21

k2b1 − z21
)

α+1
2

− c12(
z21

k2b1 − z21
)β +

z1
k2b1 − z21

z2

(22)

The parameter adaptive law of ˙̂
Θ1 is designed as

˙̂
Θ1 =

γ1
2a21

(
z1

k2b1 − z21
)2ΦT

1 (Z1)Φ1(Z1)− 2r1Θ̂1 (23)

Substituting the virtual control input and adaptive law into
(22), it is readily seen that

V̇1 ≤ 2br1Θ̃1Θ̂1

γ1
+
a21
2

+
ε21

4bc13
+

1

2
ϖ2

2

− c11(
z21

k2b1 − z21
)

α+1
2 − c12(

z21
k2b1 − z21

)β +
z1

k2b1 − z21
z2

(24)

From Lemma 3, it hold that

2br1Θ̃1Θ̂1

γ1
≤ −br1

γ1
Θ̃2

1 +
br1
γ1

Θ2
1

= − br1
2γ1

Θ̃2
1 −

br1
2γ1

Θ̃2
1 +

br1
γ1

Θ2
1

(25)

then, according to Lemma 4, ones has

− br1
2γ1

Θ̃2
1 ≤ −r1(

b

2γ1
Θ̃2

1)
1+α
2 + r1(1−

1 + α

2
)ψ1 (26)

and

− br1
2γ1

Θ̃2
1 ≤ −r1(

b

2γ1
Θ̃2

1)
β + r1(1− β)ψ2 (27)

Invoking (26) and (27), (24) can be rewritten as

V̇1 ≤ −c11(
z21

k2b1 − z21
)

α+1
2 − c12(

z21
k2b1 − z21

)β

− r1(
b

2γ1
Θ̃2

1)
1+α
2 − r1(

b

2γ1
Θ̃2

1)
β +

a21
2

+
ε21

4bc13

+
1

2
ϖ2

2 +
z1

k2b1 − z21
z2 + r1b(1−

1 + α

2
)ψ1

+ r1b(1− β)ψ2 +
br1
γ1

Θ2
1

(28)

Then, (30) can be rewritten as

V̇1 ≤ −λ11V
1+α
2

1 − λ122
1−βV β

1 +
z1

k2b1 − z21
z2 +∆1 (29)

where λ11 = min{c112
1+α
2 , r1}, λ12 = min{c122β , r1} and

∆1 =
a2
1

2 +
ε21

4bc13
+ 1

2ϖ
2
2+

br1
γ1

Θ2
1+r1b(1− 1+α

2 )ψ1+r1b(1−
β)ψ2.

To avoid the problem of ”explosion of complexity”, we
introduce a new state variable s2 and letting ϱ1 pass through
a first-order filter with a time constant τ2 that yields

τ2ṡ2 + s2 = ϱ1, s2(0) = ϱ1(0) (30)

where τ2 > 0 is a constant. Combined with (14), we can get

ṡ2 =
ϱ1 − s2
τ2

= −ϖ2

τ2
(31)

then
ϖ̇2 = −ϖ2

τ2
+N2(·) (32)

where N2(·) = ϱ̇1, specifically expressed as

N2(·) = −ρ11(2α− 1)(
1

2
)αz2α−2

1 ż1

− ρ21(2β − 1)(
1

2
)βz2β−2

1 ż1 − ż1

− ˙̂
WT

1 Φ1(x1) + ŴT
1

∂Φ1(x1)

∂x1
ẋ1 + ẍd

(33)

Step i(i=2,...,n-1): According to (1), (4), and (14), the time
derivative of zi can be obtained by

żi = xi+1 + fi(xi)− ṡi

= zi+1 +ϖi+1 + ϱi + fi(xi)− ṡi
(34)

Consider the Lyapunov function candidate Vi as

Vi = Vi−1 +
1

2
log

k2bi
k2bi − z2i

+
1

2
ϖ2

i +
b

2γi
Θ̃2

i (35)

The time derivative of Vi along (30) can be derived as

V̇i = V̇i−1 +
zi

k2bi − z2i
(fi(xi) + zi+1 +ϖi+1

+ ϱi − ṡi) +ϖiϖ̇i −
b

γi
Θ̃i

˙̂
Θi

(36)

According to Lemma 1, one has

f̂i(Zi) =WT
i Φi(Zi) + δi (37)

where f̂i(Zi) = fi(xi)− ṡi +
1
2 (

zi
k2
bi−z2

i
). By using Young’s

inequality, we can get

f̂i(Zi)
zi

k2bi − z2i
≤ bΘi

2a2i
(

zi
k2bi − z2i

)2ΦT
i (Zi)Φi(Zi)

+
a2i
2

+ bci3(
zi

k2bi − z2i
)2 +

ε2i
4bci3

(38)
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zi
k2bi − z2i

ϖi+1 ≤ 1

2
(

zi
k2bi − z2i

)2 +
1

2
ϖ2

i+1 (39)

From (37), (38), and (39), it is derived that

V̇i ≤ V̇i−1 +
bΘi

2a2i
(

zi
k2bi − z2i

)2ΦT
i (Zi)Φi(Zi) +

a2i
2

+ bci3(
zi

k2bi − z2i
)2 +

ε2i
4bci3

+
1

2
ϖ2

i+1 +
zi

k2bi − z2i
zi+1

+
zi

k2bi − z2i
ϱi +ϖi(−

ϖi

τi
+Ni(·))−

b

γi
Θ̃i

˙̂
Θi

(40)

By using Young’s inequality, we have

ϖiNi(·) ≤
1

2ϕ
ϖ2

iN
2
i +

1

2
ϕ (41)

where ϕ is a positive constant. The virtual control input ϱi
and adaptive law for ˙̂

Θi are designed as

ϱi = −ci1(
z2i

k2bi − z2i
)

α−1
2 zi − ci2(

z2i
k2bi − z2i

)β−1zi

− Θ̂i

2a2i
(

zi
k2bi − z2i

)2ΦT
i (Zi)Φi(Zi)− ci3(

zi
k2bi − z2i

)

(42)

˙̂
Θi =

γi
2a2i

(
zi

k2bi − z2i
)2ΦT

i (Zi)Φi(Zi)− 2riΘ̂i (43)

Then, (40) can be rewritten as

V̇i ≤
j∑

j=1

2brjΘ̃jΘ̂j

γj
+

i∑
j=1

a2j
2

+

i∑
j=1

ε2j
4bcj3

+
zi

k2bi − z2i
zi+1 −

i∑
j=1

cj1(
z2j

k2bj − z2j
)

α+1
2

−
i∑

j=1

cj2(
z2j

k2bj − z2j
)β +

1

2
ϕ+

i∑
j=1

ϖ2
j+1

−
i∑

j=2

(
1

τi
− 1

2ϕ
N2

i − 1)ϖ2
j

(44)

According to Lemma 3, we have

2briΘ̃iΘ̂i

γi
≤ −bri

γi
Θ̃2

i +
bri
γi

Θ2
i

= − bri
2γi

Θ̃2
i −

bri
2γi

Θ̃2
i +

bri
γi

Θ2
i

(45)

Then, Upon using Lemma 4, it is shown that

− bri
2γi

Θ̃2
i ≤ −ri(

b

2γi
Θ̃2

i )
1+α
2 + ri(1−

1 + α

2
)ψi1 (46)

and
− bri

2γi
Θ̃2

i ≤ −ri(
b

2γi
Θ̃2

i )
β + ri(1− β)ψi2 (47)

−(
2

τi
− 1

ϕ
N2

i − 2)
1

2
ϖ2

j ≤ −(
2

τi
− 1

ϕ
N2

i − 2)(
1

2
ϖ2

j )
1+α
2

+ (
2

τi
− 1

ϕ
N2

i − 2)(1− 1 + α

2
)ψi3

(48)

−(
2

τi
− 1

ϕ
N2

i − 2)
1

2
ϖ2

j ≤ −(
2

τi
− 1

ϕ
N2

i − 2)(
1

2
ϖ2

j )
β

+ (
2

τi
− 1

ϕ
N2

i − 2)(1− β)ψi4

(49)

The (44) can be rewritten as

V̇i ≤ −λi1V
1+α
2

i − λi22
1−βV β

i +
zi

k2bi − z2i
zi+1 +∆i (50)

where ∆i =
∑i

j=1

a2
j

2 +
∑i

j=1

ε2j
4bcj3

+
∑i

j=1ϖ
2
j+1 +∑i

j=1
bri
γi

Θ2
1+

∑i
j=1 rib(1−

1+α
i+1 )ψi+

∑i
j=1 rib(1−β)ψi+1,

λi1 = min{
∑i

j=1 ci12
1+α
2 },∑i

j=1 ri}, λi2 = min{
∑i

j=1 ci22
β ,
∑i

j=1 ri}.
To avoid repeatedly differentiating ϱi, we define the first-

order filter as

τi+1ṡi+1 + si+1 = ϱi, si+1(0) = ϱi(0) (51)

where τi+1 > 0 is a constant. Combined with (13), we can
get

ṡi+1 =
ϱi − si+1

τi+1
= −ϖi+1

τi+1
(52)

then
ϖ̇i+1 = −ϖi+1

τi+1
+Ni+1(·) (53)

where Ni+1 is a continuous function, and specifically ex-
pressed as

Ni+1(·) = −ρ11(2α− 1)(
1

2
)αz2α−2

1 ż1

− ρ21(2β − 1)(
1

2
)βz2β−2

1 ż1 − ż1

− ˙̂
WT

1 Φ1(x1) + ŴT
1

∂Φ1(x1)

∂x1
ẋ1 + ÿd

(54)

Step n: According to (1) and (13), we can get

żn = u+ fn(xn) + κ(t− T0)χ(x, u)− ṡn (55)

Letting G(x, u) = g(x, u) − ṡn + 1
2 (

zn
k2
bn−z2

n
). Then, from

Assumption 2 and Lemma 1, ones has

G(x, u) =WT
n Φn(Zn) + δn (56)

Choose the Lyapunov function candidate as

Vn = Vn−1 +
1

2
log

k2bn
k2bn − z2n

+
1

2
ϖ2

n +
b

2γn
Θ̃2

n (57)

The time derivative of Vn along (55) and (56) can be derived
as

V̇n = V̇n−1 +
zn

k2bn − z2n
(WT

n Φn(Zn) + δn

+ u) +ϖnϖ̇n − b

γn
Θ̃n

˙̂
Θn

(58)

By using Young’s inequality, we have

G(Zn)
zn

k2bn − z2n
≤ bΘn

2a2n
(

zn
k2bn − z2n

)2ΦT
n (Zn)Φn(Zn)

+
a2n
2

+ bcn3(
zn

k2bn − z2n
)2 +

ε2n
4bcn3

(59)

Hence, (58) becomes

V̇n ≤ V̇n−1 +
bΘn

2a2n
(

zn
k2bn − z2n

)2ΦT
n (Zn)Φn(Zi) +

a2n
2

+ bcn3(
zn

k2bn − z2n
)2 +

ε2n
4bcn3

+
zn

k2bn − z2n
u+ϖn(−

ϖn

τi
+Nn(·))−

b

γn
Θ̃n

˙̂
Θn

(60)
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By using Young’s inequality, we have

ϖnNn(·) ≤
1

2ϕ
ϖ2

nN
2
n +

1

2
ϕ (61)

We design the control input u and the parameter adaptive
law of ˙̂

Θn as

u = −ci1(
z2n

k2bn − z2n
)

α−1
2 zn − cn2(

z2i
k2bn − z2n

)β−1zn

− Θ̂n

2a2n

zn
k2bn − z2n

ΦT
n (Zn)Φn(Zn)− cn3(

zn
k2bn − z2n

)

− zn−1

(62)

˙̂
Θn =

γn
2a2n

(
zn

k2bn − z2n
)2ΦT

n (Zn)Φn(Zn)− 2rnΘ̂n (63)

Applying (62) and (63), we obtain

V̇n ≤ 2brnΘ̃nΘ̂n

γn
+

n∑
i=1

a2i
2

+

n∑
i=1

ε2i
4bci3

−
n∑

i=1

ci1(
z2i

k2bi − z2i
)

α+1
2 −

n∑
i=1

ci2(
z2i

k2bi − z2i
)β

+
1

2
ϕ−

n∑
i=2

(
1

τi
− 1

2ϕ
N2

i − 1)ϖ2
i

(64)

From Lemma 3, we have

2brnΘ̃nΘ̂n

γn
≤ −brn

γn
Θ̃2

n +
brn
γn

Θ2
n

= − brn
2γn

Θ̃2
n − brn

2γn
Θ̃2

n +
brn
γn

Θ2
n

(65)

Then, according to Lemma 4, ones has

− brn
2γn

Θ̃2
n ≤ −rn(

b

2γn
Θ̃2

n)
1+α
2 + rn(1−

1 + α

2
)ψn1 (66)

and

− brn
2γn

Θ̃2
n ≤ −rn(

b

2γn
Θ̃2

n)
β + rn(1− β)ψn2 (67)

Same as (66) and (67), we have

−(
2

τn
− 1

ϕ
N2

n − 2)
1

2
ϖ2

n ≤ −(
2

τn
− 1

ϕ
N2

n − 2)(
1

2
ϖ2

n)
1+α
2

+ (
2

τn
− 1

ϕ
N2

n − 2)(1− 1 + α

2
)ψn3

(68)

−(
2

τn
− 1

ϕ
N2

n − 2)
1

2
ϖ2

n ≤ −(
2

τn
− 1

ϕ
N2

n − 2)(
1

2
ϖ2

n)
β

+ (
2

τn
− 1

ϕ
N2

n − 2)(1− β)ψn4

(69)

Consequently, (64) becomes

V̇n ≤ −λn1V
1+α
2

n − λn22
1−βV β

n +∆ (70)

where λn1 = min{c112
1+α
2 , ..., cn12

1+α
2 , r1, ..., rn,

2
τ2

−
1
ϕN

2
2 − 2, ..., 2

τn
− 1

ϕN
2
n − 2},λ12 =

min{c122β , ..., cn22β , r1, ..., rn, 2
τ2

− 1
ϕN

2
2 − 2, ..., 2

τn
−

1
ϕN

2
n − 2} and ∆ =

∑n
i=1

a2
i

2 +
∑n

i=1
ε2i

4bci3
+ 1

2ϖ
2
2 +

br1
γ1

Θ2
1 + r1b(1− 1+α

2 )ψ1 + r1b(1− β)ψ2.

Using Lemma 2, it is guaranteed that all signals in the
system (1) are practically fixed-time stable and that the
signals converge within the set tight set.

x ∈ {V (x) ≤ min{( 2β−1∆

λn2(1−θ)
)

1
β , (

∆

λn1(1−θ)
)

2
1+α }} (71)

The tracking error converges to a small neighborhood near
the origin, satisfying

| y − xd |≤ kb1[1− e
−2( ∆

(1−θ)λn1
)

2
1+α

]
1
2 (72)

and the fixed time is selected with

T ≤ Tmax :=
2

λn1θ(1− α)
+

2β−1

λn2θ(β − 1)
(73)

Based on the above discussions, we are going to express the
main results of this paper with the following theorem.

Theorem 1: For the nonlinear system (1) with virtual
control inputs (21) and (42), the actual control input is
described in (62) and the adaptive laws are discussed in (23),
(43), and (63). Under Assumptions 1-2, i) the closed loop
system has semi-globally practical fixed-time stability, and
ii) the tracking error | y− xd | converges to a small residual
set in a fixed time.

Remark 4: To avoid divergence of the control input u, the
range of values of α is narrowed to α ∈ (0.6, 1).

IV. SIMULATION VERIFICATION

A. Mathematical example

Consider the following strict-feedback nonlinear systems: ẋ1 = x2 + 0.1x21
ẋi = 0.1x1x2 − 0.2x1 + u+ κ(t− T0)χ(x, u)
y = x1

(74)

The initial state of the system is x1(0) = 0.2 and x2(0) =
−0.3. The desired trajectory of the system tracking target is
xd = 0.5 sin(t). The states are constrained by kb1 = 0.6 and
kb2 = 1. The control parameters are chosen as α = 0.6 and
β = 2.

The effectiveness of the designed algorithm is verified by
two actuator failures.

Case 1: Incipient fault
The fault tolerance function is selected as follows:

χ(x, u) = 5(x1x2 + 0.3 sin(u)) + 5 (75)

The actuator failure time function is as follows:

κ(t− T0) =

{
0, t < T0

1− e−8(t−T0), t ≥ T0
(76)

The failure rate of unknown faults is ν = 8 and the failure
time is T0 = 10.

To verify the superiority of the algorithm in this paper,
the simulation results are compared with the literature [33],
as shown in Figs. 1-4. The tracking error of the system is
given in Figure 1, from which it can be seen that the system
stabilizes within 0.43 seconds and still achieves accurate
tracking when the actuator fails. However, the tracking errors
reported in reference [33] are large, and the system is less
fault-tolerant. Fig. 2 shows the change curve of controller u,
and Fig. 3 shows the tracking curve of the desired trajectory
xd against x1. From the figure, it can be seen that at the 4th
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second, the system fails, and the system state x1 is always
within the constraint. The curve for state x2 is shown in
Fig. 4, and it can be seen that x2 is also always within
the constraint interval. Finally, Fig. 5 shows the Θ̂1 and Θ̂2

curves. The simulation results show that the method in this
paper has good tracking performance, which further validates
the effectiveness of the method.
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Fig. 1. Curve of the tracking error z1

0 5 10 15 20
−40

−30

−20

−10

0

10

Time(sec)

C
o
n
tr
o
l
in
p
u
t

 

 
u

[33]

Fig. 2. Curve of the controller u

0 5 10 15 20
-1

-0.5

0

0.5

1

x
d

[33]

x
1

k
b1

-k
b1

Fig. 3. Curve of state x1 and desired trajectory xd

Case 2: Abrupt fault
The system parameters are the same as those in the design

for Case 1, except that the selection of the failure evolution
rate is different. Here, the selection of ν is similar to a step
function, which simulates sudden failure by choosing a larger
value, i.e., 1− e−ν(t−T0) equals 1 if ν → +∞.

Figs. 6-10 present the simulation results. From Fig. 6,
it can be seen that the system has stabilized within 0.43
seconds, and accurate tracking can still be achieved when
the system actuator fails. The simulation results show that
the method has a good tracking effect in cases of sudden
actuator failure. Meanwhile, Table 1 shows that the tracking
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Fig. 5. Parameter estimation Θ̂1 and Θ̂2 curve

error convergence time of the algorithm in this paper is faster,
and reference [33] does not consider the convergence time
problem.

TABLE I
TRACKING PERFORMANCE COMPARISONS

Method Max tracking error Error convergence time
[33] 1.25 −
Ours 0.3 0.43
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Fig. 6. Curve of the tracking error z1

B. Physical example

We choose an actual electromechanical system, and its
schematic diagram is shown in Fig. 11. The system model
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Fig. 7. Curve of the controller u
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Fig. 11. Schematic of the electromechanical system

TABLE II
PARAMETERS OF THE ELECTROMECHANICAL SYSTEM AND THE

UNKNOWN DISTURBANCE

J = 0.1625kg ·m2 M0 = 0.434kg
m = 0.506kg R = 0.0005Ω
G = 9.8N/kg Kτ = 0.9N ·m/A

KB = 0.09N ·m/A B0 = 0.01625N ·m · s/rad
L = 0.5H d1(x1, t) = 0.5 sin(x2

1) + 0.01 cos(0.1x1t)
L0 = 0.0305m d2(x2, t) = 0.02 cos(x2t)
R0 = 0.23m d3(x3, t) = 0.03 sin(x3t)

expression can be expressed as follows

ẋ1 = x2 + d1(x1, t)
ẋ2 = 1

J
Kτ

+
mL2

0
3Kτ

+
M0L2

0
Kτ

+
2M0L2

0
5Kτ

(x3 − B0

Kτ
x2)

−
mL0G
2Kτ

+
M0L0G

Kτ

J
Kτ

+
mL2

0
3Kτ

+
M0L2

0
Kτ

+
2M0L2

0
5Kτ

sin(x1) + d2(x2, t)

ẋ3 = 1
Lu− KB

L x2 − R
Lx3 + d3(x3, t)

y = x1
(77)

where R is the armature resistance, di(xi, t) is the unknown
disturbance, L is the armature inductance, J is the rotor
inertia, KB is the back-emf coefficient, m is the link mass,
G is the gravity coefficient, V0 is the input control voltage,
M0 is the load mass, L0 is the link length, and R0 is the
radius of the load. B0 is the coefficient of viscous friction
at the joint and Kτ is the coefficient that characterizes the
electromechanical conversion of armature current to torque.
The above parameters of the electromechanical system and
the unknown disturbance are shown in Table 2. Choose the
desired trajectory as xd = sin(t). The states are constrained
by kb1 = 1.2, kb2 = 5, and kb3 = 20. The control parameters
are chosen as α = 0.6 and β = 2. Here, an abrupt actuator
fault is considered, and the incipient fault treatment method
is no longer elaborated on.

The simulation results are shown in Figs. 12-16, from
which it can be seen that the states of x1, x2, and x3 are
still within the constraint intervals when an actuator sudden
failure occurs in the electromechanical system. Meanwhile,
the tracking error of the system is small and fault-tolerant.

V. CONCLUSION

The neural adaptive practical fixed-time control problem
for strictly feedback nonlinear systems with full state con-
straints and actuator faults is investigated. Using the practical
fixed-time theory and the backstepping method, it is demon-
strated that the closed-loop system has desirable tracking
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performance under actuator faults and full-state constraints.
Simulation results show that the method is fault-tolerant to
actuator faults.
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