
Stress and Tension of Generalized Complements
of Graphs

Madhumitha K. V, Swati Nayak, Sabitha D’Souza*

Abstract—Centrality measures are scalar values given to each
node in the graph to quantify its importance based on an
assumption. Stress and tension are the centrality index based
on shortest path. In this paper, stress and tension of general-
ized complements of some standard graphs are calculated by
counting the number of geodesics of different length.

Index Terms—Geodesic, Stress, Tension, k−complement,
k(i)−complement.

I. INTRODUCTION

LET G = (V,E) be a simple, finite, undirected and
connected graph. The order and size of G is given by

|V | = n and |E| = m respectively. The degree of a vertex
v in a graph G, denoted by deg(v) is the number of edges
incident on the vertex v. Let P = {vo, v1, . . . , vn} be a
vovn path in G. The length of P , denoted by l(P ) is the
number of edges in the vovn path. Let d(u, v) denote the
distance between any two vertices u and v in G. The shortest
path between any two vertices in G is called the geodesic.
The diameter of G is the length of any longest geodesic,
denoted by diam(G). The maximum distance from vertex
v to all other vertices in G is the eccentricity e(v) of v.
The complement G of G is the graph which has V as its
vertex set and two vertices are adjacent in G if and only if
they are not adjacent in G. G is self complementary if G is
isomorphic to G.

Let G = (V,E) be a graph and P = {V1, V2, . . . , Vk} be
a partition of V of order k ≥ 1. The k−complement GP

k of
G is obtained by removing the edges between Vi and Vj in
G and adding edges between Vi and Vj which are not in G,
for all Vi and Vj in P , where i ̸= j.

For each set Vr in the partition P , remove the edges
of G inside Vr and add the edges of G joining the ver-
tices of Vr. The graph GP

k(i) thus obtained is called the
k(i)−complement of G with respect to P of V .

The k − complement and k(i) − complement of G are
related as follows: [1]

1) GP
k
∼= GP

k(i)

2) GP
k(i)

∼= GP
k

In 1953, Alfonso Shimbel [2] defined the concept of stress
of a vertex in a graph. Stress of a vertex v in a graph G is the
number of shortest paths in G having v as an internal vertex
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and is denoted by st(vi). A graph G is k−stress regular, if
all vertices of G have stress k. The total stress of a graph

G is defined by st(G) =
n∑

i=1

st(vi). K. Bhargava et al. [3]

determined the stress of vertices in some standard graphs.
Raksha Poojary et al. [4] determined stress of paths, cycles,
fans and wheels. They also determined the stress of a cut
vertex of a graph G when G has at most 2 cut vertices. Shiny
Joseph [5] determined total vertex stress in some merged
graphs, cartesian product graphs and the join of two graphs.
Raksha Poojary et al. [6] determined stress of wheel related
graphs such as gear graph, helm graph, friendship graph,
flower graph and sunflower graph.

K. Bhargava et al. [7] introduced the concept of tension
on an edge in a graph. Let e be an edge in the graph G.
The tension on e is defined as the number of geodesics in G
passing through e. Total tension of G, denoted by Nτ (G), is
defined as Nτ (G) =

∑
e∈E

τ(e).

In this paper, the stress and tension of generalized com-
plement of a graph is computed in such a way that k-
complement and k(i)-complement of the graph is connected.
We compute stress and tension of generalized complements
of path, cycles, complete bipartite, wheel graph and fan graph
by calculating number of geodesics of different length.

Note that
• Geodesics of length n contribute (n − 1) to the stress

of a graph.
• Geodesics of length n contribute n to the tension of a

graph.

II. PRELIMINARY DEFINITIONS

1) A simple graph with n ≥ 3 vertices forming a cycle of
length n is called a cycle graph, denoted by Cn.

2) Wheel Graph Wn+1 is formed by connecting a single
universal vertex to all vertices of cycle.

3) Path graph is a graph whose vertices can be listed in the
order {v1, v2, . . . , vn} such that the edges are vivi+1,
where 1 ≤ i ≤ n− 1.

4) The Fan graph F1,n is obtained by removing one
peripheral edge from the wheel graph.

5) A complete bipartite graph is a graph whose vertices can
be partitioned into two subsets V1 and V2 such that no
edge has both endpoints in the same subset and every
possible edge that could connect vertices in different
subsets is part of the graph.

Theorem II.1. [3], [7] For any graph with n vertices and
diameter d, we have

Nstr(G) =
d∑

i=1

(i− 1)fi (1)
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Nτ (G) =
d∑

i=1

ifi (2)

where, fi is the number of geodesics of length i in G.

III. STRESS AND TENSION OF k−COMPLEMENT OF SOME
STANDARD GRAPHS

Theorem III.1. Let P = {V1, V2, . . . , Vk} be a partition of
path graph Pn of order n.

1) If any of the pendant vertex is in V1 or Vn+1
2

and
remaining n−1

2 partitions be K2’s. Then,

a) St(Pn)
P
n+1
2

= n2−3n+2
2 .

b) Nτ (Pn)
P
n+1
2

= 3n2−8n+5
2 .

2) If any of the non-pendant vertex is in Vi, 3 ≤ i ≤ n−2
and the remaining n−1

2 partitions be K2’s. Then,

a) St(Pn)
P
n+1
2

= n2−3n−2
2 .

b) Nτ (Pn)
P
n+1
2

= 3n2−8n−3
2 .

3) If ⟨Vi⟩ = K2 ; i = 1, 2, . . . , n
2 . Then,

a) St(Pn)
P
n
2
= n2−4n+4

2 .

b) Nτ (Pn)
P
n
2
= 3n2−10n+10

2 .

Proof:

1) Let any of the pendant vertex be in V1 or Vn+1
2

and
remaining n−1

2 partitions be K2’s. Then, number of
geodesics of length 1 =

(
n
2

)
− (n − n+1

2 ) and that of
length 2 = (n− n+1

2 )(n− 2).
From II.1, we have

a) St(Pn)
P
n+1
2

= 0

((
n

2

)
−
(
n− n+ 1

2

))
+ 1

((
n− n+ 1

2

)
(n− 2)

)
=

(
n− n+ 1

2

)
(n− 2)

=
n2 − 3n+ 2

2
.

b) Nτ (Pn)
P
n+1
2

= 1

((
n

2

)
−
(
n− n+ 1

2

))
+ 2

((
n− n+ 1

2

)
(n− 2)

)
= 1

((
n

2

)
−
(
n− n+ 1

2

))
+ 2

(
n2 − 3n+ 2

2

)
=

3n2 − 8n+ 5

2
.

2) Let any of the non-pendant vertex be in Vi, 3 ≤ i ≤
n− 2 and the remaining n−1

2 partitions be K2’s. Then,
number of geodesics of length 1 =

(
n
2

)
− (n − n+1

2 ).
Number of geodesics of length 2 = 2(n − 3) + (n −
2)(n− (n+1

2 )− 2).

From II.1, we have

a) St(Pn)
P
n+1
2

= 0

((
n

2

)
−
(
n− n+ 1

2

))
+ 1 (2(n− 3)

+(n− 2)

(
n−

(
n+ 1

2

)
− 2

))
= 2(n− 3) + (n− 2)(
n−

(
n+ 1

2

)
− 2

)
=

n2 − 3n− 2

2
.

b) Nτ (Pn)
P
n+1
2

= 1

((
n

2

)
−
(
n− n+ 1

2

))
+ 2 (2(n− 3)

+(n− 2)

(
n−

(
n+ 1

2

)
− 2

))
= 1

((
n

2

)
−
(
n− n+ 1

2

))
+ 2

(
n2 − 3n− 2

2

)
=

3n2 − 8n− 3

2
.

3) Let ⟨Vi⟩ = K2 ; i = 1, 2, . . . , n
2 . Then, number of

geodesics of length 1 =
(
n
2

)
− (n− (n2 + 1)).

Number of geodesics of length 2 = (n−(n2 +1))(n−2).
From II.1, we have

a) St(Pn)
P
n
2
= 0

((
n

2

)
−
(
n−

(n
2
+ 1
)))

+ 1
(
(n− 2)

(
n−

(n
2
+ 1
)))

= (n− 2)
(
n−

((n
2

)
+ 1
))

=
n2 − 4n+ 4

2
.

b) Nτ (Pn)
P
n
2
= 1

((
n

2

)
−
(
n−

(n
2
+ 1
)))

+ 2
(
(n− 2)

(
n−

(n
2
+ 1
)))

= 1

((
n

2

)
−
(
n−

(n
2
+ 1
)))

+ 2

(
n2 − 4n+ 4

2

)
=

3n2 − 10n+ 10

2
.

Theorem III.2. Let P = {V1, V2, . . . , Vk} be a partition of
Cn.

1) If any of the ⟨Vi⟩ = K1 and the remaining n−1
2

partitions be K2’s, then
a) St(Cn)

P
n+1
2

= n2−n−6
2 .

b) Nτ (Cn)
P
n+1
2

= 3n2−4n−13
2 .

2) If each ⟨Vi⟩ = K2, where 1 ≤ i ≤ n
2 , then
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a) St(Cn)
P
n
2
= n2

2 − n.

b) Nτ (Cn)
P
n
2
= 3n2−6n

2 .

Proof:
1) Let any of the ⟨Vi⟩ = K1 and the remaining n−1

2
partitions be K2’s, i ̸= j, n ≥ 3. Then,
number of geodesics of length 1 =

(
n
2

)
−(n−(n+1

2 −1)).
Number of geodesics of length 2 = 2(n − 3) + (n −
2)(n− (n+1

2 − 1)− 2).
From II.1, we have

a) St(Cn)
P
n+1
2

= 0

((
n

2

)
−
(
n−

(
n+ 1

2
− 1

)))
+ 1 (2(n− 3) + (n− 2)(
n−

(
n+ 1

2
− 1

)
− 2

))
= 2(n− 3)

+ (n− 2)

(
n−

(
n+ 1

2
− 1

)
− 2

)
=

n2 − n− 6

2
.

b) Nτ (Cn)
P
n+1
2

= 1

((
n

2

)
−
(
n−

(
n+ 1

2
− 1

)))
+ 2 (2(n− 3)

+(n− 2)

(
n−

(
n+ 1

2
− 1

)
− 2

))
= 1

((
n

2

)
−
(
n−

(
n+ 1

2
− 1

)))
+ 2

(
n2 − n− 6

2

)
=

3n2 − 4n− 13

2
.

2) Let each ⟨Vi⟩ = K2 where 1 ≤ i ≤ n
2 . Then, we have

number of geodesics of length 1 =
(
n
2

)
− (n − (n2 )).

Number of geodesics of length 2 = (n− n
2 )(n− 2).

From II.1, we have

a) St(Cn)
P
n
2
= 0

((
n

2

)
−
(
n− n

2

))
+ 1

(
(n− 2)

(
n− n

2

))
= (n− 2)

(
n− n

2

)
=

n2

2
− n.

b) Nτ (Cn)
P
n
2
= 1

((
n

2

)
−
(
n− n

2

))
+ 2

(
(n− 2)

(
n− n

2

))
= 1

((
n

2

)
−
(
n− n

2

))
+ 2

(
n2

2
− n

)
=

3n2 − 6n

2
.

Theorem III.3. Let P = {V1, V2, . . . , Vn} be a partition of
friendship graph Fn on 2n+ 1 vertices.

If any of the ⟨Vi⟩ is C3 and the remaining n− 1’s are all
K2 ’s, then

1) St(Fn)
P
n = 4(n− 1).

2) Nτ (Fn)
P
n = 2n2 + 7n− 6.

Proof: Let any of the ⟨Vi⟩ be C3 and the remaining
n− 1’s are all K2 ’s. Then, we have

number of geodesics of length 1 =
(
n
2

)
− 2(n− 1).

Number of geodesics of length 2 = 2(2(n− 1)).
From II.1, we have

1) St(Fn)
P
n = 0(n(2n+ 1)− 2(n− 1)) + 1(2(2(n− 1)))

= 2(2(n− 1))

= 4(n− 1).

2) Nτ (Fn)
P
n = 1(n(2n+ 1)− 2(n− 1)) + 2(2(2(n− 1)))

= 1(n(2n+ 1)− 2(n− 1)) + 2(4(n− 1))

= 2n2 + 7n− 6.

Theorem III.4. Let P = {V1, V2, . . . , Vn−1} be a partition
of star graph K1,n−1 with n vertices.

If any of the ⟨Vi⟩ is K2, where 1 ≤ i ≤ n−1 including the
universal vertex and the remaining ⟨Vn−2⟩ partition consists
of all other pendant vertices, then

1) St(K1,n−1)
P
n−1 = n− 2.

2) Nτ (K1,n−1)
P
n−1 = n2+n−4

2 .

Proof: Let any of the ⟨Vi⟩ be K2, where 1 ≤ i ≤ n −
1 including the universal vertex and the remaining ⟨Vn−2⟩
partition consists of all other pendant vertices. Then, we have

number of geodesics of length 1 = (n−1)(n−2)
2 + 1.

Number of geodesics of length 2 = n− 2.
From II.1, we have

1) St(K1,n−1)
P
n−1 = 0

(
(n− 1)(n− 2)

2
+ 1

)
+ 1(n− 2)

= n− 2.

2) Nτ (K1,n−1)
P
n−1 = 1

(
(n− 1)(n− 2)

2
+ 1

)
+ 2(n− 2)

=
n2 + n− 4

2
.

Theorem III.5. Let P = {V1, V2, . . . , Vn} be a partition of
crown graph S0

n.
If ⟨Vi⟩ = K2, 1 ≤ i ≤ n, then

1) St(S0
n)

P
n = 4n(n− 2).

2) Nτ (S
0
n)

P
n = 9n2 − 15n.

Proof: Let ⟨Vi⟩ = K2, 1 ≤ i ≤ n. Then,
number of geodesics of length 1 = 2n(2n−1)

2 − n(n− 2).
Number of geodesics of length 2 = 4n(n− 2).
From II.1, we have

1) Str(S0
n)

P
n = 0(n(2n− 1)− n(n− 2)) + 1(4n(n− 2))

= 4n(n− 2).

2) Nτ (S
0
n)

P
n = 1(n(2n− 1)− n(n− 2)) + 2(4n(n− 2))

= 9n2 − 15n.
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Theorem III.6. Let P = {V1, V2, . . . , Vm+n−1} be a parti-
tion of bistar B(m,n) graph.

If ⟨V1⟩ is K2 which is the edge between two central
vertices and all other ⟨Vm+n−2⟩ partitions are the pendant
vertices, then

1) St(B(m,n))Pm+n−1 = 2mn−m− n.
2) Nτ (B(m,n))Pm+n−1 = m2+n2+10mn−7m−7n+4

2 .

Proof: Let ⟨V1⟩ be K2 which is the edge between two
central vertices and all other ⟨Vm+n−2⟩ partitions are the
pendant vertices. Then, we have

number of geodesics of length 1 = (m+n)(m+n−1)
2 −(m+

n− 2).
Number of geodesics of length 2 = (m−1)n+(n−1)m.
From II.1, we have

1) St(B(m,n))Pm+n−1 = 0

(
(m+ n)(m+ n− 1)

2

−(m+ n− 2))

+ 1((m− 1)n+ (n− 1)m)

= (m− 1)n+ (n− 1)m

= 2mn−m− n.

2) Nτ (B(m,n))Pm+n−1 = 1

(
(m+ n)(m+ n− 1)

2

−(m+ n− 2))

+ 2((m− 1)n+ (n− 1)m)

= 1

(
(m+ n)(m+ n− 1)

2

−(m+ n− 2)) + 2(2mn−m− n)

=
m2 + n2 + 10mn− 7m− 7n+ 4

2
.

Theorem III.7. Let P = {V1, V2, . . . , Vk} be a partition of
the complete bipartite graph Km,n.

1) If m = n and ⟨Vi⟩ = K2, 1 ≤ i ≤ m, then
a) St(Km,n)

P
m = 2m(m− 1).

b) Nτ (Km,n)
P
m = 4m2 +mn− 4m.

2) If m = n − 1 and ⟨V1⟩ = K1,2 and ⟨Vi⟩ = K2 for
i = 2, . . . ,m, then

a) St(Km,n)
P
m = 2m2 + 2m− 3.

b) Nτ (Km,n)
P
m = 4m2 + 4m+mn− 6.

3) If m < n and ⟨V1⟩ = K1,2, ⟨Vi⟩ = K2, where 2 ≤
i ≤ m and the remaining n−m− 1 partitions are all
singleton partites, then

a) St(Km,n)
P
n−1 = m2 −m+ 2n+mn− 5.

b) Nτ (Km,n)
P
n−1 = 5m2+n2+4mn−3m+7n−20

2 .

Proof:
1) Let m = n, ⟨Vi⟩ = K2, where 1 ≤ i ≤ m, then number

of geodesics of length 1 = m2.
Number of geodesics of length 2 = 2m(m− 1).
From II.1, we have

a) St(Km,n)
P
m = 0(m2) + 1(2m(m− 1))

= 2m(m− 1).

b) Nτ (Km,n)
P
m = 1(m2) + 2(2m(m− 1))

= 4m2 +mn− 4m.

2) Let m = n − 1, ⟨V1⟩ = K1,2 and ⟨Vi⟩ = K2 for i =
2, . . . ,m. Then, number of geodesics of length 1 = mn.
Number of geodesics of length 2 = 1(m)+ (m−1)3+
m(m− 1)2.
From II.1, we have

a) St(Km,n)
P
m = 0(mn) + 1(1(m) + (m− 1)3

+m(m− 1)2)

= 1(m) + (m− 1)3 +m(m− 1)2

= 2m2 + 2m− 3.

b) Nτ (Km,n)
P
m = 1(mn) + 2(1(m) + (m− 1)3

+m(m− 1)2)

= 1(mn) + 2(2m2 + 2m− 3)

= 4m2 + 4m+mn− 6.

3) If m < n, let ⟨V1⟩ = K1,2, ⟨Vi⟩ = K2, where 2 ≤
i ≤ m and the remaining n −m − 1 partitions are all
singleton partites. Then, number of geodesics of length
1 = (m+n)(m+n−1)

2 −m(n− 1). Number of geodesics
of length 2 = 1(n− 1)+ (m− 1)3+ (m− 1)(n−m−
1) + 2((n−m− 1) +m(m− 1)).
From II.1, we have

a) St(Km,n)
P
n−1 = 0

(
(m+ n)(m+ n− 1)

2

−m(n− 1))

+ 1(1(n− 1) + (m− 1)3

+ (m− 1)(n−m− 1)

+ 2((n−m− 1) +m(m− 1)))

= (n− 1) + (m− 1)3

+ (m− 1)(n−m− 1)

+ 2((n−m− 1) +m(m− 1)))

= m2 −m+ 2n+mn− 5.

b) Nτ (Km,n)
P
n−1 = 1

(
(m+ n)(m+ n− 1)

2

−m(n− 1))

+ 2(1(n− 1) + (m− 1)3

+ (m− 1)(n−m− 1)

+ 2((n−m− 1) +m(m− 1)))

=
5m2 + n2 + 4mn− 3m+ 7n− 20

2
.

Theorem III.8. Let P = {V1, V2, . . . , Vk} be a partition of
the wheel graph Wn.

1) For odd n, let ⟨V1⟩ = C3 including central vertex and
remaining n−3

2 partites induce K2. Then,

a) St(Wn)
P
n−1
2

= n2−13
2 .

b) Nτ (Wn)
P
n−1
2

= 3n2−4n−19
2 .
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2) If n is even, ⟨V1⟩ = C3 including the central vertex and
let ⟨Vn

2
⟩ = K1 the remaining n−4

2 partites induce K2

’s, then
a) St(Wn)

P
n
2
= n2+n−20

2 .

b) Nτ (Wn)
P
n
2
= 3n2−2n−34

2 .

Proof:
1) If n is odd, let ⟨V1⟩ = C3 including the central vertex.

Remaining n−3
2 partites induce K2’s. Then, number

of geodesics of length 1 = n(n−1)
2 −

(
n−1
2 + n− 3

)
.

Number of geodesics of length 2 = 2(1) + (n− 5)2 +
(n−1

2 )(n− 3).
From II.1, we have

a) St(Wn)
P
n−1
2

= 0

(
n(n− 1)

2
−
(
n− 1

2
+ n− 3

))
+ 1 (2(1) + (n− 5)2

+

(
n− 1

2

)
(n− 3)

)
= 2(1) + (n− 5)2

+

(
n− 1

2

)
(n− 3)

=
n2 − 13

2
.

b) Nτ (Wn)
P
n−1
2

= 1

(
n(n− 1)

2
−
(
n− 1

2
+ n− 3

))
+ 2 (2(1) + (n− 5)2

+

(
n− 1

2

)
(n− 3)

)
=

3n2 − 4n− 19

2
.

2) If n is even, let ⟨V1⟩ = C3 including the central vertex
and let ⟨Vn

2
⟩ = K1 then the remaining n−4

2 partites
induce K2 ’s. Then, number of geodesics of length 1 =
n(n−1)

2 − (n2 + n− 3). Number of geodesics of length
2 = 2(1) + (n− 5)2 + 2(n− 4) + (n2 − 2)(n− 3).
From II.1, we have

a) St(Wn)
P
n
2
= 0

(
n(n− 1)

2
−
(n
2
+ n− 3

))
+ 1 (2(1) + (n− 5)2 + 2(n− 4)

+
(n
2
− 2
)
(n− 3)

)
= 2(1) + (n− 5)2 + 2(n− 4)

+
(n
2
− 2
)
(n− 3)

=
n2 + n− 20

2
.

b) Nτ (Wn)
P
n
2
= 1

(
n(n− 1)

2
−
(n
2
+ n− 3

))
+ 2 (2(1) + (n− 5)2 + 2(n− 4)

+
(n
2
− 2
)
(n− 3)

)
=

3n2 − 2n− 34

2
.

Theorem III.9. Let P = {V1, V2, . . . , Vn} be a partition of
fan graph F1,n with n+ 1 vertices.

If ⟨V1⟩ = K2 which is an edge connecting the universal
vertex with any other vertex and ⟨Vi⟩ = K1, where 1 ≤ i ≤
n− 1, then

1) St(F1,n)
P
n = n2 − 2n− 2.

2) Nτ (F1,n)
P
n =

(
n∑

i=3

(n+ 1− i)

)
+ 2n2 − 5n.

Proof: Let ⟨V1⟩ = K2 which is an edge connecting
the universal vertex with any other vertex and ⟨Vi⟩ = K1,
where 1 ≤ i ≤ n− 1. Then, number of geodesics of length

1 =

(
n∑

i=3

(n+ 1− i)

)
+ 1. Number of geodesics of length

2 = 2(n − 3) + (n − 3)(n − 4) + (n − 2)(1). Number of
geodesics of length 3 = 1(n− 3).

From II.1, we have

1) St(F1,n)
P
n = 0

((
n∑

i=3

(n+ 1− i)

)
+ 1

)
+ 1(2(n− 3) + (n− 3)(n− 4)

+ (n− 2)(1)) + 2(1(n− 3))

= 1(2(n− 3) + (n− 3)(n− 4)

+ (n− 2)(1))

+ 2(1(n− 3))

= n2 − 2n− 2.

2) Nτ (F1,n)
P
n = 1

((
n∑

i=3

(n+ 1− i)

)
+ 1

)
+ 2(2(n− 3) + (n− 3)(n− 4)

+ (n− 2)(1)) + 3(1(n− 3))

=

((
n∑

i=3

(n+ 1− i)

)
+ 1

)
+ 2n2 − 5n− 1

=

(
n∑

i=3

(n+ 1− i)

)
+ 2n2 − 5n.

IV. STRESS AND TENSION OF k(i)−COMPLEMENT OF
SOME STANDARD GRAPHS

Theorem IV.1. Let P = {V1, V2} be a partition of Pn.
1) Let n be odd and P = {V1, V2} be a partition of V (Pn)

such that ⟨V1⟩ consists of all the (n+1
2 ) alternating

vertices of Pn and all the remaining (n−1
2 ) vertices of

Pn be ⟨V2⟩. Then,
a) St(Pn)

P
2(i) = n2 − 5n+ 6.

b) Nτ (Pn)
P
2(i) =

9n2−38n+45
4 .

2) Let n be even and P = {V1, V2} be a partition of V (Pn)
such that ⟨V1⟩ consists of all the n

2 alternating vertices
of Pn and all the remaining n

2 vertices of Pn be ⟨V2⟩.
Then,

a) St(Pn)
P
2(i) = n2 − 5n+ 6.

b) Nτ (Pn)
P
2(i) =

9n2−38n+44
4 .

Proof:
1) For odd n, consider the partition of V (Pn) as follows:
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⟨V1⟩ consists of all the n+1
2 alternating vertices of Pn

and the remaining n−1
2 vertices of Pn are in ⟨V2⟩. Then,

number of geodesics of length 1 = n2+2n−3
4 . Number

of geodesics of length 2 = (n− 3)3 + (n
2−8n+15

4 )4.
From II.1, we have

a) St(Pn)
P
2(i) = 0

(
n2 + 2n− 3

4

)
+ 1

(
(n− 3)3 +

(
n2 − 8n+ 15

4

)
4

)
= (n− 3)3 +

(
n2 − 8n+ 15

4

)
4

= n2 − 5n+ 6.

b) Nτ (Pn)
P
2(i) = 1

(
n2 + 2n− 3

4

)
+ 2

(
(n− 3)3 +

(
n2 − 8n+ 15

4

)
4

)
= 1

(
n2 + 2n− 3

4

)
+ 2(n2 − 5n+ 6)

=
9n2 − 38n+ 45

4
.

2) For even n, consider the partition of V (Pn) as follows:
⟨V1⟩ consists of all the n

2 alternating vertices of Pn then
all the remaining n

2 vertices of Pn are in ⟨V2⟩. Then,
number of geodesics of length 1 = 1

2 (n+(n−2)(n2+1)).
Number of geodesics of length 2 = 1(2) + (n− 4)3 +

(n
2

4 − 2n+ 4)4.
From II.1, we have

a) St(Pn)
P
2(i) = 0

(
1

2

(
n+ (n− 2)

(n
2
+ 1
)))

+ 1 (1(2) + (n− 4)3

+

(
n2

4
− 2n+ 4

)
4

)
= 1(2) + (n− 4)3 +

(
n2

4
− 2n+ 4

)
4

= n2 − 5n+ 6.

b) Nτ (Pn)
P
2(i) = 1

(
1

2

(
n+ (n− 2)

(n
2
+ 1
)))

+ 2 (1(2) + (n− 4)3

+

(
n2

4
− 2n+ 4

)
4

)
=

1

2

(
n+ (n− 2)

(n
2
+ 1
))

+ 2(n2 − 5n+ 6)

=
9n2 − 38n+ 44

4
.

Theorem IV.2. Let P = {V1, V2, . . . , Vk} be a partition of
Cn.

1) If n is even, let P = {V1, V2} be a partition of V (Cn)
such that ⟨V1⟩ consists of n

2 alternating vertices and the
remaining n

2 vertices be in ⟨V2⟩. Then,

a) St(Cn)
P
2(i) =

n2−4n
4 .

b) Nτ (Cn)
P
2(i) =

3n2−6n
4 .

2) If n is odd, let P = {V1, V2, V3} be a partition of V (Cn)
such that ⟨V1⟩ consists of K1, ⟨V2⟩ consists of all the
n−1
2 alternating vertices and the remaining n−1

2 vertices
be in ⟨V3⟩. Then,

a) St(Cn)
P
3(i) = n2 − 4n+ 3.

b) Nτ (Cn)
P
3(i) =

9n2−32n+27
4 .

Proof:

1) For even n, consider the partition of V (Cn) as follows:
⟨V1⟩ consists of n

2 alternating vertices and the remaining
n
2 vertices be in ⟨V2⟩. Then,
number of geodesics of length 1 = n

2 (
n
2 + 1).

Number of geodesics of length 2 = n(n−1)
2 − n

2 (
n
2 +1).

From II.1, we have

a) St(Cn)
P
2(i) = 0

(n
2

(n
2
+ 1
))

+ 1

(
n(n− 1)

2
− n

2

(n
2
+ 1
))

=
n(n− 1)

2
− n

2

(n
2
+ 1
)

=
n2 − 4n

4
.

b) Nτ (Cn)
P
2(i) = 1

(n
2

(n
2
+ 1
))

+ 2

(
n(n− 1)

2
− n

2

(n
2
+ 1
))

= 1
(n
2

(n
2
+ 1
))

+ 2

(
n2 − 4n

4

)
=

3n2 − 6n

4
.

2) For odd n, consider the partition of V (Cn) as follows:
⟨V1⟩ consists of K1, ⟨V2⟩ consists of all the n−1

2
alternating vertices and the remaining n−1

2 vertices be in
⟨V3⟩. Then, number of geodesics of length 1 = 1+n2−1

4 .
Number of geodesics of length 2 = (n− 4)3 + 2(2) +

(n− 5)1 + (n
2

4 − 2n+ 4)4.
From II.1, we have

a) St(Cn)
P
3(i) = 0

(
1 +

n2 − 1

4

)
+ 1 ((n− 4)3 + 2(2) + (n− 5)1

+

(
n2

4
− 2n+ 4

)
4

)
= (n− 4)3 + 2(2) + (n− 5)1

+

(
n2

4
− 2n+ 4

)
4

= n2 − 4n+ 3.
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b) Nτ (Cn)
P
3(i) = 1

(
1 +

n2 − 1

4

)
+ 2 ((n− 4)3 + 2(2) + (n− 5)1

+

(
n2

4
− 2n+ 4

)
4

)
= 1

(
1 +

n2 − 1

4

)
+ 2(n2 − 4n+ 3)

=
9n2 − 32n+ 27

4
.

Theorem IV.3. Let P = {V1, V2, . . . , Vk} be a partition of
V (Km,n) such that

1) If m = n, m and n are even then, Vi = {vi, vj} be
such that both i, j ∈ {1, 2, . . . ,m} or i, j ∈ {m +
1,m+ 2, . . . ,m+ n}, then

a) St(Km,n)
P
m(i) = m2(m− 2).

b) Nτ (Km,n)
P
m(i) = m3 + 2m2 − 3m.

2) If m = n, m and n are odd then, ⟨V1⟩ = vi ; 1 ≤
i ≤ m, ⟨V2⟩ = vm+i ; 1 ≤ i ≤ n and ⟨Vi⟩ = {vi, vj}
be such that both i, j ∈ {1, 2, . . . ,m} or i, j ∈ {m +
1,m+ 2, . . . ,m+ n}, then

a) St(Km,n)
P
m(i) = (m− 1)2m.

b) Nτ (Km,n)
P
m(i) =

4m3−7m2+5m+mn+n−2
2 .

3) If m ̸= n then partition of V (Km,n) be as follows:
⟨V1⟩ = K1,1 and the remaining ⟨Vi⟩ be single vertex
where 2 ≤ i ≤ (m+ n− 1), then

a) St(Km,n)
P
m+n−1(i) = 3(m − 1)(n − 1) +

(m−1)(m−2)
2 (n) + (n−1)(n−2)

2 (m).
b) Nτ (Km,n)

P
m+n−1(i) = (mn−1)+7(m−1)(n−1)+

2
(

(m−1)(m−2)
2 (n) + (n−1)(n−2)

2 (m)
)

.

Proof:
1) If m = n, m and n are even then, let P =

{V1, V2, . . . , Vm} a partition of V (Km,n) such that
⟨Vi⟩ = {vi, vj}, where both i, j ∈ {1, 2, . . . ,m} or
i, j ∈ {m + 1,m + 2, . . . ,m + n}. Then, we have
number of geodesics of length 1 = (m+1)m. Number
of geodesics of length 2 = m2(m− 2).
From II.1, we have

a) St(Km,n)
P
m(i) = 0((m+ 1)m) + 1(m2(m− 2))

= m2(m− 2).

b) Nτ (Km,n)
P
m(i) = 1(m2(m+ 1)) + 2(m(m− 2))

= m3 + 2m2 − 3m.

2) If m = n, m and n are odd then let P =
{V1, V2, . . . , Vm+1} a partition of V (Km,n) such that
⟨V1⟩ = vi ; 1 ≤ i ≤ m, V2 = vm+i ; 1 ≤ i ≤ n and
Vi = {vi, vj} be such that both i, j ∈ {1, 2, . . . ,m}
or i, j ∈ {m + 1,m + 2, . . . ,m + n} then, number of
geodesics of length 1 = 2m+(m+n−2)(m+1)

2 . Number of
geodesics of length 2 = (m− 1)2m.
From II.1, we have

a) St(Km,n)
P
m+1(i) = 0

(
2m+ (m+ n− 2)(m+ 1)

2

)
+ 1

(
(m− 1)2m

)
= (m− 1)2m.

b) Nτ (Km,n)
P
m+1(i) = 1

(
2m+ (m+ n− 2)(m+ 1)

2

)
+ 2

(
(m− 1)2m

)
=

4m3 − 7m2 + 5m+mn+ n− 2

2
.

3) If ⟨V1⟩ = K1,1 and the remaining ⟨Vi⟩ be single vertex
where 2 ≤ i ≤ m + n − 1, then number of geodesics
of length 1 = mn − 1. Number of geodesics of length
2 = (m− 1)(n− 1) + (m−1)(m−2)

2 (n) + (n− 1)(m−
1)+ (n−1)(n−2)

2 (m). Number of geodesics of length 3 =
(m− 1)(n− 1).
From II.1, we have

a) St(Km,n)
P
m+n−1(i) = 0(mn− 1) + 1 ((m− 1)(n− 1)

+
(m− 1)(m− 2)

2
(n)

+(n− 1)(m− 1)

+
(n− 1)(n− 2)

2
(m)

)
+ 2(m− 1)(n− 1)

= (m− 1)(n− 1)

+
(m− 1)(m− 2)

2
(n)

+ (n− 1)(m− 1)

+
(n− 1)(n− 2)

2
(m)

+ 2(m− 1)(n− 1)

= 3(m− 1)(n− 1)

+
(m− 1)(m− 2)

2
(n)

+
(n− 1)(n− 2)

2
(m).

b) Nτ (Km,n)
P
m+n−1(i) = 1(mn− 1)

+ 2 ((m− 1)(n− 1)

+
(m− 1)(m− 2)

2
(n)

+(n− 1)(m− 1)

+
(n− 1)(n− 2)

2
(m)

)
+ 3(m− 1)(n− 1)

= (mn− 1)

+ 7(m− 1)(n− 1)

+ 2

(
(m− 1)(m− 2)

2
(n)

+
(n− 1)(n− 2)

2
(m)

)
.

Theorem IV.4. For wheel graph Wn partition the vertex set
into 2 partitions i.e., ⟨V1⟩ consists of K1 including universal
vertex and ⟨V2⟩ consists of all other vertices. Then,

1) St(Wn)
P
2(i) = (n− 1)(n− 4).

2) Nτ (Wn)
P
2(i) =

5n2−23n+18
2 .

Proof: Let the vertex set be partitioned into 2 partitions
i.e., ⟨V1⟩ consists of K1 including universal vertex and ⟨V2⟩
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consists of all other vertices. Then, number of geodesics of
length 1 = n(n−1)

2 − (n−1). Number of geodesics of length
2 = (n− 1)(n− 4).

From II.1, we have

1) St(Wn)
P
2(i) = 0

(
n(n− 1)

2
− (n− 1)

)
+ 1((n− 1)(n− 4))

= (n− 1)(n− 4).

2) Nτ (Wn)
P
2(i) = 1

(
n(n− 1)

2
− (n− 1)

)
+ 2((n− 1))

=
5n2 − 23n+ 18

2
.

Theorem IV.5. Let P = {V1, V2} be a partition of V (F1,n)
such that let ⟨V1⟩ consists of K1 i.e., the vertex which is
adjacent to all other vertices and ⟨V2⟩ consists of all the
remaining n vertices. Then,

1) St(F1,n)
P
2(i) = n2 − 4n+ 5.

2) Nτ (F1,n)
P
2(i) =

5n2−17n+22
2 .

Proof: Let P = {V1, V2} be a partition of V (F1,n)
such that ⟨V1⟩ consists of K1 i.e., the vertex which is
adjacent to all other vertices and ⟨V2⟩ consists of all the
remaining n vertices. Then, number of geodesics of length
1 = (n−1)(n−2)

2 + n. Number of geodesics of length 2 =
2(n− 2) + (n− 3)(n− 3).

From II.1, we have

1) St(F1,n)
P
2(i) = 0

(
(n− 1)(n− 2)

2
+ n

)
+ 1(2(n− 2) + (n− 3)(n− 3))

= (2(n− 2) + (n− 3)(n− 3))

= n2 − 4n+ 5.

2) Nτ (F1,n)
P
2(i) = 1

(
(n− 1)(n− 2)

2
+ n

)
+ 2(2(n− 2) + (n− 3)(n− 3))

= 1

(
(n− 1)(n− 2)

2
+ n

)
+ 2(n2 − 4n+ 5)

=
5n2 − 17n+ 22

2
.

V. CONCLUSION

Generalised complements of a graph depends on partition
of a vertex set. Also, stress and tension of the generalised
complements of the graph varies with respect to the partitions
of V of G. In this paper, we have obtained stress and tension
of k and k(i) complement of few standard graphs such as
path, cycle, complete bipartite graph, wheel graph and fan
graph.
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