Stress and Tension of Generalized Complements of Graphs

Madhumitha K. V, Swati Nayak, Sabitha D'Souza*

Abstract

Centrality measures are scalar values given to each node in the graph to quantify its importance based on an assumption. Stress and tension are the centrality index based on shortest path. In this paper, stress and tension of generalized complements of some standard graphs are calculated by counting the number of geodesics of different length.

Index Terms-Geodesic, Stress, Tension, k-complement, $k(i)-$ complement.

I. Introduction

LET $G=(V, E)$ be a simple, finite, undirected and connected graph. The order and size of G is given by $|V|=n$ and $|E|=m$ respectively. The degree of a vertex v in a graph G, denoted by $\operatorname{deg}(v)$ is the number of edges incident on the vertex v. Let $P=\left\{v_{o}, v_{1}, \ldots, v_{n}\right\}$ be a $v_{o} v_{n}$ path in G. The length of P, denoted by $l(P)$ is the number of edges in the $v_{o} v_{n}$ path. Let $d(u, v)$ denote the distance between any two vertices u and v in G. The shortest path between any two vertices in G is called the geodesic. The diameter of G is the length of any longest geodesic, denoted by $\operatorname{diam}(G)$. The maximum distance from vertex v to all other vertices in G is the eccentricity $e(v)$ of v. The complement \bar{G} of G is the graph which has V as its vertex set and two vertices are adjacent in \bar{G} if and only if they are not adjacent in $G . G$ is self complementary if \bar{G} is isomorphic to G.

Let $G=(V, E)$ be a graph and $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V of order $k \geq 1$. The k-complement G_{k}^{P} of G is obtained by removing the edges between V_{i} and V_{j} in G and adding edges between V_{i} and V_{j} which are not in G, for all V_{i} and V_{j} in P, where $i \neq j$.
For each set V_{r} in the partition P, remove the edges of G inside V_{r} and add the edges of \bar{G} joining the vertices of V_{r}. The graph $G_{k(i)}^{P}$ thus obtained is called the $k(i)$-complement of G with respect to P of V.
The k-complement and $k(i)$ - complement of G are related as follows: [1]

1) $\overline{G_{k}^{P}} \cong G_{k(i)}^{P}$
2) $\overline{G_{k(i)}^{P}} \cong G_{k}^{P}$

In 1953, Alfonso Shimbel [2] defined the concept of stress of a vertex in a graph. Stress of a vertex v in a graph G is the number of shortest paths in G having v as an internal vertex

[^0]and is denoted by $\operatorname{st}\left(v_{i}\right)$. A graph G is k-stress regular, if all vertices of G have stress k. The total stress of a graph G is defined by $s t(G)=\sum_{i=1}^{n} s t\left(v_{i}\right)$. K. Bhargava et al. |3|| determined the stress of vertices in some standard graphs. Raksha Poojary et al. [4] determined stress of paths, cycles, fans and wheels. They also determined the stress of a cut vertex of a graph G when G has at most 2 cut vertices. Shiny Joseph [5] determined total vertex stress in some merged graphs, cartesian product graphs and the join of two graphs. Raksha Poojary et al. [6] determined stress of wheel related graphs such as gear graph, helm graph, friendship graph, flower graph and sunflower graph.
K. Bhargava et al. [7] introduced the concept of tension on an edge in a graph. Let e be an edge in the graph G. The tension on e is defined as the number of geodesics in G passing through e. Total tension of G, denoted by $N_{\tau}(G)$, is defined as $N_{\tau}(G)=\sum_{e \in E} \tau(e)$.

In this paper, the stress and tension of generalized complement of a graph is computed in such a way that k complement and $k(i)$-complement of the graph is connected. We compute stress and tension of generalized complements of path, cycles, complete bipartite, wheel graph and fan graph by calculating number of geodesics of different length.

Note that

- Geodesics of length n contribute $(n-1)$ to the stress of a graph.
- Geodesics of length n contribute n to the tension of a graph.

II. Preliminary Definitions

1) A simple graph with $n \geq 3$ vertices forming a cycle of length n is called a cycle graph, denoted by C_{n}.
2) Wheel Graph W_{n+1} is formed by connecting a single universal vertex to all vertices of cycle.
3) Path graph is a graph whose vertices can be listed in the order $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that the edges are $v_{i} v_{i+1}$, where $1 \leq i \leq n-1$.
4) The Fan graph $F_{1, n}$ is obtained by removing one peripheral edge from the wheel graph.
5) A complete bipartite graph is a graph whose vertices can be partitioned into two subsets V_{1} and V_{2} such that no edge has both endpoints in the same subset and every possible edge that could connect vertices in different subsets is part of the graph.

Theorem II.1. [3], [7] For any graph with n vertices and diameter d, we have

$$
\begin{equation*}
N_{s t r}(G)=\sum_{i=1}^{d}(i-1) f_{i} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
N_{\tau}(G)=\sum_{i=1}^{d} i f_{i} \tag{2}
\end{equation*}
$$

where, f_{i} is the number of geodesics of length i in G.
III. Stress and Tension of k-Complement of some STANDARD GRAPHS

Theorem III.1. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of path graph P_{n} of order n.

1) If any of the pendant vertex is in V_{1} or $V_{\frac{n+1}{2}}$ and remaining $\frac{n-1}{2}$ partitions be K_{2} 's. Then,
a) $\operatorname{St}\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=\frac{n^{2}-3 n+2}{2}$.
b) $N_{\tau}\left(P_{n}\right)_{\frac{n+1}{2}}^{\stackrel{P}{P}}=\frac{3 n^{2}-8 n+5}{2}$.
2) If any of the non-pendant vertex is in $V_{i}, 3 \leq i \leq n-2$ and the remaining $\frac{n-1}{2}$ partitions be K_{2} 's. Then,
a) $\operatorname{St}\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=\frac{n^{2}-3 n-2}{2}$.
b) $N_{\tau}\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=\frac{3 n^{2}-8 n-3}{2}$.
3) If $\left\langle V_{i}\right\rangle=K_{2} ; i=1,2, \ldots, \frac{n}{2}$. Then,
a) $\operatorname{St}\left(P_{n}\right)_{\frac{n}{2}}^{P}=\frac{n^{2}-4 n+4}{2}$.
b) $N_{\tau}\left(P_{n}\right)_{\frac{n}{2}}^{P}=\frac{3 n^{2}-10 n+10}{2}$.

Proof:

1) Let any of the pendant vertex be in V_{1} or $V_{\frac{n+1}{2}}$ and remaining $\frac{n-1}{2}$ partitions be K_{2} 's. Then, number of geodesics of length $1=\binom{n}{2}-\left(n-\frac{n+1}{2}\right)$ and that of length $2=\left(n-\frac{n+1}{2}\right)(n-2)$.
From II.1. we have
a) $\operatorname{St}\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=0\left(\binom{n}{2}-\left(n-\frac{n+1}{2}\right)\right)$

$$
+1\left(\left(n-\frac{n+1}{2}\right)(n-2)\right)
$$

$$
=\left(n-\frac{n+1}{2}\right)(n-2)
$$

$$
=\frac{n^{2}-3 n+2}{2}
$$

b) $N_{\tau}\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=1\left(\binom{n}{2}-\left(n-\frac{n+1}{2}\right)\right)$
$+2\left(\left(n-\frac{n+1}{2}\right)(n-2)\right)$
$=1\left(\binom{n}{2}-\left(n-\frac{n+1}{2}\right)\right)$
$+2\left(\frac{n^{2}-3 n+2}{2}\right)$

$$
=\frac{3 n^{2}-8 n+5}{2}
$$

2) Let any of the non-pendant vertex be in $V_{i}, 3 \leq i \leq$ $n-2$ and the remaining $\frac{n-1}{2}$ partitions be K_{2} 's. Then, number of geodesics of length $1=\binom{n}{2}-\left(n-\frac{n+1}{2}\right)$. Number of geodesics of length $2=2(n-3)+(n-$ $2)\left(n-\left(\frac{n+1}{2}\right)-2\right)$.

From II.1, we have

$$
\begin{aligned}
& \text { a) } S t\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=0\left(\binom{n}{2}-\left(n-\frac{n+1}{2}\right)\right) \\
& +1(2(n-3) \\
& \left.+(n-2)\left(n-\left(\frac{n+1}{2}\right)-2\right)\right) \\
& =2(n-3)+(n-2) \\
& \left(n-\left(\frac{n+1}{2}\right)-2\right) \\
& =\frac{n^{2}-3 n-2}{2} \text {. } \\
& \text { b) } N_{\tau}\left(P_{n}\right)_{\frac{n+1}{2}}^{P}=1\left(\binom{n}{2}-\left(n-\frac{n+1}{2}\right)\right) \\
& +2(2(n-3) \\
& \left.+(n-2)\left(n-\left(\frac{n+1}{2}\right)-2\right)\right) \\
& =1\left(\binom{n}{2}-\left(n-\frac{n+1}{2}\right)\right) \\
& +2\left(\frac{n^{2}-3 n-2}{2}\right) \\
& =\frac{3 n^{2}-8 n-3}{2} \text {. }
\end{aligned}
$$

3) Let $\left\langle V_{i}\right\rangle=K_{2} ; i=1,2, \ldots, \frac{n}{2}$. Then, number of geodesics of length $1=\binom{n}{2}-\left(n-\left(\frac{n}{2}+1\right)\right)$.
Number of geodesics of length $2=\left(n-\left(\frac{n}{2}+1\right)\right)(n-2)$. From II.1, we have

$$
\begin{aligned}
& \text { a) } S t\left(P_{n}\right)_{\frac{n}{2}}^{P}=0\left(\binom{n}{2}-\left(n-\left(\frac{n}{2}+1\right)\right)\right) \\
& +1\left((n-2)\left(n-\left(\frac{n}{2}+1\right)\right)\right) \\
& =(n-2)\left(n-\left(\left(\frac{n}{2}\right)+1\right)\right) \\
& =\frac{n^{2}-4 n+4}{2} \text {. } \\
& \text { b) } N_{\tau}\left(P_{n}\right)_{\frac{n}{2}}^{P}=1\left(\binom{n}{2}-\left(n-\left(\frac{n}{2}+1\right)\right)\right) \\
& +2\left((n-2)\left(n-\left(\frac{n}{2}+1\right)\right)\right) \\
& =1\left(\binom{n}{2}-\left(n-\left(\frac{n}{2}+1\right)\right)\right) \\
& +2\left(\frac{n^{2}-4 n+4}{2}\right) \\
& =\frac{3 n^{2}-10 n+10}{2} \text {. }
\end{aligned}
$$

Theorem III.2. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of C_{n}.

1) If any of the $\left\langle V_{i}\right\rangle=K_{1}$ and the remaining $\frac{n-1}{2}$ partitions be K_{2} 's, then
a) $S t\left(C_{n}\right)_{\frac{n+1}{2}}^{P}=\frac{n^{2}-n-6}{2}$.
b) $N_{\tau}\left(C_{n}\right)_{\frac{n+1}{2}}^{P}=\frac{3 n^{2}-4 n-13}{2}$.
2) If each $\left\langle V_{i}\right\rangle=K_{2}$, where $1 \leq i \leq \frac{n}{2}$, then
a) $S t\left(C_{n}\right)_{\frac{n}{2}}^{P}=\frac{n^{2}}{2}-n$.
b) $N_{\tau}\left(C_{n}\right)_{\frac{n}{2}}^{P}=\frac{3 n^{2}-6 n}{2}$.

Proof:

1) Let any of the $\left\langle V_{i}\right\rangle=K_{1}$ and the remaining $\frac{n-1}{2}$ partitions be K_{2} 's, $i \neq j, n \geq 3$. Then,
number of geodesics of length $1=\binom{n}{2}-\left(n-\left(\frac{n+1}{2}-1\right)\right)$. Number of geodesics of length $2=2(n-3)+(n-$ $2)\left(n-\left(\frac{n+1}{2}-1\right)-2\right)$.
From II.1. we have
a) $\operatorname{St}\left(C_{n}\right)_{\frac{n+1}{2}}^{P}=0\left(\binom{n}{2}-\left(n-\left(\frac{n+1}{2}-1\right)\right)\right)$

$$
+1(2(n-3)+(n-2)
$$

$$
\left.\left(n-\left(\frac{n+1}{2}-1\right)-2\right)\right)
$$

$$
=2(n-3)
$$

$$
+(n-2)\left(n-\left(\frac{n+1}{2}-1\right)-2\right)
$$

$$
=\frac{n^{2}-n-6}{2}
$$

b) $N_{\tau}\left(C_{n}\right)_{\frac{n+1}{2}}^{P}=1\left(\binom{n}{2}-\left(n-\left(\frac{n+1}{2}-1\right)\right)\right)$

$$
+2(2(n-3)
$$

$$
\left.+(n-2)\left(n-\left(\frac{n+1}{2}-1\right)-2\right)\right)
$$

$$
=1\left(\binom{n}{2}-\left(n-\left(\frac{n+1}{2}-1\right)\right)\right)
$$

$$
+2\left(\frac{n^{2}-n-6}{2}\right)
$$

$$
=\frac{3 n^{2}-4 n-13}{2}
$$

2) Let each $\left\langle V_{i}\right\rangle=K_{2}$ where $1 \leq i \leq \frac{n}{2}$. Then, we have number of geodesics of length $1=\binom{n}{2}-\left(n-\left(\frac{n}{2}\right)\right)$. Number of geodesics of length $2=\left(n-\frac{n}{2}\right)(n-2)$.
From II.1] we have
a) $\operatorname{St}\left(C_{n}\right)_{\frac{n}{2}}^{P}=0\left(\binom{n}{2}-\left(n-\frac{n}{2}\right)\right)$

$$
+1\left((n-2)\left(n-\frac{n}{2}\right)\right)
$$

$$
=(n-2)\left(n-\frac{n}{2}\right)
$$

$$
=\frac{n^{2}}{2}-n
$$

b) $N_{\tau}\left(C_{n}\right)_{\frac{n}{2}}^{P}=1\left(\binom{n}{2}-\left(n-\frac{n}{2}\right)\right)$

$$
+2\left((n-2)\left(n-\frac{n}{2}\right)\right)
$$

$$
=1\left(\binom{n}{2}-\left(n-\frac{n}{2}\right)\right)+2\left(\frac{n^{2}}{2}-n\right)
$$

$$
=\frac{3 n^{2}-6 n}{2}
$$

Theorem III.3. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of friendship graph F_{n} on $2 n+1$ vertices.

If any of the $\left\langle V_{i}\right\rangle$ is C_{3} and the remaining $n-1$'s are all K_{2} 's, then

1) $S t\left(F_{n}\right)_{n}^{P}=4(n-1)$.
2) $N_{\tau}\left(F_{n}\right)_{n}^{P}=2 n^{2}+7 n-6$.

Proof: Let any of the $\left\langle V_{i}\right\rangle$ be C_{3} and the remaining $n-1$'s are all K_{2} 's. Then, we have
number of geodesics of length $1=\binom{n}{2}-2(n-1)$.
Number of geodesics of length $2=2(2(n-1))$.
From II.1, we have

1) $\operatorname{St}\left(F_{n}\right)_{n}^{P}=0(n(2 n+1)-2(n-1))+1(2(2(n-1)))$

$$
\begin{aligned}
& =2(2(n-1)) \\
& =4(n-1)
\end{aligned}
$$

2) $\quad N_{\tau}\left(F_{n}\right)_{n}^{P}=1(n(2 n+1)-2(n-1))+2(2(2(n-1)))$
$=1(n(2 n+1)-2(n-1))+2(4(n-1))$
$=2 n^{2}+7 n-6$.

Theorem III.4. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n-1}\right\}$ be a partition of star graph $K_{1, n-1}$ with n vertices.

If any of the $\left\langle V_{i}\right\rangle$ is K_{2}, where $1 \leq i \leq n-1$ including the universal vertex and the remaining $\left\langle V_{n-2}\right\rangle$ partition consists of all other pendant vertices, then

1) $S t\left(K_{1, n-1}\right)_{n-1}^{P}=n-2$.
2) $N_{\tau}\left(K_{1, n-1}\right)_{n-1}^{P}=\frac{n^{2}+n-4}{2}$.

Proof: Let any of the $\left\langle V_{i}\right\rangle$ be K_{2}, where $1 \leq i \leq n-$ 1 including the universal vertex and the remaining $\left\langle V_{n-2}\right\rangle$ partition consists of all other pendant vertices. Then, we have number of geodesics of length $1=\frac{(n-1)(n-2)}{2}+1$.
Number of geodesics of length $2=n-2$.
From II.1. we have

1) $\operatorname{St}\left(K_{1, n-1}\right)_{n-1}^{P}=0\left(\frac{(n-1)(n-2)}{2}+1\right)+1(n-2)$

$$
=n-2
$$

2) $\quad N_{\tau}\left(K_{1, n-1}\right)_{n-1}^{P}=1\left(\frac{(n-1)(n-2)}{2}+1\right)+2(n-2)$

$$
=\frac{n^{2}+n-4}{2} .
$$

Theorem III.5. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of crown graph S_{n}^{0}.
If $\left\langle V_{i}\right\rangle=K_{2}, 1 \leq i \leq n$, then

1) $S t\left(S_{n}^{0}\right)_{n}^{P}=4 n(n-2)$.
2) $N_{\tau}\left(S_{n}^{0}\right)_{n}^{P}=9 n^{2}-15 n$.

Proof: Let $\left\langle V_{i}\right\rangle=K_{2}, 1 \leq i \leq n$. Then,
number of geodesics of length $1=\frac{2 n(2 n-1)}{2}-n(n-2)$. Number of geodesics of length $2=4 n(n-2)$.
From II.1. we have

1) $\operatorname{Str}\left(S_{n}^{0}\right)_{n}^{P}=0(n(2 n-1)-n(n-2))+1(4 n(n-2))$

$$
=4 n(n-2)
$$

2) $\quad N_{\tau}\left(S_{n}^{0}\right)_{n}^{P}=1(n(2 n-1)-n(n-2))+2(4 n(n-2))$ $=9 n^{2}-15 n$.

Theorem III.6. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{m+n-1}\right\}$ be a partition of bistar $B(m, n)$ graph.

If $\left\langle V_{1}\right\rangle$ is K_{2} which is the edge between two central vertices and all other $\left\langle V_{m+n-2}\right\rangle$ partitions are the pendant vertices, then

1) $\operatorname{St}(B(m, n))_{m+n-1}^{P}=2 m n-m-n$.
2) $N_{\tau}(B(m, n))_{m+n-1}^{P}=\frac{m^{2}+n^{2}+10 m n-7 m-7 n+4}{2}$.

Proof: Let $\left\langle V_{1}\right\rangle$ be K_{2} which is the edge between two central vertices and all other $\left\langle V_{m+n-2}\right\rangle$ partitions are the pendant vertices. Then, we have
number of geodesics of length $1=\frac{(m+n)(m+n-1)}{2}-(m+$ $n-2)$.
Number of geodesics of length $2=(m-1) n+(n-1) m$.
From II.1., we have

1) $\operatorname{St}(B(m, n))_{m+n-1}^{P}=0\left(\frac{(m+n)(m+n-1)}{2}\right.$

$$
\begin{aligned}
& -(m+n-2)) \\
& +1((m-1) n+(n-1) m) \\
& =(m-1) n+(n-1) m \\
& =2 m n-m-n
\end{aligned}
$$

2) $\quad N_{\tau}(B(m, n))_{m+n-1}^{P}=1\left(\frac{(m+n)(m+n-1)}{2}\right.$

$$
\begin{aligned}
& -(m+n-2)) \\
& +2((m-1) n+(n-1) m) \\
& =1\left(\frac{(m+n)(m+n-1)}{2}\right. \\
& -(m+n-2))+2(2 m n-m-n) \\
& =\frac{m^{2}+n^{2}+10 m n-7 m-7 n+4}{2} .
\end{aligned}
$$

Theorem III.7. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of the complete bipartite graph $K_{m, n}$.

1) If $m=n$ and $\left\langle V_{i}\right\rangle=K_{2}, 1 \leq i \leq m$, then
a) $S t\left(K_{m, n}\right)_{m}^{P}=2 m(m-1)$.
b) $N_{\tau}\left(K_{m, n}\right)_{m}^{P}=4 m^{2}+m n-4 m$.
2) If $m=n-1$ and $\left\langle V_{1}\right\rangle=K_{1,2}$ and $\left\langle V_{i}\right\rangle=K_{2}$ for $i=2, \ldots, m$, then
a) $S t\left(K_{m, n}\right)_{m}^{P}=2 m^{2}+2 m-3$.
b) $N_{\tau}\left(K_{m, n}\right)_{m}^{P}=4 m^{2}+4 m+m n-6$.
3) If $m<n$ and $\left\langle V_{1}\right\rangle=K_{1,2},\left\langle V_{i}\right\rangle=K_{2}$, where $2 \leq$ $i \leq m$ and the remaining $n-m-1$ partitions are all singleton partites, then
a) $\operatorname{St}\left(K_{m, n}\right)_{n-1}^{P}=m^{2}-m+2 n+m n-5$.
b) $N_{\tau}\left(K_{m, n}\right)_{n-1}^{P}=\frac{5 m^{2}+n^{2}+4 m n-3 m+7 n-20}{2}$.

Proof:

1) Let $m=n,\left\langle V_{i}\right\rangle=K_{2}$, where $1 \leq i \leq m$, then number of geodesics of length $1=m^{2}$.
Number of geodesics of length $2=2 m(m-1)$.
From II.1, we have
a) $S t\left(K_{m, n}\right)_{m}^{P}=0\left(m^{2}\right)+1(2 m(m-1))$ $=2 m(m-1)$.

$$
\text { b) } \begin{aligned}
N_{\tau}\left(K_{m, n}\right)_{m}^{P} & =1\left(m^{2}\right)+2(2 m(m-1)) \\
& =4 m^{2}+m n-4 m
\end{aligned}
$$

2) Let $m=n-1,\left\langle V_{1}\right\rangle=K_{1,2}$ and $\left\langle V_{i}\right\rangle=K_{2}$ for $i=$ $2, \ldots, m$. Then, number of geodesics of length $1=m n$. Number of geodesics of length $2=1(m)+(m-1) 3+$ $m(m-1) 2$.
From II.1, we have

$$
\text { a) } \begin{aligned}
S t\left(K_{m, n}\right)_{m}^{P} & =0(m n)+1(1(m)+(m-1) 3 \\
& +m(m-1) 2) \\
& =1(m)+(m-1) 3+m(m-1) 2 \\
& =2 m^{2}+2 m-3
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
N_{\tau}\left(K_{m, n}\right)_{m}^{P} & =1(m n)+2(1(m)+(m-1) 3 \\
& +m(m-1) 2) \\
& =1(m n)+2\left(2 m^{2}+2 m-3\right) \\
& =4 m^{2}+4 m+m n-6
\end{aligned}
$$

3) If $m<n$, let $\left\langle V_{1}\right\rangle=K_{1,2},\left\langle V_{i}\right\rangle=K_{2}$, where $2 \leq$ $i \leq m$ and the remaining $n-m-1$ partitions are all singleton partites. Then, number of geodesics of length $1=\frac{(m+n)(m+n-1)}{2}-m(n-1)$. Number of geodesics of length $2 \stackrel{2}{=} 1(n-1)+(m-1) 3+(m-1)(n-m-$ $1)+2((n-m-1)+m(m-1))$.
From II.1, we have
a) $\operatorname{St}\left(K_{m, n}\right)_{n-1}^{P}=0\left(\frac{(m+n)(m+n-1)}{2}\right.$

$$
-m(n-1))
$$

$$
+1(1(n-1)+(m-1) 3
$$

$$
+(m-1)(n-m-1)
$$

$$
+2((n-m-1)+m(m-1)))
$$

$$
=(n-1)+(m-1) 3
$$

$$
+(m-1)(n-m-1)
$$

$$
+2((n-m-1)+m(m-1)))
$$

$$
=m^{2}-m+2 n+m n-5 .
$$

b) $N_{\tau}\left(K_{m, n}\right)_{n-1}^{P}=1\left(\frac{(m+n)(m+n-1)}{2}\right.$

$$
-m(n-1))
$$

$$
+2(1(n-1)+(m-1) 3
$$

$$
+(m-1)(n-m-1)
$$

$$
+2((n-m-1)+m(m-1)))
$$

$$
=\frac{5 m^{2}+n^{2}+4 m n-3 m+7 n-20}{2} .
$$

Theorem III.8. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of the wheel graph W_{n}.

1) For odd n, let $\left\langle V_{1}\right\rangle=C_{3}$ including central vertex and remaining $\frac{n-3}{2}$ partites induce K_{2}. Then,
a) $\operatorname{St}\left(W_{n}\right)_{\frac{n-1}{2}}^{P}=\frac{n^{2}-13}{2}$.
b) $N_{\tau}\left(W_{n}\right)_{\frac{n-1}{2}}^{P}=\frac{3 n^{2}-4 n-19}{2}$.
2) If n is even, $\left\langle V_{1}\right\rangle=C_{3}$ including the central vertex and let $\left\langle V_{\frac{n}{2}}^{2}\right\rangle=K_{1}$ the remaining $\frac{n-4}{2}$ partites induce K_{2} 's, then
a) $S t\left(W_{n}\right)_{\frac{n}{2}}^{P}=\frac{n^{2}+n-20}{2}$.
b) $N_{\tau}\left(W_{n}\right)_{\frac{n}{2}}^{P}=\frac{3 n^{2}-2 n-34}{2}$.

Proof:

1) If n is odd, let $\left\langle V_{1}\right\rangle=C_{3}$ including the central vertex. Remaining $\frac{n-3}{2}$ partites induce K_{2} 's. Then, number of geodesics of length $1=\frac{n(n-1)}{2}-\left(\frac{n-1}{2}+n-3\right)$. Number of geodesics of length $2=2(1)+(n-5) 2+$ $\left(\frac{n-1}{2}\right)(n-3)$.
From II.1, we have
a) $\operatorname{St}\left(W_{n}\right)_{\frac{n-1}{2}}^{P}=0\left(\frac{n(n-1)}{2}-\left(\frac{n-1}{2}+n-3\right)\right)$

$$
\begin{aligned}
& +1(2(1)+(n-5) 2 \\
& \left.+\left(\frac{n-1}{2}\right)(n-3)\right) \\
& =2(1)+(n-5) 2 \\
& +\left(\frac{n-1}{2}\right)(n-3) \\
& =\frac{n^{2}-13}{2} .
\end{aligned}
$$

b) $N_{\tau}\left(W_{n}\right)_{\frac{n-1}{2}}^{P}=1\left(\frac{n(n-1)}{2}-\left(\frac{n-1}{2}+n-3\right)\right)$

$$
\begin{aligned}
& +2(2(1)+(n-5) 2 \\
& \left.+\left(\frac{n-1}{2}\right)(n-3)\right) \\
& =\frac{3 n^{2}-4 n-19}{2} .
\end{aligned}
$$

2) If n is even, let $\left\langle V_{1}\right\rangle=C_{3}$ including the central vertex and let $\left\langle V_{\frac{n}{2}}\right\rangle=K_{1}$ then the remaining $\frac{n-4}{2}$ partites induce K_{2} 's. Then, number of geodesics of length $1=$ $\frac{n(n-1)}{2}-\left(\frac{n}{2}+n-3\right)$. Number of geodesics of length $2=2(1)+(n-5) 2+2(n-4)+\left(\frac{n}{2}-2\right)(n-3)$. From II.1, we have
a) $S t\left(W_{n}\right)_{\frac{n}{2}}^{P}=0\left(\frac{n(n-1)}{2}-\left(\frac{n}{2}+n-3\right)\right)$

$$
\begin{aligned}
& +1(2(1)+(n-5) 2+2(n-4) \\
& \left.+\left(\frac{n}{2}-2\right)(n-3)\right) \\
& =2(1)+(n-5) 2+2(n-4) \\
& +\left(\frac{n}{2}-2\right)(n-3) \\
& =\frac{n^{2}+n-20}{2} .
\end{aligned}
$$

b) $N_{\tau}\left(W_{n}\right)_{\frac{n}{2}}^{P}=1\left(\frac{n(n-1)}{2}-\left(\frac{n}{2}+n-3\right)\right)$

$$
\begin{aligned}
& +2(2(1)+(n-5) 2+2(n-4) \\
& \left.+\left(\frac{n}{2}-2\right)(n-3)\right) \\
& =\frac{3 n^{2}-2 n-34}{2}
\end{aligned}
$$

Theorem III.9. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of fan graph $F_{1, n}$ with $n+1$ vertices.

If $\left\langle V_{1}\right\rangle=K_{2}$ which is an edge connecting the universal vertex with any other vertex and $\left\langle V_{i}\right\rangle=K_{1}$, where $1 \leq i \leq$ $n-1$, then

1) $S t\left(F_{1, n}\right)_{n}^{P}=n^{2}-2 n-2$.
2) $N_{\tau}\left(F_{1, n}\right)_{n}^{P}=\left(\sum_{i=3}^{n}(n+1-i)\right)+2 n^{2}-5 n$.

Proof: Let $\left\langle V_{1}\right\rangle=K_{2}$ which is an edge connecting the universal vertex with any other vertex and $\left\langle V_{i}\right\rangle=K_{1}$, where $1 \leq i \leq n-1$. Then, number of geodesics of length $1=\left(\sum_{i=3}^{n}(n+1-i)\right)+1$. Number of geodesics of length $2=2(n-3)+(n-3)(n-4)+(n-2)(1)$. Number of geodesics of length $3=1(n-3)$.

From II.1, we have

1) $\operatorname{St}\left(F_{1, n}\right)_{n}^{P}=0\left(\left(\sum_{i=3}^{n}(n+1-i)\right)+1\right)$
$+1(2(n-3)+(n-3)(n-4)$
$+(n-2)(1))+2(1(n-3))$
$=1(2(n-3)+(n-3)(n-4)$
$+(n-2)(1))$
$+2(1(n-3))$
$=n^{2}-2 n-2$.
2) $N_{\tau}\left(F_{1, n}\right)_{n}^{P}=1\left(\left(\sum_{i=3}^{n}(n+1-i)\right)+1\right)$

$$
+2(2(n-3)+(n-3)(n-4)
$$

$$
+(n-2)(1))+3(1(n-3))
$$

$$
=\left(\left(\sum_{i=3}^{n}(n+1-i)\right)+1\right)
$$

$$
+2 n^{2}-5 n-1
$$

$$
=\left(\sum_{i=3}^{n}(n+1-i)\right)+2 n^{2}-5 n .
$$

IV. Stress and Tension of $k(i)$-Complement of SOME STANDARD GRAPHS

Theorem IV.1. Let $P=\left\{V_{1}, V_{2}\right\}$ be a partition of P_{n}.

1) Let n be odd and $P=\left\{V_{1}, V_{2}\right\}$ be a partition of $V\left(P_{n}\right)$ such that $\left\langle V_{1}\right\rangle$ consists of all the $\left(\frac{n+1}{2}\right)$ alternating vertices of P_{n} and all the remaining $\left(\frac{n-1}{2}\right)$ vertices of P_{n} be $\left\langle V_{2}\right\rangle$. Then,
a) $S t\left(P_{n}\right)_{2(i)}^{P}=n^{2}-5 n+6$.
b) $N_{\tau}\left(P_{n}\right)_{2(i)}^{P}=\frac{9 n^{2}-38 n+45}{4}$.
2) Let n be even and $P=\left\{V_{1}, V_{2}\right\}$ be a partition of $V\left(P_{n}\right)$ such that $\left\langle V_{1}\right\rangle$ consists of all the $\frac{n}{2}$ alternating vertices of P_{n} and all the remaining $\frac{n}{2}$ vertices of P_{n} be $\left\langle V_{2}\right\rangle$. Then,
a) $S t\left(P_{n}\right)_{2(i)}^{P}=n^{2}-5 n+6$.
b) $N_{\tau}\left(P_{n}\right)_{2(i)}^{P}=\frac{9 n^{2}-38 n+44}{4}$.

Proof:

1) For odd n, consider the partition of $V\left(P_{n}\right)$ as follows:
$\left\langle V_{1}\right\rangle$ consists of all the $\frac{n+1}{2}$ alternating vertices of P_{n} and the remaining $\frac{n-1}{2}$ vertices of P_{n} are in $\left\langle V_{2}\right\rangle$. Then, number of geodesics of length $1=\frac{n^{2}+2 n-3}{4_{2}}$. Number of geodesics of length $2=(n-3) 3+\left(\frac{n^{2}-8 n+15}{4}\right) 4$. From II.1, we have
a) $S t\left(P_{n}\right)_{2(i)}^{P}=0\left(\frac{n^{2}+2 n-3}{4}\right)$
$+1\left((n-3) 3+\left(\frac{n^{2}-8 n+15}{4}\right) 4\right)$
$=(n-3) 3+\left(\frac{n^{2}-8 n+15}{4}\right) 4$
$=n^{2}-5 n+6$.
b) $N_{\tau}\left(P_{n}\right)_{2(i)}^{P}=1\left(\frac{n^{2}+2 n-3}{4}\right)$

$$
+2\left((n-3) 3+\left(\frac{n^{2}-8 n+15}{4}\right) 4\right)
$$

$$
=1\left(\frac{n^{2}+2 n-3}{4}\right)+2\left(n^{2}-5 n+6\right)
$$

$$
=\frac{9 n^{2}-38 n+45}{4}
$$

2) For even n, consider the partition of $V\left(P_{n}\right)$ as follows: $\left\langle V_{1}\right\rangle$ consists of all the $\frac{n}{2}$ alternating vertices of P_{n} then all the remaining $\frac{n}{2}$ vertices of P_{n} are in $\left\langle V_{2}\right\rangle$. Then, number of geodesics of length $1=\frac{1}{2}\left(n+(n-2)\left(\frac{n}{2}+1\right)\right)$. Number of geodesics of length $2=1(2)+(n-4) 3+$ $\left(\frac{n^{2}}{4}-2 n+4\right) 4$.
From II.1, we have

$$
\text { a) } \begin{aligned}
S t\left(P_{n}\right)_{2(i)}^{P} & =0\left(\frac{1}{2}\left(n+(n-2)\left(\frac{n}{2}+1\right)\right)\right) \\
& +1(1(2)+(n-4) 3 \\
& \left.+\left(\frac{n^{2}}{4}-2 n+4\right) 4\right) \\
& =1(2)+(n-4) 3+\left(\frac{n^{2}}{4}-2 n+4\right) 4 \\
& =n^{2}-5 n+6 .
\end{aligned}
$$

b) $N_{\tau}\left(P_{n}\right)_{2(i)}^{P}=1\left(\frac{1}{2}\left(n+(n-2)\left(\frac{n}{2}+1\right)\right)\right)$

$$
\begin{aligned}
& +2(1(2)+(n-4) 3 \\
& \left.+\left(\frac{n^{2}}{4}-2 n+4\right) 4\right) \\
& =\frac{1}{2}\left(n+(n-2)\left(\frac{n}{2}+1\right)\right) \\
& +2\left(n^{2}-5 n+6\right) \\
& =\frac{9 n^{2}-38 n+44}{4}
\end{aligned}
$$

Theorem IV.2. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of C_{n}.

1) If n is even, let $P=\left\{V_{1}, V_{2}\right\}$ be a partition of $V\left(C_{n}\right)$ such that $\left\langle V_{1}\right\rangle$ consists of $\frac{n}{2}$ alternating vertices and the remaining $\frac{n}{2}$ vertices be in $\left\langle V_{2}\right\rangle$. Then,
a) $\operatorname{St}\left(C_{n}\right)_{2(i)}^{P}=\frac{n^{2}-4 n}{4}$.
b) $N_{\tau}\left(C_{n}\right)_{2(i)}^{P}=\frac{3 n^{2}-6 n}{4}$.
2) If n is odd, let $P=\left\{V_{1}, V_{2}, V_{3}\right\}$ be a partition of $V\left(C_{n}\right)$ such that $\left\langle V_{1}\right\rangle$ consists of $K_{1},\left\langle V_{2}\right\rangle$ consists of all the $\frac{n-1}{2}$ alternating vertices and the remaining $\frac{n-1}{2}$ vertices be in $\left\langle V_{3}\right\rangle$. Then,
a) $S t\left(C_{n}\right)_{3(i)}^{P}=n^{2}-4 n+3$.
b) $N_{\tau}\left(C_{n}\right)_{3(i)}^{P}=\frac{9 n^{2}-32 n+27}{4}$.

Proof:

1) For even n, consider the partition of $V\left(C_{n}\right)$ as follows: $\left\langle V_{1}\right\rangle$ consists of $\frac{n}{2}$ alternating vertices and the remaining $\frac{n}{2}$ vertices be in $\left\langle V_{2}\right\rangle$. Then,
number of geodesics of length $1=\frac{n}{2}\left(\frac{n}{2}+1\right)$.
Number of geodesics of length $2=\frac{n(n-1)}{2}-\frac{n}{2}\left(\frac{n}{2}+1\right)$. From II.1, we have

$$
\text { a) } \begin{aligned}
S t\left(C_{n}\right)_{2(i)}^{P} & =0\left(\frac{n}{2}\left(\frac{n}{2}+1\right)\right) \\
& +1\left(\frac{n(n-1)}{2}-\frac{n}{2}\left(\frac{n}{2}+1\right)\right) \\
& =\frac{n(n-1)}{2}-\frac{n}{2}\left(\frac{n}{2}+1\right) \\
& =\frac{n^{2}-4 n}{4} .
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
N_{\tau}\left(C_{n}\right)_{2(i)}^{P} & =1\left(\frac{n}{2}\left(\frac{n}{2}+1\right)\right) \\
& +2\left(\frac{n(n-1)}{2}-\frac{n}{2}\left(\frac{n}{2}+1\right)\right) \\
& =1\left(\frac{n}{2}\left(\frac{n}{2}+1\right)\right)+2\left(\frac{n^{2}-4 n}{4}\right) \\
& =\frac{3 n^{2}-6 n}{4}
\end{aligned}
$$

2) For odd n, consider the partition of $V\left(C_{n}\right)$ as follows: $\left\langle V_{1}\right\rangle$ consists of $K_{1},\left\langle V_{2}\right\rangle$ consists of all the $\frac{n-1}{2}$ alternating vertices and the remaining $\frac{n-1}{2}$ vertices be in $\left\langle V_{3}\right\rangle$. Then, number of geodesics of length $1=1+\frac{n^{2}-1}{4}$. Number of geodesics of length $2=(n-4) 3+2(2)+$ $(n-5) 1+\left(\frac{n^{2}}{4}-2 n+4\right) 4$.
From II.1, we have

$$
\text { a) } \begin{aligned}
\operatorname{St}\left(C_{n}\right)_{3(i)}^{P} & =0\left(1+\frac{n^{2}-1}{4}\right) \\
& +1((n-4) 3+2(2)+(n-5) 1 \\
& \left.+\left(\frac{n^{2}}{4}-2 n+4\right) 4\right) \\
& =(n-4) 3+2(2)+(n-5) 1 \\
& +\left(\frac{n^{2}}{4}-2 n+4\right) 4 \\
& =n^{2}-4 n+3 .
\end{aligned}
$$

b) $N_{\tau}\left(C_{n}\right)_{3(i)}^{P}=1\left(1+\frac{n^{2}-1}{4}\right)$

$$
\begin{aligned}
& +2((n-4) 3+2(2)+(n-5) 1 \\
& \left.+\left(\frac{n^{2}}{4}-2 n+4\right) 4\right) \\
& =1\left(1+\frac{n^{2}-1}{4}\right)+2\left(n^{2}-4 n+3\right) \\
& =\frac{9 n^{2}-32 n+27}{4} .
\end{aligned}
$$

Theorem IV.3. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of $V\left(K_{m, n}\right)$ such that

1) If $m=n, m$ and n are even then, $V_{i}=\left\{v_{i}, v_{j}\right\}$ be such that both $i, j \in\{1,2, \ldots, m\}$ or $i, j \in\{m+$ $1, m+2, \ldots, m+n\}$, then
a) $S t\left(K_{m, n}\right)_{m(i)}^{P}=m^{2}(m-2)$.
b) $N_{\tau}\left(K_{m, n}\right)_{m(i)}^{P}=m^{3}+2 m^{2}-3 m$.
2) If $m=n, m$ and n are odd then, $\left\langle V_{1}\right\rangle=v_{i} ; 1 \leq$ $i \leq m,\left\langle V_{2}\right\rangle=v_{m+i} ; 1 \leq i \leq n$ and $\left\langle V_{i}\right\rangle=\left\{v_{i}, v_{j}\right\}$ be such that both $i, j \in\{1,2, \ldots, m\}$ or $i, j \in\{m+$ $1, m+2, \ldots, m+n\}$, then
a) $S t\left(K_{m, n}\right)_{m(i)}^{P}=(m-1)^{2} m$.
b) $N_{\tau}\left(K_{m, n}\right)_{m(i)}^{P}=\frac{4 m^{3}-7 m^{2}+5 m+m n+n-2}{2}$.
3) If $m \neq n$ then partition of $V\left(K_{m, n}\right)$ be as follows:
$\left\langle V_{1}\right\rangle=K_{1,1}$ and the remaining $\left\langle V_{i}\right\rangle$ be single vertex where $2 \leq i \leq(m+n-1)$, then
a) $\operatorname{St}\left(K_{m, n}\right)_{m+n-1(i)}^{P}=3(m-1)(n-1)+$ $\frac{(m-1)(m-2)}{2}(n)+\frac{(n-1)(n-2)}{2}(m)$.
b) $N_{\tau}\left(K_{m, n}\right)_{m+n-1(i)}^{P}=(m n-1)+7(m-1)(n-1)+$ $2\left(\frac{(m-1)(m-2)}{2}(n)+\frac{(n-1)(n-2)}{2}(m)\right)$.
Proof:
4) If $m=n, m$ and n are even then, let $P=$ $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ a partition of $V\left(K_{m, n}\right)$ such that $\left\langle V_{i}\right\rangle=\left\{v_{i}, v_{j}\right\}$, where both $i, j \in\{1,2, \ldots, m\}$ or $i, j \in\{m+1, m+2, \ldots, m+n\}$. Then, we have number of geodesics of length $1=(m+1) m$. Number of geodesics of length $2=m^{2}(m-2)$.
From II.1, we have
a) $S t\left(K_{m, n}\right)_{m(i)}^{P}=0((m+1) m)+1\left(m^{2}(m-2)\right)$

$$
=m^{2}(m-2)
$$

b) $N_{\tau}\left(K_{m, n}\right)_{m(i)}^{P}=1\left(m^{2}(m+1)\right)+2(m(m-2))$

$$
=m^{3}+2 m^{2}-3 m .
$$

2) If $m=n, m$ and n are odd then let $P=$ $\left\{V_{1}, V_{2}, \ldots, V_{m+1}\right\}$ a partition of $V\left(K_{m, n}\right)$ such that $\left\langle V_{1}\right\rangle=v_{i} ; 1 \leq i \leq m, V_{2}=v_{m+i} ; 1 \leq i \leq n$ and $V_{i}=\left\{v_{i}, v_{j}\right\}$ be such that both $i, j \in\{1,2, \ldots, m\}$ or $i, j \in\{m+1, m+2, \ldots, m+n\}$ then, number of geodesics of length $1=\frac{2 m+(m+n-2)(m+1)}{2}$. Number of geodesics of length $2=(m-1)^{2} m$.
From II.1, we have
a) $\begin{aligned} S t\left(K_{m, n}\right)_{m+1(i)}^{P} & =0\left(\frac{2 m+(m+n-2)(m+1)}{2}\right) \\ & +1\left((m-1)^{2} m\right) \\ & =(m-1)^{2} m .\end{aligned}$

$$
\begin{aligned}
& =1((m-1) m) \\
& =(m-1)^{2} m .
\end{aligned}
$$

b) $N_{\tau}\left(K_{m, n}\right)_{m+1(i)}^{P}=1\left(\frac{2 m+(m+n-2)(m+1)}{2}\right)$

$$
\begin{aligned}
& +2\left((m-1)^{2} m\right) \\
& =\frac{4 m^{3}-7 m^{2}+5 m+m n+n-2}{2}
\end{aligned}
$$

3) If $\left\langle V_{1}\right\rangle=K_{1,1}$ and the remaining $\left\langle V_{i}\right\rangle$ be single vertex where $2 \leq i \leq m+n-1$, then number of geodesics of length $1=m n-1$. Number of geodesics of length $2=(m-1)(n-1)+\frac{(m-1)(m-2)}{2}(n)+(n-1)(m-$ $1)+\frac{(n-1)(n-2)}{2}(m)$. Number of geodesics of length $3=$ $(m-1)(n-1)$.
From II.1, we have
a) $S t\left(K_{m, n}\right)_{m+n-1(i)}^{P}=0(m n-1)+1((m-1)(n-1)$
$+\frac{(m-1)(m-2)}{2}(n)$
$+(n-1)(m-1)$
$\left.+\frac{(n-1)(n-2)}{2}(m)\right)$
$+2(m-1)(n-1)$
$=(m-1)(n-1)$
$+\frac{(m-1)(m-2)}{2}(n)$
$+(n-1)(m-1)$
$+\frac{(n-1)(n-2)}{2}(m)$
$+2(m-1)(n-1)$
$=3(m-1)(n-1)$
$+\frac{(m-1)(m-2)}{2}(n)$
$+\frac{(n-1)(n-2)}{2}(m)$.
b) $N_{\tau}\left(K_{m, n}\right)_{m+n-1(i)}^{P}=1(m n-1)$

$$
\begin{aligned}
& +2((m-1)(n-1) \\
& +\frac{(m-1)(m-2)}{2}(n) \\
& +(n-1)(m-1) \\
& \left.+\frac{(n-1)(n-2)}{2}(m)\right) \\
& +3(m-1)(n-1) \\
& =(m n-1) \\
& +7(m-1)(n-1) \\
& +2\left(\frac{(m-1)(m-2)}{2}(n)\right. \\
& \left.+\frac{(n-1)(n-2)}{2}(m)\right)
\end{aligned}
$$

Theorem IV.4. For wheel graph W_{n} partition the vertex set into 2 partitions i.e., $\left\langle V_{1}\right\rangle$ consists of K_{1} including universal vertex and $\left\langle V_{2}\right\rangle$ consists of all other vertices. Then,

1) $\operatorname{St}\left(W_{n}\right)_{2(i)}^{P}=(n-1)(n-4)$.
2) $N_{\tau}\left(W_{n}\right)_{2(i)}^{P}=\frac{5 n^{2}-23 n+18}{2}$.

Proof: Let the vertex set be partitioned into 2 partitions i.e., $\left\langle V_{1}\right\rangle$ consists of K_{1} including universal vertex and $\left\langle V_{2}\right\rangle$
consists of all other vertices. Then, number of geodesics of length $1=\frac{n(n-1)}{2}-(n-1)$. Number of geodesics of length $2=(n-1)(n-4)$.

From II.1, we have

1) $S t\left(W_{n}\right)_{2(i)}^{P}=0\left(\frac{n(n-1)}{2}-(n-1)\right)$

$$
\begin{aligned}
& +1((n-1)(n-4)) \\
& =(n-1)(n-4)
\end{aligned}
$$

2) $N_{\tau}\left(W_{n}\right)_{2(i)}^{P}=1\left(\frac{n(n-1)}{2}-(n-1)\right)$

$$
\begin{aligned}
& +2((n-1)) \\
& =\frac{5 n^{2}-23 n+18}{2}
\end{aligned}
$$

Theorem IV.5. Let $P=\left\{V_{1}, V_{2}\right\}$ be a partition of $V\left(F_{1, n}\right)$ such that let $\left\langle V_{1}\right\rangle$ consists of K_{1} i.e., the vertex which is adjacent to all other vertices and $\left\langle V_{2}\right\rangle$ consists of all the remaining n vertices. Then,

1) $S t\left(F_{1, n}\right)_{2(i)}^{P}=n^{2}-4 n+5$.
2) $N_{\tau}\left(F_{1, n}\right)_{2(i)}^{P}=\frac{5 n^{2}-17 n+22}{2}$.

Proof: Let $P=\left\{V_{1}, V_{2}\right\}$ be a partition of $V\left(F_{1, n}\right)$ such that $\left\langle V_{1}\right\rangle$ consists of K_{1} i.e., the vertex which is adjacent to all other vertices and $\left\langle V_{2}\right\rangle$ consists of all the remaining n vertices. Then, number of geodesics of length $1=\frac{(n-1)(n-2)}{2}+n$. Number of geodesics of length $2=$ $2(n-2)+(n-3)(n-3)$.

From II.1, we have

1) $\operatorname{St}\left(F_{1, n}\right)_{2(i)}^{P}=0\left(\frac{(n-1)(n-2)}{2}+n\right)$

$$
\begin{aligned}
& +1(2(n-2)+(n-3)(n-3)) \\
& =(2(n-2)+(n-3)(n-3)) \\
& =n^{2}-4 n+5
\end{aligned}
$$

2) $N_{\tau}\left(F_{1, n}\right)_{2(i)}^{P}=1\left(\frac{(n-1)(n-2)}{2}+n\right)$

$$
+2(2(n-2)+(n-3)(n-3))
$$

$$
=1\left(\frac{(n-1)(n-2)}{2}+n\right)
$$

$$
+2\left(n^{2}-4 n+5\right)
$$

$$
=\frac{5 n^{2}-17 n+22}{2}
$$

V. Conclusion

Generalised complements of a graph depends on partition of a vertex set. Also, stress and tension of the generalised complements of the graph varies with respect to the partitions of V of G. In this paper, we have obtained stress and tension of k and $k(i)$ complement of few standard graphs such as path, cycle, complete bipartite graph, wheel graph and fan graph.

REFERENCES

[1] C. V. Venkatachalam E. Sampathkumar, L. Pushpalatha and P. G. Bhat. Generalized complements of a graph. Indian Journal of Pure and Applied Mathematics, 29(6):625-639, 1998.
[2] A. Shimbel. Structural parameters of communication networks. The Bulletin of Mathematical Biophysics, 15:501-507, 1953.
[3] N. N. Dattatreya K. Bhargava and R. Rajendra. On stress of a vertex in a graph. Palestine Journal of Mathematics, 9(2):1-11, 2022.
[4] S. Arumugam P. Raksha, K. A. Bhat and K. Manjunatha Prasad. The stress of a graph. Communications in Combinatorics and Optimization, 8(1):53-65, 2023.
[5] J. Shiny. Induced stress of some graph operations. Malaya Journal of Matematik, 9(1):259-261, 2021.
[6] S. Arumugam P. Raksha, K. Arathi Bhat and K. Manjunatha Prasad. Stress of wheel related graphs. National Academy Science Letters, 45(5):427-431, 2023.
[7] N. N. Dattatreya K. Bhargava and R. Rajendra. Tension on an edge in a graph. Boletim da Sociedade Paranaense de Matemática, 41:1-9, 2023.

[^0]: Manuscript received February 05, 2023; revised December 13, 2023.
 Madhumitha K V is a research scholar in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India (e-mail: madhumithakv467@gmail.com).

 Swati Nayak is an Assistant Professor - senior scale in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India (e-mail: swati.nayak@manipal.edu).
 Sabitha DSouza is an Associate Professor in Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India (*corresponding author to provide phone: 9449727376; e-mail: sabitha.dsouza@manipal.edu).

