
 

 
Abstract—In order to obtain accurate information from low 

illumination images, we propose a low-light image enhancement 
method based on guided filter and Gamma correction according 
to the Retinex model. First, the image is converted into the Lab 
color space. After that, the guided filter is used to extract the 
scene’s illumination and the parameter of local square window 
radius is updated by the size of source image. Then, a novel 
adaptive Gamma correction, based on heat transfer law, is 
applied to achieve precise illumination intensity. Finally, the 
illumination component with color information is to obtain the 
reconstructed enhancement image. The ablation analysis 
indicates the effectiveness of main part in the proposed method. 
Through numerous experiments, the proposed method 
enhances the overall brightness, corrects the color distortion, 
preserves details, and demonstrates favorable visual results for 
diverse low-light images. The proposed method also shows 
certain superiority and comparability in objective and 
subjective evaluations compared to state-of-the-art methods, 
and meanwhile remains highly efficient. 
 

Index Terms—Retinex, guided filter, Gamma correction, 
color correction, image enhancement 
 

I. INTRODUCTION 
neven and insufficient lighting circumstances, such as at 
night or on cloudy days, can hinder the effective capture 

of information [1]-[2]. As a result, it can cause difficulties in 
extracting and processing information. In low-light scenes, 
the sensitivity of the imaging system sensor is limited due to 
device property, and only the fewer photons are obtained by 
imaging system, these lead to low contrast and the color 
distortion in acquired images [3]-[4]. Images taken in low 
light typically present shortcomings including low brightness  
and poor visual effect. Fig. 1 displays three original low-light 
images and the corresponding enhanced outcomes. It is 
evident from the Fig. 1 that the processed images illustrate 
information more effectively than the originals. Low-light 
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(a) Images with low-light. 

 
(b) Corresponding outcomes by the proposed method. 

Fig. 1.  Example of low-light image enhancement. 
 

image enhancement has been widely used, including mine 
image [5]. 

Various methods have been devised to execute the 
enhanced tasks. Histogram equalization (HE) [6] is one of the 
most typical brightness adjustment method. HE enhances 
contrast and expending dynamic range by redistributing the 
probability density of grayscale values [7]. Nonetheless, HE 
intensifies noise in dark areas by incorporating lower grey 
values and is prone to artifact generation due to its disregard 
for the image’s local features. Adaptive histogram 
equalization (AHE) [8] divides the image into blocks to 
concentrate on local contrast enhancement. However, the 
outputs often exhibit block effects, and the challenges still 
exist. Pisano et al. [9] introduced contrast limited adaptive 
histogram equalization (CLAHE), which utilizes interpola- 
tion to circumvent block effects and suppress noise. Although 
HE-based methods typically excel in enhancing brightness, 
they are not effective in enhancing color images, and 
reconstructed outputs tend to be flawed due to artifacts. 

Nonlinear mapping methods represent another category in 
the field of image enhancement. They aim to achieve specific 
goals by means of tailor-made functions. The Gamma 
function can adjust the brightness in low-light images process, 
which is commonly known as Gamma Correction (GC). 
However, GC often over-enhances the images and amplifies 
noise by using invariant parameters. Adaptive Gamma 
correction with weighting distribution (AGCWD) is 
introduced in [10]. This method utilizes a weight histogram to 
compute the Gamma values to ensure contrast improvement. 
The homomorphic filter (HF) [11] is a standard image 
enhancement method relying on domain transfer functions. 
HF decomposes the images into low and high frequency 
components. These components are averaged and 
logarithmically transformed, respectively. These steps aim to 
improve brightness and contrast, and eliminate noise. 
However, HF’s drawback is its tendency to blur detail 
information. While nonlinear mapping methods can enhance 
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images, the basic mapping functions are unsuitable for 
complex low-light images.  

As machine learning evolves, researchers are trying to find 
a more appropriate mapping relationships for low-light image 
enhancement from various datasets [12]-[13]. These methods 
incorporate a series of modules to extract attributes, 
culminating in enhanced outputs through extensive encoding, 
decoding and reconstruction processes. Wei et al. [14] 
introduced Retinex-Net to enhance images and construct a 
large dataset. Retinex-Net is end-to-end trainable, and the 
outputs preserve the main structures while distort the color. 
Kind++ [15] offers superior natural color, but compromises 
image detail and structure. These methods do not perform 
well on natural images due to the lack of large datasets, and 
data training is time consuming and requires expensive 
hardware devices support.  

For natural low-light image enhancement, the perceptual 
imaging model-based methods attract considerable attention 
[16]-[17]. These methods, derived from the human retina 
perception system, divide images into the components about 
illumination and reflectance, with subsequent operations 
aimed at these elements. Representative methods include 
single scale Retinex (SSR), multi scale Retinex (MSR) [18] 
and multi scale Retinex with color restoration (MSRCR) [19]. 
The naturalness preserved enhancement (NPE) method [20], 
which focuses local brightness, contrast enhancement, and 
overall natural preservation, can achieve superior image 
reconstructed results. However, this method may have 
difficulties in brighter regions. The simultaneous reflection 
and illumination estimation (SRIE) method [21] includes a 
weighted variation model to enhance image quality, although 
it may lead to the creation of artifacts in edge structure. Li et 
al. [22] proposed a robust Retinex model to reduce noise. The 
model utilizes an iterative algorithm for optimization. 
Nevertheless, this can be time-consuming and may exclude 
details in dark regions. Wu et al. [23] leveraged a 2D 
histogram to amplify reflection components, specifically 
reflectance oriented probabilistic equalization (ROPE) 
method. However, it has tendency to over-enhance images. 

To achieve high-quality image output with minimal 
artifacts and color distortion, this paper proposes a low-light 
image enhancement method. Through the perception of 
image information, the method automatically obtains 
corresponding parameters, and effectively improves the 
image visual effect. The low-light image is constructed with 
high contrast, vivid color and intricate details via proposed 
method. Compared with previous methods, this paper has the 
following contributions. 

1. In the illuminance estimation process, the parameter r  
is set by the image size, and the appropriate guided filter is 
obtained adaptively. 

2. To achieve precise light intensity, we have designed an 
adaptive strategy for selecting parameter γ . This strategy is 
driven by the local and global information perceived in the 
input image. This approach ensures accurate illumination 
estimation in accordance with the heat transfer law. 

The rest of the paper is organized as follows: Section II 
outlines the pertinent models and methods. Section III 
provides details exposition of the proposed method. Section 
IV and Section V present the experimental analysis and 
conclusions, respectively. 

II. RELATED WORKS 

A. Retinex Model 
The Retinex model comes from the human vision imaging 

system, and is widely utilized due to its simplicity. It can be 
formulated as Eq. (1): 

S L R=  ,         (1) 
where S  is the source image, L  is illuminance distribution 
of surroundings, and R  is the target enhanced scene, the 
operator ‘  ’ indicates element-wise multiplication. 
 

B. The Guided Filter 
The guided filter [24] is a filter that has the local linear 

model as a basis. In comparison to the nonlinear filter, it has a 
reduced calculation complexity. Within a k-centered window 

kω , the relationship of the output image q and the guided 
image I  is linear, we have, 

( , ) ( , ) ,  ( , )k k kq i j a I i j b i j ω= + ∀ ∈ ,    (2) 

where ( , )i j  and k are pixel indexes, ka  and kb  are the 
coefficients of linear equation, respectively. In Eq. (2), if 
I equals input image p, the guided filter can be utilized as an 
edge-preserving filter. Thus, we obtain, 
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
= +
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,        (3) 

where 2
kσ  and kp  are the variance and mean of p  within 

window kω , respectively. ε  is a constant. In Eq. (3), the 

parameter ka  is in [0,1] , and significantly impacts the 
output. By altering the size of filter windows, both the overall 
and local smooth effect of image is affected, and distinct 
levels of structure and texture information are retained. 

 

C. Gamma Correction 
GC is a widely employed technique for enhancing image. 

It alters the image’s brightness and contrast via non-linear 
transformation, and augments its detail and sharpness. The 
canonical form for expressing this is as follows, 

 ,    0,O Lγ γ= >        (4) 
where O  is the corrected image, L  is the input image, and 
γ  is the correction parameter to change the image brightness. 
The image is darkened for 1γ > , and brightened for 1γ < , 

1γ =  does not give changes. 
 

III. ADAPTIVE ILLUMINATION ESTIMATION AND IMAGE 
RECONSTRUCTION 

Fig. 2 displays the flow chart of the proposed method. 

A. Conversion of RGB to Lab  
The transformation of color images in RGB can cause 

distortion due to the strong color correlation inherent in RGB 
space. The Lab space, on the other hand, separates the 
brightness information into the L-layer map and the color 
information into the a- and b-layer maps. As these maps are 
independent of each other, changing the L map does not  
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Fig. 2.  A flow chart of the proposed method. 

 
create new color information. Therefore, we convert images 
from RGB to Lab for further research. The formula for 
converting RGB to XYZ space is as follows, 

0.433953 0.376219 0.189828
0.212671 0.715160 0.072169 ,
0.017758 0.109477 0.872865

X R G B
Y R G B
Z R G B

= + +
 = + +
 = + +

  (5) 

where the R, G and B are the components of RGB color space, 
their values fall within the range of 0 to 1. Meanwhile, the 
values of X , Y  and Z  represent the three channels of the 
XYZ color space, respectively. The following formulas are 
the conversion of XYZ to Lab, 

116 ( ) 16
500[ ( ) ( )],
200[ ( ) ( )]

L f Y
a f X f Y
b f Y f Z

= −
 = −
 = −

     (6) 

and    
1 3 36

29
2291 4

3 6 29

               ( )
( ) ,

( )   

t t
f t

t otherwise

 >= 
+

     (7) 

 

B. Illuminance Estimation 
The intensity of light changes slowly in the local space 

from the optical imaging process. During illumination 
extraction, the elimination of extraneous details that are 
present in the input image is crucial. Additionally, optical 
imaging projects 3-D spatial information onto a 2-D plane, 
which can make objects close together in the image but they 
appear far apart in the reality, so it is critical to preserve 
structural information with spatial properties.  

As outlined in Section II, the guided filter is a linear filter 
that can effectively retain edge information. For the 
luminance layer map L , the estimated map for illuminance F 
can be obtained by: 

( , , ),F G L O r=         (8) 
where ( )G   represents the guided filter operator, O  denotes 
the guiding image, and r  is the local square window radius. 
To ensure the filter’s edge protection capability, it is typically 
recommended to set O  equal to L .  

During guided filtering, a larger local square window size 
results the filter to focus more on general contour of the 
images, which can cause heavy loss of information. 
Therefore, it is crucial to carefully choose an appropriate size 
of the local square window. After several experiments, the 
local square window radius is selected by 

1 2(( ) 2)r round r r= + , where 1 (min( , ) 8)r round h w= , 

2 (min( , ) 2 1)r round h w= − , h  and w  denote the input 
image length and width, respectively, and ( )round   is a 
round operation.  

 

C. Adaptive Illumination Intensity Correction 
When the light travels from the source to the acquisition 

device, its intensity decreases, and this is not linear. Due to its 
non-linear characteristic, GC is commonly employed to 
regulate the grayscale values. In this paper, the GC format 
can be presented as, 

' 100 ,
100
FL

γ
 = × 
 

       (9) 

where 'L  is the illumination corrected map, F  is estimated 
illuminance map from L , γ  lies between (0, 1).  

From Eq. (9), it is apparent that a fixed parameter is a crude 
strategy for selecting γ  and is not suitable for different 
images. According to the laws of heat transfer, an object with 
higher energy will radiate energy to its surroundings 
unconsciously. Simultaneously, the greater the energy 
difference between the object and its surroundings, the faster 
its energy decay rate. Similar laws apply to optical 
propagation. Thus, we design a new strategy to correct 
illuminance intensity in finding the suitable γ . The formula 
for this strategy can be represented as follows, 

( )
1 ,

1 exp 'F
γ =

+
       (10) 

and     min max min' ( ) ( ) ,F F F F F= − −      (11) 
where maxF  and minF  are the maximum and minimum values 
of F , respectively. As the F  value increases, the smaller γ  
becomes, the 'L  is brighter.  

 

D. Conversion of Lab to RGB  
After obtaining the corrected intensity map 'L , it is 

merged with the initial a- and b-layers to produce a new 
image. Then, it is converted into RGB to obtain the needed 
estimated illumination component corL . The conversion of 
Lab to RGB color space is outlined as follows, 

1

1

1

' [( ' 16) 116]
' [( ' 16) 116 500],
' [( ' 16) 116 200]

Y f L
X f L a
Z f L b

−

−

−

 = +


= + +
 = + −

    (12) 

where 'X , 'Y  and 'Z  are new layers in XYZ color space, 
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t otherwise
−

 >= 
−

    (13) 

 The XYZ space is converted to RGB by, 
' 3.0799327 ' 1.537150 ' 0.542782 '
' 0.921235 ' 1.875992 ' 0.0452442 ',
' 0.0528909 ' 0.204043 ' 1.1511515 '

R X Y Z
G X Y Z
B X Y Z

= − +
 = − + +
 = − +

 (14) 

where 'R , 'G  and 'B  are components of corL  in RGB color 
space. 

 

E. Image Reconstruction 
The reconstructed enhancement image enhR  is achieved by 

substituting corL  into Eq. (15). 

( ) ,enh corR S L eps= +       (15) 
where S  is the source image, eps  is a minimum constant, 
and corL  includes the property of scenarios, such as 
non-uniform luminance and color temperature, among others. 
As a result, the enhanced image is reconstructed without any 
of the negative effects by the scenario light.  

 

F. Ablation Analysis 
Here, we present the intermediate outcomes of the 

proposed method, and explain the significance of the main 
part of the proposed method through ablation analysis. 

 

 
(a) (b) (c) 

Fig. 3.  Intermediate result and utility of the proposed method. (a) Original. 
(b) The illuminance map F  via our guided filter. (c) The corrected 

illuminance map 'L  by adaptive GC. 
 

 
(a) (b) (c) 

Fig. 4.  The color corrected capacity in the proposed method. (a) Original.  
(b) The illumination component corL . (c) The reconstructed result by the 

proposed method. 
 

Fig. 3(b) depicts the illuminance map F , while Fig. 3(c) 
illustrates the illuminance map 'L  corrected by the 
suggested adaptive GC. Generally, 'L  appears brighter than 
F . It is readily noticeable that the ‘car’, ‘road’ and ‘trees’ are 
illuminated at varying degrees in the picture. The image, on 
the whole, has a wide dynamic range and retains the property 
of the uneven light distribution. Upon analysis, an accurate 
illumination estimate is attained.  

Fig. 4(b) produces a bright vision effect, but shows serious 
color deviation. The ‘trees’ in dark is still hidden. The 
reconstructed result has corrected color and further improved 
brightness in Fig. 4(c). Overall, the output image appears 
clear and is less impacted by ambient light. 

 
(a) (b) (c) 

Fig. 5.  Enhanced images obtained after estimation in different color space. (a) 
Original. (b) The estimation in RGB space. (c) The estimation in Lab space. 

 
Form Fig. 5, it can be seen that the proposed method can 

more effectively enhance the low-light image. Although Fig. 
5(b) is brighter than the original, the bright areas of Fig. 5(b) 
are over-enhanced and the dark areas under-enhanced 
compared to Fig. 5(c), and the colors are not well 
reconstructed. 

Hence, the aforementioned analysis indicates that the 
proposed method achieves adaptable estimation and 
correction, resulting in acquiring improved images. 

 

IV. EXPERIMENTAL RESULTS ANALYSIS 

A. Experimental Platform and Datasets  
To carry out the experiment, we built a corresponding 

experimental platform for test, with the help of MATLAB 
2018b, the computer processor is i5-7200U CPU @ 2.50 GHz, 
with 8G RAM, the operating system is Windows10.  

To access the efficacy of the proposed method, we have 
opted to employ a set of low-light images as our experimental 
datasets. The images are derived from several public datasets, 
including LIME [25], ExDark [26] and MEF [27], and cover 
various themes, ranging from human landscapes to natural 
views and even animals.  

Some low-light images have been randomly selected from 
ExDark as experimental samples and are depicted in Fig. 6. 
The corresponding enhanced outcomes obtained by the 
proposed method can be viewed in Fig. 7. The enhanced 
images exhibit well-exposed features, natural color, boosted 
contrast and visibility of dark areas, and clear and abundant 
details. 

 

B. Subjective Evaluation 
(1) Comparison with traditional enhancement methods 
In this section, we compare experimental results of 5 

traditional enhancement methods and ours. The traditional 
methods are CLAHE [9], HE [6], MSR [18], MSRCR [19], 
HF [11]. Fig. 8, 9 and 10 show results of these methods.   

Fig. 8 shows the results of enhancing image X1. Image X1 
is a low-light image under uneven lighting. As can be seen 
from the flowers, wall and cup that CLAHE and HE enhance 
the noise of the image. The results of HE, MSR and MSRCR 
have an over- amplification of brightness with a consequent 
loss of detail and structure. The results of CLAHE and HF do 
not gain a global increase in brightness. The proposed method 
increases the brightness in a balanced way and reduces the 
effect of uneven illumination in the image. For image X2, the 
CLAHE result has noticeable artefacts and color distortion. 
HE, MSR and MSRCR produce results with sky color 
distortion. HF and the proposed method both produce 
undistorted results, but the HF result is dark. For image X3, 
the result obtained by our method has retained the clear and 
rich structure and detail. 
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Fig. 6.  Some experimental samples of low-light images. 

 

 
Fig. 7.  Corresponding enhancement results by the proposed method. 

 

 
Fig. 8.  Comparison results with traditional enhancement methods. Image X1 is taken from LIME dataset. 

 

 
Fig. 9.  Comparison results with traditional enhancement methods. Image X2 is taken from ExDark dataset. 

 
(2) Comparison with the state-of-the-art enhancement 

methods 
Fig. 11 shows the results of 4 real-life image processed by 

state-of-the-art methods and ours. The state-of-the-art 
methods are AGCWD [10], NPE [20], Robust Retinex [22], 
SIRE [21], ROPE [23], Retinex-Net [14], and Kind++ [15]. 

The image X4 is taken from Exdark dataset, is a nighttime 
image. Image X5, X6 and X7 are taken from MEF dataset. X5 
is a low-light image with backlighting, X6 is a low-light 
image with uneven lighting, X7 is a low-light image with 
backlighting and color distortion. 
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Fig. 10.  Comparison results with traditional enhancement methods. Image X3 is taken from MEF dataset. 

 

 
Fig. 11.  Comparison results with state-of-the-art enhancement methods. Image X4 is taken from ExDark dataset. Image X5, X6 and X7 are taken from MEF 

dataset. 
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Fig. 12.  Comparison results of image pairs with state-of-the-art enhancement methods. Image X8, X9, X10, X11 and synthetics are taken from IEC dataset. 

 
From the results in Fig. 11, the AGCWD seems to give 

minimal improvement of brightness as the images remain 
dark. On the other hand, the NPE brightens the images, but 
contains structural artifacts and noise in shaded areas, as in 
image X4. The Robust Retinex can enhance brightness of the 
images but it blurs the details. For example, from the result of 
image X4 and X6, the recognition of details is reduced. SIRE 
preserves the naturalness of the bright areas, with less 
enhancement in the darker areas, and retains dark edge 
artifacts in image X4 and X6. The images produced by ROPE 
are the brightest. However, they are over-enhanced and noisy. 
For the machine learning based methods, Retinex-Net 
enhances the brightness of images, but the outcomes appear 
to be afflicted with color distortion and halo artifacts in image 
X4 and X7. Similarly, Kind++ produces artifacts in the bright 

areas even though contrast is improved in darker areas. The 
proposed method is capable of emphasizing the intricacies 
and refining darker color without excessive enhancement, 
resulting in a more authentic and clearer presentation. 

To further investigate the effects of these methods of 
enhancement, we also carry out experiments utilizing the 
image pairs from IEC database [28] and Fig. 12 presents the 
corresponding results. The Fig. 12 shows that the brightness 
of the results obtained from AGCWD and SIRE is lower than 
that of the reference images. Additionally, NPE and Robust 
Retinex cause loss of details. The brightness of the ROPE 
results surpasses that of synthetic images. For the machine 
learning results, both Retinex-Net and Kind++ exhibit serious 
distortions and artifacts. The results produced by the 
proposed method bear a closer resemblance to reference 
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TABLE I  
AVERAGE SCORE OF BRISQUE ↓ ON DIFFERENT DATASETS. 

Method AGCWD NPE Robust Retinex SIRE ROPE Retinex-Net Kind++ Ours 
ExDark 22.26 23.11 21.14 23.9 24.17 24.43 25.98 19.57 

MEF 31.78 27.87 30.41 24.61 27.62 22.94 32.36 21.42 
IEC 28.13 23.04 29.8 26.95 22.88 42.67 42.91 30.78 

Average 28.13 24.67 27.12 25.16 24.89 30.01 33.75 23.92 
 

TABLE II  
AVERAGE SCORE OF NIQE ↓ ON DIFFERENT DATASETS. 

Method AGCWD NPE Robust Retinex SIRE ROPE Retinex-Net Kind++ Ours 
ExDark 2.98 3.3 3.81 3.2 3.35 4.11 3.78 3.24 

MEF 3.06 2.53 3.73 2.65 2.81 3.19 2.86 2.32 
IEC 2.19 2.11 2.7 2.28 2.39 4.33 3.94 2.61 

Average 2.75 2.64 3.41 2.71 2.85 3.88 3.53 2.72 
 

TABLE III 
AVERAGE SCORE OF LOE ↓ ON DIFFERENT DATASETS. 

Method AGCWD NPE  Robust Retinex SIRE ROPE Retinex-Net Kind++ Ours 
ExDark 77.28 524.46 414.99 384.15 171.06 879.66 526.05 164.61 

MEF 73.46 383.39 243.66 259.95 178 590.45 241.98 133.86 
IEC 50.06 476.15 192.71 279.84 169.12 776.78 503.66 132.49 

Average 66.94 461.33 283.78 307.98 172.72 748.96 423.9 143.65 
 

TABLE IV 
 RUNNING TIME OF DIFFERENT METHODS ON DIFFERENT SIZE IMAGES (UNIT: SECONDS). 

Method Image sizes 
384×384×3 pixels 600×530×3 pixels 800×530×3 pixels 1280×960×3 pixels 2304×1728×3 pixels 

MSR 0.16 0.32 0.48 1.13 3.96 
MSRCR 0.19 0.34 0.55 1.27 4.59 

NPE 5.35 9.67 15.12 24.68 142.58 
Robust Retinex 8.68 16.49 60.27 78.34 - 

SIRE 8.02 10.08 32.92 52.45 998.79 
ROPE 0.58 0.69 0.87 1.15 4.79 
Ours 0.19 0.32 0.5 0.83 4.56 

 
images than those generated by state-of-the-art methods, with 
a consistent color representation.  

Overall, the proposed method is consistent with the human 
visual system, effectively correcting color distortion whilst 
maintaining naturalness and detail. Most importantly, the 
proposed method notably enhances contrast and visibility in 
darker areas. In terms of visual quality, the proposed method 
outperforms the other methods. 

 

C. Objective Evaluation 
To comprehensively evaluate the performance of different 

methods, we adopt the objective image quality assessment 
(IQA) to measure the performance of each. We collect 
images from ExDark, MEF and IEC datasets to test 
experimentally. The image quality is assessed using the 
BRISQUE (blind/referenceless image spatial quality 
evaluator) [29], NIQE (natural image quality evaluator) [30] 
and the LOE (lightness order error) [20] assessments. 

BRISQUE and NIQE are two commonly used metrics for 
objectively evaluating image quality without reference, 
known as no-reference IQA. They use statistical analysis of 
spatial features in images to obtain an assessment score and 
measure the intensity of distortion or naturalness of the image, 
respectively. The lower score for both metrics indicate higher 
image quality.  

The LOE measures the similarity of brightness difference 
between the source image and reconstructed image, serving 
as a reduced-reference IQA. A lower LOE value indicates 
better preservation of the brightness property. 

Table I-III display the BRISQUE, NIQE and LOE metrics 
scores, respectively. Each score is an average over the 

corresponding dataset. The best values are highlighted in 
bold and secondary values are underlined. 

Table I demonstrates that the proposed method has 
excellent performance in terms of BRISQUE values, and the 
average value is minimal. Notably, the values derived from 
the proposed method are quite smaller than other method in 
ExDark and MEF datasets. And in Table II, the values of the 
proposed method are the lowest in MEF datasets, and they are 
of the medium level on average. Based on Table I and II, the 
proposed method has shown some advantages in enhancing 
naturalness of the image. According to the LOE values 
displayed in Table III, the AGCWD method exhibits the best 
performance owing to its minimal increase in brightness, 
whereas the proposed method demonstrates the second-best 
performance in all the datasets. Table III reveals that the 
proposed method has a high capability retaining image 
properties. Overall, the proposed method is both comparable 
and superior. 

 

D. Running Time 
In this part, we conduce a series of tests on images of 

various sizes to determine the running time of the proposed 
method and several Retinex-based methods on the same 
platform. The time cost of each method is presented in Table 
IV. We repeat the test 10 times for each image and calculate 
the average time cost for image enhancement using different 
methods. As outlined in Table IV, the proposed method 
offers certain advantages over other Retinex-based methods. 

After thorough analysis, it has been concluded that the 
conversion from Lab to RGB color space is a time-intensive  
process. As depicted in Fig. 13, the enhancement of a 
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Fig. 13.  Running time of different step in the proposed method. 

 
2304×1728×3 pixels image requires 4.5308s while inverse 
color space conversion takes 2.5935s. The proposed method 
takes 0.818s, 0.4892s, 0.3048s and 0.1816s to enhance 
images of 1280×960×3, 800×530×3, 600×400×3 and 
384×384×3 pixels, respectively. However, it takes 0.4633s, 
0.272s, 0.1873s and 0.1099s to convert from Lab to RGB 
color space, respectively. Therefore, the improvement of the 
efficiency of Lab to RGB is essential to speed up the 
proposed method. 

 

E. Failure cases 
In further experiment, there is a noise amplification of the 

noisy images. Fig. 14 shows some examples of images with 
ISO noise. The visual effect appears foggy due to the retained 
and amplified noise, despite the increased brightness of the 
banana, dog, and shoe. This is mainly due to the fact that the 
potential ISO noise occupies a relatively large proportion of 
the image, and the noise distribution is irregular and difficult 
to distinguish. It is therefore a difficult problem to enhance 
low-light images with significant noise.  
 

 
(a) Source noisy images 

 
(b) Corresponding enhancement of noisy images 
Fig. 14.  Examples of noisy image enhancement. 

 

V. CONCLUSION 
In this paper, we present a novel method to enhance the 

images with low-light by using doubly adaptive strategy and 
Retinex model. First, the image is converted to Lab color 
space to eliminate the strong correlated relation between 
color information in RGB space. The L-layer map is then 
used as initial estimator of the illumination intensity 
component, and the corrected component is then obtained by 
using adaptive guided filter and GC. To further wipe off the 
detrimental effects from unfavorable lighting conditions, the 

corrected color illumination component is incorporated into 
Retinex model to enhance images. Numerous experiments 
indicate that the proposed method brightens image, corrects 
color deviation, and provides more natural looking 
reconstructed results. The comparative experimental results 
illustrate the advantages and comparison of the proposed 
method. Upon further analysis, it has become apparent that 
the processing of color space conversion consumes 
significant amount of time. Therefore, it is necessary to 
reduce the complexity of the conversion in the future. 
Additionally, the denoising in low-light image enhancement 
is also a challenging problem. 
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