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1Abstract—To address the issue of rapid and precise
classification and recognition of winter jujube fruit in orchards,
we propose an enhanced deep convolutional neural network
and an improved loss function recognition method based on the
YOLOv4 model. The multi-scale feature fusion Cross Stage
Partial Connections (CSP) structure and Convolution Block
Attention Module (CBAM) are used to enhance the model,
minimise the network scale, amplify the feature extraction
capability and improve the false detection in fruit classification
as well as the missing detection of occlusions. The Softmax
cross-entropy loss function replaced the Sigmoid binary
cross-entropy loss function as the classification loss function.
Additionally, the EIoU loss function was introduced to replace
the CIoU loss function as the bounding box regression loss
function. These changes were made to further reduce false
detection in fruit classification and enhance the accuracy of
prediction frames. The experimental results indicated that P
(Precision), mAP (Mean Average Precision) and IoU
(Intersection over Union) values for three classes of winter
jujube fruits were 81.86%, 82.46% and 81.35%, respectively.
The model has 26.9M parameters, a size of 108MB and a
detection speed of 28.8 frames per second. This method boasts
high accuracy and robustness, providing significant reference
value for accurately detecting winter jujube fruit in orchards.

Index Terms—convolutional neural network, fruit detection,
loss function, winter jujube

Ⅰ. INTRODUCTION
INTER Jujube plants are extensively cultivated

across a wide area in China, primarily in regions
such as Hebei, Shandong and Shaanxi. High-quality winter
jujube fruits are highly favoured by consumers, bringing
significant economic benefits to the local area[1]-[2]. The
flavour and quality of winter jujube fruit are closely tied to
its maturity, which is determined by the colour of the
pericarp. The fruit, from the 1/3 red stage to the semi-red
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stage, possesses the best overall quality, with good
appearance, taste, sugar and nutritional content. It can be
identified as the optimal harvesting period [3]. Currently, the
harvesting of winter jujube is primarily done manually.
Harvesting winter jujube fruits during the optimal period is
labour-intensive and inefficient. Hence, studying a detection
method for winter jujube fruits of varying maturity levels in
orchards is of immense practical importance for realising
mechanized picking of these fruits.
The identification of winter jujube falls under the category

of fruit recognition. Numerous solutions have been proposed
based on conventional machine learning methods. Wang et
al. [4] proposed an image segmentation method based on
RGB colour space for recognizing the maturity of Lingwu
Long Jujube. The accuracy rate of maturity level recognition
following segmentation exceeds 90%. Bi et al. [5] proposed
a citrus visual recognition model using a multiple
segmentation method, achieving an average accuracy of
86.6%. Liu et al. [6] used the chosen maturity evaluation
index and spectral index to construct a multiple linear
regression evaluation model, thereby achieving accurate
classification. Zhao et al. [7] developed a spectral
classification model using spectral data to ascertain the
maturity of apples for picking. Among them, the SIQI +
SVR classification model demonstrated optimal
discrimination accuracy, with the prediction set achieving a
high accuracy rate of 85.71%.
None of the aforementioned research results addressed the

detection speed and efficiency. Some of the results used
spectral detection, which is not only challenging to deploy
and implement in the picking device but also susceptible to
the influence of natural light, leading to significant errors
and reduced robustness. It is evident that numerous issues
exist in the fruit recognition classification method based on
traditional machine learning, making it challenging to meet
the demands of real-world scenarios.
In recent years, deep learning methods have increasingly

been used in the field of agricultural fruit recognition.
Research on winter jujube fruit identification primarily
includes the following problems. Lu et al. [8] used an
algorithm that combines YOLOv3 and manual features to
design a winter jujube classification robot. This robot
classifies the fruit based on the red proportion of its surface
into three categories: suitable for long-term storage,
short-term storage and sales. This allows for the efficient
identification and classification of harvested winter jujubes.
However, this method examined the fruits post-harvest in a
laboratory setting and did not conduct recognition tests on
winter jujube fruits in their natural environment.Wang et al.
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[9] identified winter jujube at full green maturity and red
maturity with insufficient sample quantity and unbalanced
categories in a natural environment, using data augmentation
and Faster RCNN. The model’s generalization effect was
validated by comparing it with YOLOv3, but the fruit
classification did not meet the actual harvesting
requirements of winter jujube. Liu et al. [10] incorporated
the SE block into the YOLOv3 model to detect and
recognize winter jujubes in natural scenes. The recognition
performance improved under varying conditions of density,
light and maturity. However, the model did not classify and
identify the winter jujube fruit. The aforementioned studies
on winter jujube fruit identification struggle to fulfil the
requirements for detecting these fruits in a natural
environment.
Numerous studies have been conducted on the

identification of various other types of fruits. Among them,
Zhao et al. [11] enhanced the YOLOv3 network by altering
the backbone network and implementing a combined loss
function of Focal Loss and CIoU Loss. This improved the
model’s identification accuracy, enabling the recognition of
mature and unripe apples in an orchard setting. Zhao et al.
[12] constructed a 13-layer backbone network based on
YOLOv3. They used two anchor boxes of different scales to
detect and identify three classes of apples, mature, unripe
and bagging, in complex environments. They achieved high
accuracy and a significant Intersection over Union (IoU)
mean. Cao et al. [13] developed a lightweight
YOLOv4-LightC-CBAM model derived from the YOLOv4
model by decreasing the network’s width, reducing the
number of backbone network layers, simplifying the neck
network and incorporating the CBAM block. This model
was used for rapid and precise identification of mango fruits
in harvesting scenarios. Wang et al. [14] used the CSP
Darknet53-Tiny network model as the backbone network
based on the YOLOv4-Tiny network. They incorporated the
CBAM block into the FPN structure of the YOLOv4-Tiny
network, enhancing the identification of three classes of
blueberry fruits: ripe, semi-ripe and unripe. Huang et al. [15]
proposed a citrus detection method using the YOLOv5
model, incorporating the CBAM block into the model and
replacing the GIoU loss function with the α-IoU loss
function for bounding box regression. This not only
enhanced the average accuracy but also decreased the model
size and reduced the detection time. SUN et al. [16]
enhanced GoogLeNet by implementing category balance
loss to boost the detection accuracy of Yulu pear, particularly
with the unbalanced quantity of intact, rotten and rust spot
conditions. Zhang et al. [17] developed a detection model
for small target cherries by modifying the backbone based on
the YOLOv5 model. They incorporated a Transformer

module, converted the PAFPN structure into a BiFPN
structure for bidirectional weighted fusion in the neck, and
added a shallow downsampling module in the Head. The
deployment to the Android platform has significantly
enhanced the detection of cherry fruit in field environments.
The aforementioned studies on fruit recognition have

achieved enhanced efficiency and results by refining the
network model, incorporating the attention mechanism and
adjusting the loss function. To address the issues of slow
detection speed and subpar detection results in winter jujube
fruit detection in orchards, this study employs the YOLOv4
model. It integrates the CSP (Cross Stage Partial
Connections) block and the CBAM block, which incorporate
multi-scale features and a loss function. Consequently, the
CC-YOLO method is proposed for the detection of winter
jujube fruits. In conjunction with enhancing the loss function
for optimal results, it offers a method for the swift and
precise classification and identification of winter jujube
fruits.
Ⅱ. DATASET PRODUCTION
The images in this paper were collected from the Jujube

Tree Education Base in Cangxian County, Hebei Province,
using a Canon digital camera and a smartphone. The date
ranges from late August to early October. The winter jujube
fruits are at different stages of growth. Considering the
negative impacts of low light and the restricted picking
range, the image capture is maintained near the picking
target where the light is adequate.
In this experiment, 1000 images were chosen as the

dataset. The image annotation tool LabelImg was used to
classify and annotate the targets of winter jujube fruits.
According to the recommendations of jujube experts and
relevant research [4], winter jujube fruits ready for harvest
are categorised into three classes, each corresponding to a
different maturity level. Stage 1 represents the phase of
awaiting harvest, encompassing green ripe, white ripe and
red fruit (characterised by a small amount of scattered red on
the surface). Stage 2 represents the optimal picking stage,
characterised by continuous red and less than 50% red ratio
on the surface. Stage 3 is the class that has surpassed the
optimal picking period and requires immediate harvesting,
encompassing more than 50% of fully ripe red fruit. The
three classes are denoted as S1, S2 and S3. Considering that
the picture contains both distant and close-up scenes, fruits
that are either fully visible or obscured by less than 30%
were labelled. Small fruits and those unsuitable for picking
due to their distance were discarded. The object boxes were
labelled with utmost accuracy, and XML files were
subsequently generated.

Fig. 1. Quantities of different classes of winter jujube fruit in datasets
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The labelled dataset was randomly partitioned into a
training set, validation set and test set at a ratio of 8:1:1. The
details of the datasets are shown in Fig. 1. The subtotal of
winter jujube fruits in each dataset was 4105, 498 and 476,
respectively. Of the three classes, 2584 were in S1, 1697 in
S2 and 798 in S3.

Ⅲ. PROPOSED METHOD

A. Network
The YOLO series models, which are end-to-end deep

convolutional neural networks, are extensively used for fruit
detection. YOLOv4 [18] is a commonly used model
[19]-[20]. It comprises three parts: Backbone, Neck and
Head. The backbone primarily consists of five residual units
with a CSP structure and one CBM block. The CSP structure
is derived from CSP Net [21]. The fundamental concept
involves dividing the feature map into two sections, with
each section learning the features differently before finally
merging them [19]. This mitigates the issue of gradient
feature reuse, decreases the computational load and enhances
the model’s learning capacity. The number of residual units
in the five CSP blocks varies, specifically 1,2,8,8,4. This
significantly increases the number of model layers and
enhances the feature extraction capability. However, the
deeper the network is , the better the fit will be, it will fall
into local optimum and fail to obtain a better solution. When
the number of layers reaches a specific number, increasing

the number of layers cannot improve the recognition
accuracy of the neural network [13]. Simultaneously,
considering the constraints of computational power, reducing
the number of layers and constructing lightweight neural
networks can often achieve higher detection speed and meet
the requirements of recognition accuracy [12]–[15].
The enhanced model is referred to as CC-YOLO, shown

in Fig. 2(a). It comprises the CBL, CSP and CBAM blocks.
These are located in the backbone. Following the CBL block,
the Backbone of the model is constructed using four CSP
blocks. The structure of CSP block is shown in Fig. 2(b).
The number of residual unit in the CSP block is 1. After the
Concat splicing, a batch normalisation layer and a
LeakyReLU activation layer are added to expedite network
convergence. These are then applied to the neck network,
replacing the CBL block in front of the Head layer and
further enhancing the feature extraction capability in the
neck network.In the enhanced model, the attention
mechanism is incorporated to bolster the extraction of
effective features and optimise recognition performance. The
CBAM [22] block is composed of CAM (Channel Attention
Module) and SAM (Spatial Attention Module), which can
effectively enhance the feature extraction capability without
significantly increasing the number of computations and
parameters. In this paper, CBAM blocks of multi-scale
feature fusion method is used for enhancement shown in Fig.
2(c). On the one hand, the feature weights of space and

Fig. 2. Structure of the improved model
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channel are extracted and weighted with the original
feature. On the other hand, only the features extracted by the
CAM block are weighted with the original feature. Finally,
the original feature is directly fused with the first two
weighted features. Although a small number of feature
dimensions are added, the computational complexity
remains low, and the semantic information of features is
enhanced, thereby improving the feature extraction ability.

B. Loss function
The precision of fruit positioning significantly influences

the success rate of harvesting, which requires a detection
model that not only boasts high accuracy in fruit detection
but also excels in determining the fruit’s width, height and
location accurately. To enhance the accuracy of model
classification detection, the prediction box size and the
precision of the position, it is necessary to further improve
the loss function.
The YOLOv4 loss function comprises three components:

object confidence loss, classification loss and bounding box
loss. The first two losses use the binary cross-entropy loss
function, while the latter employs the CIoU loss function.
The CIoU loss function takes into account the overlapping

area between the ground truth box and the predicted box, the
distance between the centre points of the two boxes and the
aspect ratio for location regression, as depicted in formula
(1).

ℒCIoU= 1-IoU+�
2(�,���)
�2

+ αυ (1)

α = �
1−��� +�
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���������

ℎ��
− �������

ℎ

2

However, when the shape of the winter jujube fruit is
nearly round and the aspect ratio is approximately 1, CIoU
loss degenerates to DIoU loss. This results in an invalid
penalty term, and the prediction box cannot accommodate
the ground truth box.
The EIoU loss function is presented as depicted in

formula (2). EIoU [23] modifies the aspect ratio penalty term
to the difference between the length and width of the ground
truth box and the predicted box. This solution addresses the
issue of penalty term degradation when the length and width
of the winter jujube are similar, thereby enhancing the
accuracy of the predicted box.

ℒEIoU= ℒIoU+ℒdis+ℒasp =1-IoU+ �2(�,���)
�2

+
�2(�,���)

��
2 +
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The YOLOv4 model employs the Sigmoid binary
cross-entropy loss function as a classification loss, as
depicted in formula (3), taking into account both positive
and negative sample losses. When the number of positive
and negative samples is imbalanced, particularly when the
positive samples are few and the negative samples are
numerous, the model tends to focus more on the loss of
negative samples and overlooks the loss of positive samples.
This is not beneficial for enhancing the classification
accuracy of the samples. This method is more suitable for
binary classification problems where classes are not
mutually exclusive.
From Fig. 1 shown above, it is evident that there is a

significant imbalance in the quantity of three classes of
winter jujube fruit. This is primarily due to the fact that

winter jujube is a fresh variety with a non-concentrated
maturity period, resulting in a substantial variation in the
proportion of each class. During training, the network tends
to pay more attention to classes with a large number of
samples while diminishing the importance of classes with
fewer samples. This causes the recognition performance of
the class with a small sample proportion to decline.
Furthermore, the three classes of winter jujube fruits are
mutually exclusive, making it inappropriate to use the
Sigmoid binary cross-entropy loss function.

ℒBCE =− � ∗ ln�� + (1 − �) ln (1 − �� ) (3)
ℒCE =−� ln�� (4)

The Softmax cross-entropy loss function, as depicted in
formula (4), concentrates solely on the loss of positive
samples, disregarding the loss of negative samples. This
approach can directly enhance the classification accuracy of
positive samples. It can enhance classification accuracy by
addressing the issues of mutual exclusivity among multiple
classes and quantity imbalance. Therefore, the classification
loss modifies the Sigmoid binary cross-entropy loss function
to the Softmax cross-entropy loss function to achieve further
improvement.

C. Model parameters and size
The comparison of model network parameters and model

size is shown in Fig. 3. CC-YOLO model has only 26.9 M
parameters, which is 34.5 M less than the YOLOv4 model
and 31.8 M less than the YOLOv3 model. The model is
108 MB, which is only 45.96% and 44.26% of the size of the
YOLOv3 and YOLOv4 models, respectively. The data
indicate that CC-YOLO is smaller, which will reduce both
training and testing time, thereby improving efficiency.

Fig. 3. Parameters and size of the models

Ⅳ. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment operating environment
All experiments in this paper were conducted on the same

server, equipped with an Intel Core i5-10400F CPU at
2.90 GHz, an NVIDIA GeForce RTX 2080SUPER GPU and
16 GB of RAM. The software environment uses a 64-bit
Windows 10 system and the TensorFlow deep learning
framework.

B. Model training and detection
The input image size is 416 × 416 pixels during model

training. The SGD optimiser was used. The batch size is set
at 8, and the training set comprises 800 images; thus, each
epoch involves 100 iterations. During training, a 50-epoch
pre-training was conducted by freezing the backbone
network. The initial learning rate was set to 0.001, and the
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decay rate was set to 0.94. Subsequently, the entire model
was trained post-freezing, with the initial learning rate reset
to 0.0001. To prevent overfitting, a limit of 10 epochs is set
without a decrease in loss value.
The same training and validation sets were used to train

YOLOv3, YOLOv4 and CC-YOLO, respectively. The loss
value of CC-YOLO decreased rapidly before the 80th epoch,
then slowly declined to a minimum value of 1.29 at the
177th epoch. Meanwhile, the YOLOv3 model reached its
minimum value of 3.11 at the 196th epoch, and the YOLOv4
model reached its minimum value of 2.92 at the 190th epoch,
respectively.

C. Evaluation indicators
In this section, the detection results are evaluated based on

the accuracy of the predicted samples and the precision of
the prediction box in a pick-oriented situation. The model’s
primary evaluation metrics are P (Precision), mAP (Mean
Average Precision) and IoU (Intersection over Union). P
represents the ratio of true positive samples to all predicted
samples, serving as a measure of the accuracy of the
predicted samples. mAP, on the other hand, is the mean
average prediction across all classes used to gauge the
prediction accuracy of all classes. IoU is the overlap ratio
between the predicted bounding box and the ground truth
box, which is used to gauge the accuracy of the predicted
location and dimensions. The computation of each index is
depicted in formulas (5)–(7) below.

� =
��

�� + �� (5)

��� =
1
C
k=1

C

���� (6)

��� =
area(�� ∩ ���)
area �� ∪ ���

(7)

In (5), TP represents the number of true positive samples,
i.e. the number of fruits correctly detected. FP refers to the
number of false positive samples, namely, the number of
fruits incorrectly detected. The total number of predicted
fruits is the sum of the two numbers. In formula (6), C is the
number of the classes, and APk is the k-class average
precision. In formula (7), Bp and Bgt, respectively, represent
the prediction box and the ground truth box.
Fruit recognition oriented towards picking requires high

accuracy in prediction box calculations. Thus, the IoU
threshold is raised to 0.75 in model detection, and
comparative experiments are conducted on model accuracy.

D. Detection speed
The detection speed of the model is determined by the

time taken from the input of the image into the network to
the output of the detection result. In this paper, we compare
the detection and recognition speeds of YOLOv3, YOLOv4
and CC-YOLO using the same test set and images with a
resolution of 1024*1024 pixels. The unit of detection speed
is measured in FPS (Frames Per Second). This means the
number of images detected per second. The results are
shown in Fig. 4. The 100 images in the test set vary in size,
with most being high-resolution. The smallest image
measures 800 × 600 pixels, while the largest is
3120 × 2496 pixels. Each model detects and identifies the
test set in batches. CC-YOLO detects at a speed of 20.6 FPS,

while YOLOv4 operates at 14.3 FPS and YOLOv3 at
15.7 FPS. CC-YOLO runs at a speed 6.3 FPS faster than
YOLOv4 and 4.9 FPS faster than YOLOv3.

Fig. 4. Comparison of detection speeds among the models

When using high-resolution images of the same size as
input for batch detection, the model’s detection speed can
reach 28.8 FPS. This is 7.6 FPS and 9.3 FPS faster than
YOLOv3 and YOLOv4, respectively. The advantage of
detection speed is evident, and it can satisfy the real-time
requirements at a higher resolution.

E. Overall results of detection
The models identify the fruits in the test set, with the

evaluation metrics displayed in Fig. 5-7.
1) Detection precision
P1, P2 and P3 represent the precision values of S1, S2 and

S3, respectively. Similarly, AP1, AP2 and AP3 denote the
average precision values of S1, S2 and S3, respectively. In
Fig. 5, P1, P2 and P3 of CC-YOLO without the improved
loss function are 81.23%, 82.55% and 80.24%, respectively.
These values are 4.12%–6.34% and 4.33% – 5.25% higher
than those of the YOLOv3 and YOLOv4 models. The
average of P was 81.34%, which was 5.13% and 4.82%
higher than YOLOv3 and YOLOv4, respectively. P2 showed
the greatest increase, registering 6.34% higher than YOLOv3
and 5.52% higher than YOLOv4. The model’s overall
recognition accuracy has also shown significant
improvement. The model can accurately detect and
distinguish the maturity of jujube fruit. After introducing the
improved loss function, P1, P2 and P3 of YOLOv4 have
respectively increased by 0.20% to 0.92% compared to the
original. The P values of CC-YOLO increased by 0.34% to
0.81% compared to the original.
In the case of imbalanced data for fruit classification,

there is a noticeable difference in the P-values of YOLOv3
and YOLOv4 models for the three classes of fruits. The
standard deviations were 0.73 and 0.63, respectively. This
indicates substantial differences in the feature extraction
capabilities of the models for different fruit classes. After
enhancing the loss function, the P value of YOLOv4
minimised the disparity in recognition accuracy among
categories, reducing the standard deviation to 0.44. The P
value of CC-YOLOv4 decreased from 0.95 to 0.81 following
the improvement of the loss function, thereby reducing the
disparity in recognition accuracy among categories. The
findings indicate that the enhanced loss function aids in
improving the recognition of challenging-to-classify jujube
fruit. This helps to minimise the disparity in classification
recognition accuracy caused by data imbalance between
classes, thereby increasing the overall recognition accuracy.
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Fig. 5. The P values of detection of the models

Fig. 6. The AP values of detection of the models

In Fig. 6, mAP of CC-YOLO, without the improved loss
function, is 82.01%, which is 4.20% and 3.72% higher than
that of YOLOv3 and YOLOv4, respectively. The AP1, AP2,
AP3 of CC-YOLO are 3.38%–5.25% and 3.19%–4.38%
higher than those of YOLOv3 and YOLOv4, respectively.
AP2 shows the highest increase, at 5.25% and 4.38% more
than YOLOv3 and YOLOv4, respectively.
After the introduction of the enhanced loss function, mAP

of YOLOv4 increased by 0.74% in comparison to the
original model. The enhanced loss function was
implemented in CC-YOLO, resulting in an increase of
0.45%. The enhanced loss function demonstrates an
improvement in the accuracy of various classes.

The AP values for YOLOv3, YOLOv4 and CC-YOLO
were significantly different in the case of unbalanced data
for the three classes of fruits. Their standard deviations were
1.02, 1.05 and 1.29, respectively. After implementing the
enhanced loss function, the variance in AP values in
YOLOv4 reduced, with the standard deviation decreasing to
0.58. The difference in AP values in the model discussed in
this paper also decreased, with the standard deviation
reducing to 1.04. The enhanced loss function, as
demonstrated, is used to diminish the discrepancy in
detection accuracy among categories due to data imbalance,
resulting in superior classification detection accuracy.

The aforementioned analysis indicates that the enhanced
model has significantly increased the accuracy of fruit
recognition across various categories compared to the
YOLOv3 and YOLOv4 models. Simultaneously, the
disparity in detection accuracy across various categories is
minimised, mitigating the issue of detection effect
discrepancies caused by imbalanced sample data. The

enhanced model presented in this paper provides a more
accurate recognition of winter jujube fruits across various
maturity stages.
2) The accuracy of the predicted boxes
The IoU values for the three classes, along with the

average IoU, are displayed in Fig. 7 for the test set.
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Fig. 7. The IoU values of detection of the models

Pic1

(a) (b) (c)

Pic2

(d) (e) (f)

Pic3

(g) (h) (i)
Fig. 8. Detection effects of the models

Given that the IoU threshold set during model testing is
75%, the IoU values of YOLOv3, YOLOv4 and CC-YOLO
are all significantly high. However, the average IoU of
CC-YOLO is higher, reaching 80.71%, which is 0.93% and
0.55% higher than YOLOv3 and YOLOv4 respectively. IoU
of the three classes of CC-YOLO improved by
0.53%–1.17% and 0.32%–0.69% compared to YOLOv3 and
YOLOv4, respectively. The results indicate that the
precision of the predicted boxes’ location and size is
superior.
After the introduction of the enhanced loss function, the

IoU values of the YOLOv4 model improved by
approximately 0.48% to 1.32% compared to the original
model, with an average increase of 0.77%. The IoU values
of CC-YOLO, with the improved loss function, also

increase by 0.49%–0.91% compared to the original model,
and the average IoU increases by 0.64%. As demonstrated
above, the enhanced loss function increases the accuracy of
the prediction boxes, thereby improving the precision of
target location selection.
3) Detection effect
Three images from the test set, Pic1, Pic2 and Pic3, are

selected to compare the detection effects in Fig.8.
The red, green and blue boxes represent the model’s

prediction boxes for S1, S2 and S3. The yellow box
represents an FN sample, specifically, a target fruit that
should have been detected but was missed. The magenta box
represents the FP sample, that is, the fruit target detected
error class.
In the figure, (a), (d) and (g) illustrate the detection
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effects of YOLOv3. (b), (e) and (h) represent YOLOv4,
while (c), (f) and (i) represent CC-YOLO. As per Fig. 8, the
model presented in this paper demonstrates superior
detection accuracy for winter jujube fruit with minimal
occlusion in the three images. Conversely, both YOLOv3
and YOLOv4 falsely detected the same position in Image 1,
and YOLOv3 missed a detection in Pic2. YOLOv4
demonstrated one false detection and one missed detection
in Pic2 and two missed detections in Pic3 in the two models.
The likely reason is that the models misclassified a small
number of red fruits due to minor occlusion caused by
overlapping branches, leaves and fruits, resulting in missed
detection. In conclusion, the YOLOv3 and YOLOv4 models
exhibit numerous instances of missed and false detections.
The proposed model, however, can more effectively
circumvent these issues, thereby yielding superior detection
results.

F. Detection under different fruit density
Due to the uneven growth distribution of winter jujube

fruits, 20 images of different fruit density with clear
shooting effect and less background interference were
selected separately to form two test sets of of sparse and

dense fruits for testing. The evaluation indicators obtained
are shown in Fig. 9, and the detection results are shown in
Fig. 10.
Compared with the evaluation indicators in the figure, the

detection results of the model presented in this paper were
significantly higher than YOLOv3 and YOLOv4 in terms of
spare and dense fruits. P, mAP, and AP values in the optimal
picking stage of S2 were significantly improved by 5.63%
and 5.58% than those of YOLOv3 respectively, 2.94% and
3.24% than YOLOv4 respectively. The average IoU of this
model on the two fruit quantity situation were 84.25% and
80.47% respectively, which were 4.03% and 2.60% higher
than YOLOv3, and 3.91% and 2.05% higher than YOLOv4.
After introducing the improved loss function, both

YOLOv4 and CC-YOLO have shown improved detection
performance. Specifically, for the model in this paper with
the improved loss function, the average of P for sparse and
dense situations increased by 1.04% and 0.92% respectively
compared to before the improvement. The mAP values also
increased by 0.89% and 0.96%, while the average of IoU
values increased by 1.08% and 1.58%. The YOLOv4 model
also exhibited a slight improvement in detection
performance after the introduction of the improved loss

(a) Detection on spare fruits

(b) Detection on dense fruits

Fig. 9. Evaluation indicators of test sets with different densities
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(a) (b) (c)

(d) (e) (f)
Fig.10. Detection effects in sparse and dense fruits with the models

function, indicating that the improved loss function can
lead to more accurate localization of predicted bounding
boxes and higher classification accuracy, thereby enhancing
the accuracy of target positioning for harvesting..
It can be observed that there is a significant difference in

detection accuracy for the three classes of imbalanced fruits
between YOLOv3 and YOLOv4, with the standard
deviations of 1.71 and 2.21 for the AP values of the three
classes, respectively. After using the improved model and
loss function proposed, the AP values for the three classes of
different fruit density has significantly reduced the
differences, with the standard deviations reducing to 0.14
and 0.71, indicating the lowest values for the standard
deviation. This suggests that the method in this paper has
reduced the prominent differences in classification accuracy
caused by data imbalances, thus validating the effectiveness
of this model under different fruit quantity scenarios.
In Fig.10, (a), (d), (b) and (e) are the detection effects of

YOLOv3 and YOLOv4 of sparse and dense fruits under the
same images, while (c) and (f) are those of CC-YOLOv4. In
(a) and (b), the S1 class of fruit is mistakenly detected as the
S2 class. This may be due to the fact that the fruit in the
picture is slightly red caused by sun exposure, rather than
the deep red color that represents maturity. In (d) and (e), the
fruit of S2 class was mistakenly detected as S1 class at the
same position. This may be due to the influence of light,
shadow and the slight occlusion of branches and leaves,
affecting the detection of the red parts of winter jujube fruits.
In addition, most of the occluded fruit caused by
overlapping fruit was misdetected in (e). The proposed
method in this paper avoided the above situation.
It can be seen that the proposed method has a higher

detection accuracy for the classification of fruit maturity in
different density. The method is more accurate in the
detection of more complete, easy-to-pick fruits. Therefore,
the method proposed in this paper is relatively robust and
meets the recognition requirements in orchards.

V. CONCLUSION
In this paper, a detection method was proposed for

detecting winter jujube fruits in orchards. The experimental
results indicate that the P, mAP and IoU values for the three
classes of winter jujube fruits were 81.86%, 82.46% and
81.35%, respectively. There is a significant reduction in the
overall number of model parameters, with the count

standing at only 26.9M. The model size is 108MB, a
comparison that highlights its compactness relative to the
YOLOv3 and YOLOv4 models. In batch detection, images
with higher resolution can achieve 28.8 FPS, satisfying the
real-time identification needs for the automatic selection of
winter jujubes.
In practical applications, the impact of light on the

recognition effect should also be considered. It is necessary
to conduct further experiments under various weather
conditions in the actual light environment to enhance the
classification and recognition accuracy while ensuring
real-time performance.
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