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Abstract—The ignition problem for the Chaplygin system is
considered. Under the entropy conditions, we obtain construc-
tively the unique solution and discover that the combustion
wave solutions may be extinguished for some cases. Especially,
we obtain that the combustion wave occurs although there is
no combustion before. The transition between deflagration and
detonation is also shown.

Index Terms—Ignition problem, Riemann problem, Entropy
conditions, Detonation wave, Deflagration wave.

I. I NTRODUCTION

I N this paper we consider


























ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = 0,
(ρE)t + (ρuE + pu)x = 0,

q(x, t) =

{

0 if sup
0≤y≤t

T (x, y) > Ti;

q(x, 0) otherwise,

(1)

where ρ, u, p < 0, T and Ti are the density, velocity,
pressure, temperature and ignition temperature, respectively.
The total energyE = u2

2 + e + q. The state equation is
p = − 1

ρ
and the internal energye = − p

2ρ . The combustion
process is exothermic [1]. For the results about Chaplygin
gas, see [2], [3], [4], [5], [6], [7].

In [1], they began to study the CJ model. The authors [8]
got constructively the unique Riemann solution. In [9], Liu
and Sheng constructed the generalized Riemann solutions for



























ut + px = 0,
τt − ux = 0,
Et + (up)x = 0,

q(x, t) =

{

0, if sup
0≤y≤t

T (x, y) > Ti;

q(x, 0), otherwise,

(2)

whereτ = 1
ρ
, p > 0 andE = u2

2 + pτ
γ−1 + q.

For the simplified scalar cases, the authors [10] studied
{

(u+ qz)t + f(u)x = 0,
zt = −kϕ(u)z. (3)

Liu and Zhang [11] studied










(u+ qz)t + f(u)x = 0,

z(x, t) =

{

0 if sup
0≤y≤t

u(x, y) > Ti;

z(x, 0) otherwise.

(4)

Many works [12], [13], [14], [15] have been done for the
hyperbolic conservation law system.
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Based on the above results, they [16] studied the SZND
model















ut + px = 0,
τt − ux = 0,
Et + (up)x = 0,
q(x, t) = −k

t
ϕ(T )q,

(5)

and proved that the selfsimilar solutions of (2) are the limits
of (5) ask →∞.

Hsu and Lin [17] studied (2) and (5) further and obtained
when the selfsimilar solutions of (2) are the limits of (5)
whenk →∞.

In [18], the authors studied the ignition problem for the
scalar nonconvex CJ model. Under the pointwise and global
entropy conditions [19], they got the transitions between
deflagration and detonation.

In [20], we obtain the unique Riemann solution of (1) with

(τ, u, p, q) =

{

(τ−, u−, p−, q−), whenx < 0,
(τ+, u+, p+, q+), whenx > 0.

(6)

Now we investigate the ignition problem for (1) with

(u, p, τ, q)(x, 0) =







(u−, p−, τ−, q−), −∞ < x < −ε,
(û, p̂, τ̂ , 0), −ε < x < ε,

(u+, p+, τ+, q+), ε < x < +∞,

(7)

where (u−, p−, τ−) = (u+, p+, τ+) := (u0, p0, τ0), q− =
q+ := q0 > 0 and ε > 0 is small enough. We construct the
unique solution of (1) and (7) in the(x, t) plane.

This paper is organized as follows. II give some prelimi-
naries. In Section III, we construct the all possible solutions
of the ignition problem of (1) with (7). IV is the main
conclusion.

II. PRELIMINARIES

In this section we give some preliminaries [20], [21], [22],
[23]. Since

λ1,3 = u±
√

−p
ρ
, λ2 = u, (8)

~ν1,3 = (1,±1

ρ

√

−p
ρ

,
−p
ρ

)⊤, ~ν2 = (1, 0, 0)⊤,

and∇λi · ~νi ≡ 0, i = 1, 2, 3, (1) is linearly degenerate.−→
R (l)(or

←−
R (l)) (Fig. 1.(i) and Fig. 1.(ii)) are

{

pρ = plρl,

u = ul ± p−pl√
−plρl

, (p > pl, or p < pl),
(9)

and
−→
S (l)(or

←−
S (l)) are

{

pρ = plρl,
u−ul

p−pl
= ±

√

− 1
plρl

, (pl > p, or pl < p).
(10)

J is
{

[u] = [p] = 0,
ρl 6= ρr.

(11)
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Suppose

ρ = ρ0 + ω(t)δ(x − x(t)), ρ0 =

{

ρl, x < x(t),
ρr, x > x(t),

(12)

u(x, t) =







ul, x < x(t),
uδ, x = x(t),
ur, x > x(t),

(13)

p(x, t) =







pl, x < x(t),
0, x = x(t),
pr, x > x(t).

(14)

-

6

−→
S (l)

(l)

−→
R(l)←−

S (l)

←−
R (l)

u

p

Fig. 1.(i) The backward wave curves in(u, p).

-
6

−→
R(r)

(+)

−→
S (r)

u

p

←−
R (r)

←−
S (r)

Fig. 1.(ii) The forward wave curves in(u, p).

Whenρr 6= ρl,

ω(t) =
√

ρlρr(ur − ul)2 − (ρr − ρl)(pr − pl) t,

uδ =
ρrur − ρlul +

dω(t)
dt

ρr − ρl
.

-
6

u

p

Fig. 2. The combustion wave curve in(u, p).

(ur ,pr)

(ur,pr−2ρrq0)

−−→
DT

−−→
DF

Whenρr = ρl,

ω(t) = (ρlul − ρrur)t,

uδ =
1

2
(ur + ul).

Sδ satisfies

ur +
√

− pr

ρr
<

dx(t)
dt < ul −

√

− pl

ρl
. (15)

-

6

−→
R (r)

(r)

−→
S (r)

u

p

−−→
DF

−−→
DT

(l)

Fig. 3. The wave curves in Case 2.1.

←−
S (l)

←−
R (l)

From the R-H condition






ζ[u] = [p],
ζ[τ ] = −[u],
ζ[E] = [up],

we get
−τrp+ prτ = 2q0 > 0.

In (u, p) (Fig. 2.) we find

−→
D(r) :

u− ur

p− pr
=

√

−2q0 + τr(p− pr)

pr(p− pr)
, (16)

pr < p < 0 or p < pr − 2q0
τr

.

-

t

x

Tl

T2 >Ti

−−→
DF or

−−→
DT

←−
S or

←−
R

Fig. 4. combustion wave solution.

<Ti

6 J

-

t

x

Tl

←−
S or

←−
R −→

S or
−→
R

<Ti

<Ti

Fig. 5. non-combustion wave solution.

T1

6
J

If qr = 0, ql = 0, it has been resolved in [23].
Case 2.1.Whenql = 0, qr = q0 > 0.←−
W (l) =

←−
WS(l)∪Sδ(l),

−→
W (r) =

−→
WS(r)∪Sδ(r)∪

−−→
DF (r)∪−−→

DT (r) (Fig. 3.).
Subcase 2.1.1ul − ur <

√

− pl

ρl

+
√

− pr

ρr
.

The global entropy conditions (GEC) [20]:
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(i) η is as small as possible, hereη is the oscillation
frequency from{η ∈ R1 : T (η) ≤ Ti} to {η ∈ R1 : T (η) >
Ti};

(ii) the combustion wave is as many as possible.
The temperature is respectivelyT1, T2 at the point⋆1, ⋆2.

(Fig. 3.).
(1) WhenTl > Ti, T2 > Ti, we get

−→
S or
←−
R+J+

−−→
DFor

−−→
DT

(Fig. 4.).
(2) WhenTl > Ti, T2 ≤ Ti(⇒ T1 ≤ Ti), we get

−→
S or
←−
R+

J +
−→
S or
−→
R (Fig. 5.).

(3) WhenTl ≤ Ti, T1 ≤ Ti, we get
−→
S or
←−
R + J +

−→
S or
−→
R

(Fig. 5.).
(4) WhenTl ≤ Ti, T1 > Ti(⇒ T2 > Ti), we get

−→
S or
←−
R+

J +
−−→
DFor

−−→
DT (Fig. 4.).

Subcase 2.1.2ul − ur ≥
√

− pl

ρl

+
√

− pr

ρr
. It is shown that

we can get theSδ solution [20], [21], [23].
Case 2.2.Whenql > 0, qr > 0.

We know that
←−
W (l) =

←−
WS(l) ∪ Sδ(l) ∪

←−−
DT (l) ∪←−−DF (l),

and
−→
W (r) =

−→
WS(r) ∪ Sδ(r) ∪

−−→
DT (r) ∪ −−→DF (r) (Fig. 6.).

-

6

−→
R (r)

(r)

−→
S (r)

u

p

−−→
DF

−−→
DT

(l)

Fig. 6. The wave curves in Case 2.2.

←−
S (l)

←−
R(l)

←−−
DT

←−−
DF

A

B

C
D

Subcase 2.2.1Whenul − ur <
√

− pl

ρl
+
√

− pr

ρr
.

Since η = 0 for the pointA, η = 2 for the pointsB, C
andD, we get

−→
S or
←−
R + J +

−→
S or
−→
R

Subcase 2.2.2Whenul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
. It is the

Sδ solution similarly.
Theorem 2.1 We get uniquely the Riemann solution of

(1) and (6) under GEC.

III. I GNITION PROBLEM FOR THE SYSTEM(1) WITH (7)

In what follows, we study the ignition problem (1) and (7)
according to the different cases.

-

6

x

t

(−ε, 0) (ε, 0)

←−−
DT J1 −→

S1

←−
S2

J2 −−→
DT

Fig. 7. The solution for Case 3.1.1.

(0) (∧) (0)

J3

←−
S3

−→
S4

←−
S5

−→
S6

J4

(1)
(2)

(3)

(4)

Case 3.1.Solution at(−ε, 0) is
←−−
DT + J +

−→
S , and at(ε, 0)

is
←−
S + J +

−−→
DT .

Case 3.1.1Whenp1+p2− p̂ < 0, we know that
−→
S1 interacts

with
←−
S2 at the point(x1, t1) and

−→
S1
←−
S2 →

←−
S3J3

−→
S4 (Fig. 7.).

Since
←−
S3 : dx

dt
= u1−

√

− p1

ρ1

andσJ1
: dx

dt
= u1, it follows

that
←−
S3 can not overtakeJ1 which tells the combustion wave←−−

DT can persist after the perturbation.

Since
−→
S4 can overtakeJ2 at the point(x2, t2), if p∗ < 0,

i.e., 2
√
ρ4p3 + (

√
ρ2 −

√
ρ4)p2 < 0, we know that

−→
S4J2 →←−

S5J4
−→
S6. Notice that the new shock wave

←−
S5 can not overtake

J3 in the finite time. Since the new shock wave
−→
S6 can

overtake the detonation wave
−−→
DT at the point(x3, t3) (Fig.

8.).

In the (u, p) (Fig. 9.), there are at most two intersection
points, and we continue to discuss as follows according to
GEC.

(1) As T− > Ti, T2 > Ti, we get
←−
S J
−−→
DT .

(2) As T− > Ti, T2 ≤ Ti(⇒ T1 ≤ Ti), we get
←−
S J
−→
S .

(3) As T− ≤ Ti, T1 ≤ Ti, we get
←−
S J
−→
S .

(4) As T− ≤ Ti, T1 > Ti(⇒ T2 > Ti), we get
←−
S J
−−→
DT .

-

6
t

x

(l) (m) (r)

−→
S

−−→
DT

Fig. 8. The interaction of
−→
S and

−−→
DT .

-

6

u

p

p(r)

(l)

Fig. 9. The wave curves in(u, p).

−−→
DT

−→
S

(m)

∗2

∗1

After the above interaction process, we get that
−→
S6
−−→
DT →←−

S J
−−→
DT or

←−
S J
−→
S (Fig. 7.). Notice that the new shock

wave can not overtakeJ4 in the finite time. The above
discussions imply that

−−→
DT can persist or be extinguished

by such perturbation.

If p∗ ≥ 0, i.e., 2
√
ρ4p3 + (

√
ρ2 −

√
ρ4)p2 ≥ 0, we know

that
−→
S4J2 →

−→
S δ1 . For this case, we get that

−→
S δ1

−−→
DT → −→S δ2

or
←−−
DTJ

−−→
DT . Notice that the new detonation wave can not

overtakeJ3 in the finite time. The above analysis shows that−−→
DT may be extinguished or persist after the perturbation.

Case 3.1.2Whenp1 + p2 − p̂ ≥ 0, we obtain that
−→
S1
←−
S2 →−→

S δ1 (Fig. 10.).
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-

6

x

t

(−ε, 0) (ε, 0)

←−−
DT J1 −→

S1

←−
S2

J2 −−→
DT

Fig. 10. The solution for Case 3.1.2.

(0) (∧) (0)

−→
S δ1

−→
S δ2

For this case, we know that whenρ1 6= ρ2,

ω(t) =
√

ρ1ρ2(u2 − u1)2 − (ρ2 − ρ1)(p2 − p1) (t− t1)

uδ =
ρ2u2 − ρ1u1 +

dω(t)
dt

ρ2 − ρ1
,

whenρ1 = ρ2,

ω(t) = (ρ1u1 − ρ2u2)(t− t1)

uδ =
1

2
(u1 + u2).

Consider that for
−→
S δ1 , it holds

ur +
√

− pr

ρr
<

dx(t)
dt < ul −

√

− pl

ρl

, (17)

and forJ2 it holds dx
dt

= ul,
−→
S δ1 will overtakeJ2 in the finite

time. It follows that there are two possibilities. Ifp∗ < 0, we
know

−→
S δ1J2 →

←−
S or
←−
R +
−→
S or
−→
R , and notice that the result

may not contain the contact discontinuity. The discussions
that follows are similar with Case 3.1.1 which yield that−−→
DT may be extinguished or persist after the perturbation.

If p∗ ≥ 0, we have
−→
S δ1J2 →

−→
S δ2 and

−→
S δ2

−−→
DT → −→S δ2

or
←−−
DT + J +

−−→
DT , and observe that

−−→
DT may persist or be

extinguished by such small perturbation.

-

6

x

t

(−ε, 0) (ε, 0)

←−−
DT J1 −→

R1

←−
R2

J2 −−→
DT

Fig. 11. The solution for Case 3.2.

(0) (∧) (0)

←−
R3

−→
R4

←−
R5or

←−
S

−→
R6

J3

(1)
(2)

(3)

(4)

Theorem 3.1 For this case, we find that after the small
perturbation, the backward detonation wave

←−−
DT must be able

to keep after the perturbation, while the forward detonation
wave

−−→
DT may be extinguished.

Case 3.2.Solution at(−ε, 0) is
←−−
DT + J +

−→
R , and at(ε, 0)

is
←−
R + J +

−−→
DT .−→

R1 will intersect with
←−
R2 at the point(x1, t1) and a new

Riemann problem is formed. Due top1 < p̂ andp2 < p̂, we
know that

−→
R1
←−
R2 →

←−
R3
−→
R4 (Fig. 11.).

Since for
←−
R3 we have dx

dt
= û −

√

− p̂
ρ̂
, and for J1 we

know dx
dt

= û, the rarefaction wave
←−
R3 can not overtakeJ1

in the finite time. Due todx
dt

= u2 +
√

− p2

ρ2

for
−→
R4, and

dx
dt

= u2 for J2, it follows that
−→
R4 can overtakeJ2 at the

finite time (x2, t2), and
−→
R4J2 →

←−
R5or

←−
S + J3 +

−→
R6.

After the interaction of
←−
S or
←−
R5 and

←−
R3, we get a new back-

ward rarefaction wave, but this new backward rarefaction
wave can not overtakeJ1 in the finite time, thus

←−−
DT can

persist after the perturbation. On the other hand, since
−→
R6

can overtake
−−→
DT at the finite time(x3, t3) and after the

interaction we get that the result is
←−
R + J +

−→
S , i.e.,

−−→
DT

can be extinguished after the perturbation.
Theorem 3.2In this case, we conclude that after the small

perturbation, the backward detonation wave
←−−
DT can persist,

while the forward detonation wave
−−→
DT may be extinguished.

Case 3.3.Solution at(−ε, 0) is
←−−
DF + J +

−→
S , and at(ε, 0)

is
←−
S + J +

−−→
DF .

Case 3.3.1If p1+p2−p̂ < 0, it follows that
−→
S1
←−
S2 →

←−
S3J3

−→
S4

(Fig. 12.).

-

6

x

t

(−ε, 0) (ε, 0)

←−−
DF J1 −→

S1

←−
S2

J2 −−→
DF

Fig. 12. The solution for Case 3.3.1.

(0) (∧) (0)

J3

←−
S3

−→
S4

←−
S5

−→
S6

J4

(1)
(2)

(3)

(4)

Because
−→
S4 can overtakeJ2 at the point(x2, t2), we know

that there are two possibilities. If2
√
ρ4p3+(

√
ρ2−
√
ρ4)p2 <

0, we obtain
−→
S4J2 →

←−
S5J4

−→
S6.

-

6
t

x

(l) (m) (r)

J3

←−−
DT

Fig. 13. The interaction of
←−−
DT andJ3.

Notice that the new shock wave
←−
S5 can not overtakeJ3 in

the finite time. While the new shock wave
−→
S6 can overtake−−→

DF at (x3, t3). After the wave interaction process, we get
that
−→
S6
−−→
DF →←−S or

←−
R+J+

−→
S . Notice that the new backward

shock wave or backward rarefaction wave can not overtake
J4 in the finite time. The above discussions imply that

←−−
DF

can persist and
−−→
DF may be extinguished by the perturbation.

If 2
√
ρ4p3 + (

√
ρ2 −

√
ρ4)p2 ≥ 0, we know that

−→
S4J2 →−→

S δ1 . It follows that
−→
S δ1

−−→
DF → −→S δ2 or

←−−
DTJ

−−→
DT , and the
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forward deflagration wave
−−→
DF may be extinguished or be

transformed to the forward detonation wave
−−→
DT . Notice that←−−

DT can overtakeJ3 in the finite time (Fig. 13.).
In (u, p) (Fig. 14.), there are at most two intersection

points. From GEC, it yields thatJ3+
←−−
DT →←−S +J +

−→
S or←−

S + J +
−−→
DT . The newly generated backward shock wave

intersects with
←−
S3 and it follows that a new backward shock

wave appears. The new backward shock can not overtakeJ1,
thus

←−−
DF can persist after the small perturbation.

-

6

u

p

(l)=(m)

p

(r) ←−
S (l)

←−
R (l)

←−−
DT (l)

←−−
DF (l)

−→
R (r)

−→
S (r)

Fig. 14. Waves curves in the(u, p).

Case 3.3.2Whenp1 + p2 − p̂ ≥ 0, we obtain
−→
S1
←−
S2 →

−→
S δ1

(Fig. 15.).
Whenρ1 6= ρ2,

ω(t) =
√

ρ1ρ2(u2 − u1)2 − (ρ2 − ρ1)(p2 − p1) (t− t1)

uδ =
ρ2u2 − ρ1u1 +

dω(t)
dt

ρ2 − ρ1
,

whenρ1 = ρ2,

ω(t) = (ρ1u1 − ρ2u2)(t− t1)

uδ =
1

2
(u1 + u2).

-

6

x

t

(−ε, 0) (ε, 0)

←−−
DF J1 −→

S1

←−
S2

J2 −−→
DF

Fig. 15. The solution for Case 3.3.2.

(0) (∧) (0)

−→
S δ1

−→
S δ2

Since for
−→
S δ1 , it holds thatur +

√

− pr

ρr
<

dx(t)
dt < ul −

√

− pl

ρl

, and forJ2 it holds thatdx
dt

= ul,
−→
S δ1 will overtake

J2 at the finite time(x3, t3), It follows that there are two
possibilities. Ifp∗ < 0, we know

−→
S δ1J2 →

←−
S or
←−
R+
−→
S or
−→
R ,

and the contact discontinuity may not appear. The next
analysis are similar with Case 3.3.1 and it follows that

−−→
DF

may be extinguished after the perturbation and
←−−
DF can

preserve.

If p∗ ≥ 0, we have
−→
S δ1J2 →

−→
S δ2 and

−→
S δ2

−−→
DF → −→S δ2 or←−−

DT +J+
−−→
DT , and observe that

−−→
DF may be extinguished or

be transformed to
−−→
DT . Similar discussions with Case 3.3.1,

the new
←−−
DT intersects withJ1 and after the intersection

process, we find that
←−−
DT + J1 →

←−
S + J +

−→
S or

←−
S + J +−−→

DT . Since the new
←−
S can overtake

←−−
DF and it follows that←−−

DF +
←−
S →←−S + J +

←−
S or
−→
R which indicates that

←−−
DF may

be extinguished.
Theorem 3.3 For this case, we conclude that

←−−
DF can

persist or may be extinguished after the perturbation, while−−→
DF may be extinguished or be transformed to

−−→
DT .

Case 3.4.The Riemann problem at(−ε, 0) is
←−−
DF +J +

−→
R ,

and the Riemann problem at(ε, 0) is
←−
R + J +

−−→
DF .

-

6

x

t

(−ε, 0) (ε, 0)

←−−
DF J1 −→

R1

←−
R2

J2 −−→
DF

Fig. 16. The solution for Case 3.4.

(0) (∧) (0)

←−
R3

−→
R4

←−
R5or

←−
S

−→
R6

J3

(1)
(2)

(3)

(4)

Similar discuss with Case 3.2, we know that
−→
R1
←−
R2 →←−

R3
−→
R4 (Fig. 16.).

←−
R3 can not overtakeJ1 in the finite time.

Due to dx
dt

= u2+
√

− p2

ρ2

for
−→
R4, anddx

dt
= u2 for J2, we find

that
−→
R4 can overtakeJ2 at (x2, t2) and

−→
R4J2 →

←−
S or
←−
R5 +

J3 +
−→
R6. Similar with Case 3.2, after the perturbation

←−−
DF

can persist.

-

6

x

t

(−ε, 0) (ε, 0)

←−
S1

J1 −→
S2

←−
S3

J2 −→
S4

Fig. 17. The solution for Case 3.5.1.

(0) (∧) (0)

J3

←−
S5

−→
S6

←−
S7

−→
S8

J4

(1)
(2)

(3)

(4)

Due to
−→
R6 can overtake

−−→
DF at (x3, t3), after the interac-

tion we obtain
←−
R + J +

−→
S which implies that

−−→
DF may be

extinguished after the perturbation.
Theorem 3.4In this case, we find that after perturbation,

the backward deflagration wave
←−−
DF can persist, while the

forward deflagration wave
−−→
DF may be extinguished.

Case 3.5.The Riemann problem at(−ε, 0) is
←−
S + J +

−→
S ,

and the Riemann problem at(ε, 0) is
←−
S + J +

−→
S .

Case 3.5.1If p1+p2−p̂ < 0, it follows that
−→
S2
←−
S3 →

←−
S5J3

−→
S6

(Fig. 17.).
Because

−→
S6 can overtakeJ2 at the point(x2, t2), we know

that there are two possibilities. If2
√
ρ4p3+(

√
ρ2−
√
ρ4)p2 <

0, we obtain
−→
S6J2 →

←−
S7J4

−→
S8. Notice that

←−
S5 can not
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overtakeJ1 and the new shock wave
←−
S7 can not overtake

J3 in the finite time. While the new shock wave
−→
S8 can

overtake
−→
S4 at (x3, t3) (Fig. 18.).

-

6
t

x

(l) (m) (r)

−→
S8

−→
S4

Fig. 18. The interaction of
−→
S8 and

−→
S4.

-

6

u

p

p

(m)

(r)

(l)

Fig. 19. The wave curves in(u, p).

−−→
DT

−→
S ⋆2

⋆1

In the (u, p) plane (Fig. 19.), we observe there are at most
two intersection points. From GEC, we get

−→
S8
−→
S4 →

−→
S or←−

S + J +
−−→
DT . The newly generated backward shock wave

can not overtakeJ4, thus
←−
S1 can persist after the small

perturbation. Although there is no combustion in the forward
direction, the combustion wave occurs.

If 2
√
ρ4p3 + (

√
ρ2 −

√
ρ4)p2 ≥ 0, we know that

−→
S6J2 →−→

S δ1 . It follows that
−→
S δ1

−→
S4 →

−→
S δ2 or

←−
S J
−→
S , and there is

no combustion after perturbation.
Case 3.5.2Whenp1 + p2 − p̂ ≥ 0, we obtain that

−→
S2
←−
S3 →−→

S δ1 (Fig. 20.).
Whenρ1 6= ρ2,

ω(t) =
√

ρ1ρ2(u2 − u1)2 − (ρ2 − ρ1)(p2 − p1) (t− t1)

uδ =
ρ2u2 − ρ1u1 +

dω(t)
dt

ρ2 − ρ1
,

whenρ1 = ρ2,

ω(t) = (ρ1u1 − ρ2u2)(t− t1)

uδ =
1

2
(u1 + u2).

Since
−→
S δ1 will overtakeJ2 at (x2, t2), there are two possi-

bilities. If p∗ < 0, we know
−→
S δ1J2 →

←−
S or
←−
R+
−→
S or
−→
R , and

the contact discontinuity may not appear. Similar discussions
with Case 3.5.1, we conclude that

−→
S or
−→
R+
−→
S4 →

←−
S +J+

−→
S

or
←−
S +J+

−−→
DTor

−−→
DF and the combustion wave occurs after

the small perturbation.

-

6

x

t

(−ε, 0) (ε, 0)

←−
S1

J1 −→
S2

←−
S3

J2 −→
S4

Fig. 20. The solution for Case 3.5.2.

(0) (∧) (0)

−→
S δ1

−→
S δ2

If p∗ ≥ 0, we have
−→
S δ1J2 →

−→
S δ2 and

−→
S δ2

−→
S4 →

−→
S δ3 or←−

S J
−→
S , and there is no combustion after perturbation.

Theorem 3.5 For this case, we conclude that after the
perturbation the combustion wave may occur.

Case 3.6.Solution at(−ε, 0) is
←−−
DF + J +

−→
R , and at(ε, 0)

is
←−
R + J +

−−→
DF .

-

6

x

t

(−ε, 0) (ε, 0)

←−
R1

J1 −→
R2

←−
R3

J2 −→
R4

Fig. 21. The solution for Case 3.6.

(0) (∧) (0)

←−
R5

−→
R6

←−
R7or

←−
S

−→
R8

J3

(1)
(2)

(3)

(4)

Similar discuss with Case 3.2, we know that
−→
R2
←−
R3 →←−

R5
−→
R6 (Fig. 21.).

←−
R5 can not overtakeJ1 in the finite time.

Because
−→
R6 can overtakeJ2 at(x2, t2) and the solution of the

new Riemann problem is
−→
R6J2 →

←−
S or
←−
R7+J3+

−→
R8. Similar

with Case 3.5, after the perturbation there is no combustion
wave occur in the backward direction.

-

6

−→
R (r)

(r)

−→
S (r)

(m)

u

p

−−→
DF

−−→
DT

(l)

Fig. 22. The wave curves in(u, p).

←−
S (l)

←−
R (l)

Due to
−→
R8 can overtake

−→
R4 at (x3, t3) (Fig. 22.). After

the interaction we obtain
−→
R or

←−
R + J +

−−→
DF .

Theorem 3.6 In this case, we find that after perturbation
the combustion wave may occur.
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IV. CONCLUSION

Here we give our main conclusions.
We find that after the perturbation,

←−−
DF can persist or may

be extinguished, while
←−−
DT can persist. On the other hand,−−→

DT may be extinguished, and
−−→
DF may be extinguished or

be transformed to
−−→
DT after the perturbation. Although there

is no burning phenomenon, the combustion wave may occur.
The above conclusions indicate the instability of the unburnt
gas of (1) which revealed deeply the internal mechanism of
combustion phenomenon.

The ignition problem for the Chalygin gas dynamic system
(1) plays the important role in Chalygin system not only
the mathematical theory of the Chalygin system but also the
exploration of the internal mechanism of combustion.
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