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The Ignition Problem for Chaplygin Gas System

Yujin Liu and Wenhua Sun

Abstract—The ignition problem for the Chaplygin system is Based on the above results, they [16] studied the SZND
considered. Under the entropy conditions, we obtain construc- model
tively the unique solution and discover that the combustion

wave solutions may be extinguished for some cases. Especially, ut +pe =0,

we obtain that the combustion wave occurs although there is Tt — Uy = 0, (5)
no combustion before. The transition between deflagration and E; + (up), =0,

detonation is also shown. q(z,t) = *%@(T)Qa

Index Terms—Ignition problem, Riemann problem, Entropy

conditions, Detonation wave, Deflagration wave. and proved that the selfsimilar solutions of (2) are the limits

of (5) ask — oc.
Hsu and Lin [17] studied (2) and (5) further and obtained
I. INTRODUCTION when the selfsimilar solutions of (2) are the limits of (5)
N this paper we consider whenk — oc.
In [18], the authors studied the ignition problem for the

prt (p)a N 0, —0 scalar nonconvex CJ model. Under the pointwise and global
(p?t +(pu Eer)”” N 0 entropy conditions [19], they got the transitions between
(PE)e + (puo +p“)l‘.f_ o . (1) deflagration and detonation.
q(x,t) = { | oi%}%t (@.y) > T; In [20], we obtain the unique Riemann solution of (1) with
q(z,0) otherwise, (r—,u~,p~,q"), whenz <0,
. . . (Ta u,p, q) - + + ot 4t when 0 (6)
where p,u,p < 0, T and T; are the density, velocity, (7T, ut,ptgh), x> 0.

pressure, temperature and ignition temperature, respectivelf\ow we investigate the ignition problem for (1) with
The total energyEl = - + e + ¢q. The state equation is

p = —1 and the internal energy = —£. The combustion (Tf*gpj’t’q*)’ 0 < T < g,
Lo ; 2 ints 2, 7, q)(2,0) = ¢ (@,p,7,0) —e<zr<e
process is exothermic [1]. For the results about Chaplygin™ > " ’ 1B TRy ’
gas, see [2], [3], [4], [5], [6], [7]. (U P4y T, q4), €< T < +00,
In [1], they began to study the CJ model. The authors [8] (7

got constructively the unique Riemann solution. In [9], Liwhere (u_,p_,7_) = (uy,pr,7+) = (u0,P0,70), ¢— =
and Sheng constructed the generalized Riemann solutionsfor:= ¢, > 0 ande > 0 is small enough. We construct the
unique solution of (1) and (7) in ther, t) plane.

Ttt_ 5” —0 This paper is organized as follows. Il give some prelimi-
E, + ("Lp) 7: 0 @ naries. In Section I, we construct the all possible solutions
0, it sup T(z,y) > T} of the |_gn|t|on problem of (1) with (7). IV is the main
q(z,t) = 0<y<t conclusion.
q(x,0), otherwise,

Il. PRELIMINARIES

wherer =1, p>0andE =% + 27 4. _ . . o
4 P 7 tao1td In this section we give some preliminaries [20], [21], [22],

For the simplified scalar cases, the authors [10] studied[2

3]. Since
(u+g2)e + f(u)s =0, _
{ 2zt = —ko(u)z. (3) A3 =ux 1/71”, A2 =, (8)
Liu and Zhang [11] studied I il\/j ;17>T 7= (1.0.0)7
(u+q2)i + f(w)e = 0, R b
(z,1) = ! " Oiugtu(:c,y) > T (4) andV\;-7; =0,i=1,2,3, (1) is linearly degenerate.
A= 2(x,0) othfeyrgvise. (I)(or R(1)) (Fig. 1.(i) and Fig. 1.(ii)) are

Many works [12], [13], [14], [15] have been done for the pp=ripr, 9
- - u =+ L (p>pi,0rp <) ©)
hyperbolic conservation law system. LE oo P2 PLOTP <P,

%
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Suppose
- _ o pr, x< x(t)7
p=po+w(t)d(z—=xt), po= { pry x> x(t)
u, < [E(t),
u(z,t) = us, = =x(t),

Up, x> x(1),

p(z,t) =< 0,

(
(
p, x<x(
(
Dry x> x(t).

T P
)
79’(” R
Fig. 1.(i) The backward wave curves {, p).
T P
T\ S0
R(r) g(,)
Fig. 1.(ii) The forward wave curves ifw, p).
w(t) = \/plpr(“'r —w)? = (pr — p1)(pr — 1) t,
Pruy — prup + dU:ngt)
us =
Pr — Pl
T p
DT
(uwr,pr)
(u7‘7l)7‘_2p7‘q0)
DF

Fig. 2. The combustion wave curve [, p).

Whenp’! = pl1
w(t) = (prur — pruy)t,

1
Uy = i(ur + ).

Ss satisfies

B lx(t !
up -8 < S <y — L (15)

Fig. 3. The wave curves in Case 2.1.

From the R-H condition

Clu] = [p],
([r] = —[ul,
CIE] = [up],

we get
—Tp + prT = 2q0 > 0.

In (u,p) (Fig. 2.) we find

B(T) . u—ur _ \/ 2qo + Tr(p — pr)7 (16)

P —Dr pr(p—pr)

pr<p<00rp<prf%.

So R

DF or DT

Fig. 4. combustion wave solution.

SoR

Fig. 5. non-combustion wave solution.

If ¢ =0, ¢ =0, it has been resolved in [23].
Case 2.1Wheng; =0, ¢, = qo > 0.

W(1) = Ws(1)USs(1), W(r) = Ws(r)USs(r)UDF(r)U
DT(r) (Fig. 3.).

_ _n _pr
Subcase 2.1.%y —u, < /_ _pi + j e,
The global entropy conditions (GEC) [20]:
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(i) n is as small as possible, herg is the oscillation
frequency from{n € R : T'(n) < T;} to {n € R* : T(n) >
Ti};

%ii) the combustion wave is as many as possible.

The temperature is respectivély, 75 at the pointxy, ».
(Fig. 3.).

(1) WhenT; > T;, Ty > T;, we get§0r§+J+ﬁorﬁ
(Fig. 4.).

(2) WhenT; > T;, Ty < Ti(= T1 <T;), we get§0r§+
J+ SorR (Fig. 5.).

(3) WhenT; < T;, Ty <T;, we get?orﬁ +J+ ?orﬁ
(Fig. 5.).

(4)WhenT;, < T;, Ty > T;(= Ty > T;), we get?or<§+
7 DEorDT (Fig. 4.).

Subcase 2.1.2;; — u, > —% + —%. It is shown that
we can get theds solution [20], [21], [23].
Case 2.2Wheng; > 0, ¢, > 0.

We know thatlV (1) = Ws(l) U Ss(1) U BT () U DEQ),

and W (1) = W g(r) U S5() U DT'(r) U DE(r) (Fig. 6.).

Fig. 6. The wave curves in Case 2.2.

Subcase 2.2.Whenu; — u, < e —/’j—r

Sincen = 0 for th£ pointA, n = 2 for the pointsB, C
andD, we getSorR + J+ Sor
Subcase 2.2.2Vhenu; — u, > \/—»%Jr /—%. It is the
Sy solution similarly.

Theorem 2.1 We get uniquely the Riemann solution of

(1) and (6) under GEC.

I1. | GNITION PROBLEM FOR THE SYSTEM1) WITH (7)

In what follows, we study the ignition problem (1) and (7)

according to the different cases.

t

(—¢€,0)

(e,0)

Fig. 7. The solution for Case 3.1.1.

Cage 3.1.Solution at(—¢,0) is FTJr J + ? and at(e, 0)
is S +J+ DI

Case 3.1..Whenp; +ps—p < 0,l>ve know that_S‘;> interacts
with E at the point(xy,t1) and51§ — §J354 (Fig. 7.).

Sincegg P =y — ~andoy, : 4z — qy, it follows
hatgg can not overtake; which tells the combustion wave
T can persist after the perturbation.
= . )
Since S, can overtake/, at the point(zs, t2), if p. <0,

i.€., 2,/paps + (/P2 — /pa)p2 < 0, we know that@ijg —

5J4§g . Notice that the new shock Wa\E can not overtake
J3 in the finite time. Since the new shock wa# can
overtake the detonation wa\ﬂ at the point(xs, t3) (Fig.
8.).

In the (u,p) (Fig. 9.), there are at most two intersection
points, and we continue to discuss as follows according to
GEC.

(1) AsT_
(2) AsT_
(3) AsT_
(4) AsT_

>~ T, Ty > T, we gets JDT.
F
ST, Ty < Ti(=T) <T,), we getS.JS.
F
<T, T, <T, we get5JS.
SJIDT
<T;, Ty >T;(= T, >T;), we get S JDT.

DT
(r)

El

(1) (m)

Fig. 8. The interaction ofS and D7".

Fig. 9. The wave curves ifu, p).

%After the @ove interaction process, we get tﬁé\ﬁ —
SJD‘T> or SJS (Fig. 7.). Notice that the new shock
wave can not overtake, in the finite time. The above
discussions imply thafD7" can persist or be extinguished
by such perturbation.

If p. >0, i.e.,2/paps + (\/p2 — /p1a)p2 > 0, we know
that@ijg — S, . For this case, we get thgng — ?52
or Tjﬁ. Notice that the new detonation wave can not
overtakeJs in the finite time. The above analysis shows that
DT may be extinguished or persist after the perturbation.

Case 3.1.2Whenp; + p2 — p > 0, we obtain tha@f@ —
S5, (Fig. 10.).
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Since fOfE we have% =u— —ﬁ and for J; we

know % = 1, the rarefaction wav§3 can not overtake/;
. L . —
in the finite time. Due to%% = u, + —£2 for Ry, and

. g
% = uy for Js, it follows that R4 can overtake/, at the

finite time (x4, t2), and
E)Jg — EOT? + J3 + Eg

After the interaction OFEOTE andﬁ, we get a new back-
ward rarefaction wave, but this new backward rarefaction
wave can not overtakd; in the finite time, thusDT can
persist after the perturbation. On the other hand, siRge
can overtakeﬁ at the finite time(zs,t5) and after the
interaction we get that the result B +J + 5, i.e., D
can be extinguished after the perturbation.

Theorem 3.2In this case, we conclude that after the small
perturbation, the backward detonation wﬁ@ can persist,
while the forward detonation wav’l’ may be extinguished.

(=&, 0)

(,0)

Fig. 10. The solution for Case 3.1.2.

For this case, we know that when # po,

w(t) = v/p1p2(uz — u1)? — (p2 — p1)(p2 — p1) (t —t1)

pau2 — prul + dﬁ—f)
Us = )

e Case 3.3.Solution at(—¢,0) is DF+J+ S, and at(e, 0)
N
whenp; = pa, |SS+J+D?. N N
Case 3.3.1f p1+ps—p < 0, it follows that51§ — §J3S4
w(t) = (prur — pau2)(t —t1) (Fig. 12.).

1
Uus = 5(“1 + ug).

Consider that for?zgl, it holds

dxz(t) o m
ai < Uy

Uy
rt pi’

_Pr
or <

(17)

and forJs it holds% = uy, §>51 will overtake.J, in the finite
time. It follows tt@t t(h_ere are two possibilities.jdf < 0, we
know S5, Jo — SorR + ?or , and notice that the result
may not contain the contact discontinuity. The discussions
that follows are similar with Case 3.1.1 which vyield that
DT may be extinguished or persist after the perturbation.
If p. >0, we haveS;s, Jo — S5, and Ss,D1T — S,
or ﬁT + J + DT, and observe thaD7" may persist or be

(—¢,0)

(g,0)

Fig. 12. The solution for Case 3.3.1.

— .
BecauseS, can overtakel, at the point(zs, t2), we know

extinguished by such small perturbation.

t

(=&,0)

(,0)

Fig. 11. The solution for Case 3.2.

that there are two possibilities. 2f, /psps+(/p2—/pa)p2 <
. —

0, we obtainS,J; — S5J456.
t

Js br
) (m) (r)

Fig. 13. The interaction OFT and Js.

Theorem 3.1For this case, we find that after the small Notice that the new shock wa\g can ncﬂ) overtakds in
perturbation, the backward detonation Wﬁ must be able the finite time. While the new shock wav can overtake
to keep after the perturbation, while the forward detonatioﬁ at (zs,t3). After the wave interaction process, we get

S, — &« :
wave DT may be extinguished. thatSg DI — Sor R+.J+ S . Notice that the new backward
Case 3.2.Solution at(—¢,0) is DT +J+ ﬁ and at(s,0) shock wave or backward rarefaction wave can not pvertake
is § +J+ DT. Jy in the finite time. The above discussions imply t

R, will intersect with R, at the point(z;,t;) and a new can persist andF may be extinguished by the perturbation.
Riemann problem is formed. Due g < p andp, < p, we If 2,/paps + (/P2 — +/Pa)p2 > 0, we know thatSyJ, —

know that R, Ry — RaRy (Fig. 11.). 5,. It follows that ﬁglﬁ — S5, or DTJDT, and the
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forward deflagration wave F may be extinguished or be If p, >0, we have?(;1 Jo —
transformed to the forward detonation Wﬁ. Notice that EUFJJFD

T can overtake/s in the finite time (Fig. 13.).

S, and?@lﬁ — §52 or

, and observe thaﬁ may be extinguished or
be transformed tcﬁ. Similar discussions with Case 3.3.1,

In (u,p) (Fig. 14.), there are at most two intersectiothe new DT intersects with.J; a(.gd afteré;]e intersection

points. From GEC, it yields thaf; + DT — S +.J + S or

% + J + DT. The newly generated backward shock wav.
3 and it follows that a new backward shoc

intersects wit

process, we find thabT + J; — S +J+ S or S +J +
. Sane th; newsS can vertakeﬁ7 and it follows that

F+S — S +J+ SorR which indicates thaDF may

wave appears. The new backward shock can not overtgke be extinguished.

thus DF' can persist after the small perturbation.

p

T

Fig. 14. Waves curves in theu, p).

Case 3.3.2Whenp; +ps — p > 0, we obtain§1>§2 — ?51
(Fig. 15.).
When p; # po,

w(t) = \/p1p2(uz —u1)? — (p2 — p1)(p2 — p1) (t —t1)

dw(t)
dt
)

p2u2 — pruy +
P2 — P1

us

whenp; = po,
w(t) = (prur — pau2)(t —t1)

1
us = §(u1 + ug).

(—&,0)

(¢,0)

Fig. 15. The solution for Case 3.3.2.

Since forg(;l, it holds thatu, + | /—£= < d%(tt) < —

—P, and for J; it holds that: = u,, 351 will overtake
Jo at the finite time(xs, t3), It follows that tkLere are two
possibilities. Ifp. < 0, we knowS' s, Jo — SorR+ S or K,

Theorem 3.3 For this case, we conclude thHF can
persist or may be extinguished after the perturbation, while
DF may be extinguished or be transforme .

Case 3.4The Riemann problem in 0) is Eﬁr J+ ﬁ
and the Riemann problem &,0) is R + J + DF.

t

(—¢,0)

(g,0)

Fig. 16. The solution for Case 3.4.

Similar discuss with Case 3.2, we know that ity —

— : S
3R, (Fig. 16.). R3 can not_)overtakefl in the finite time.
Due tot = uy+, /B2 for Ry, and<4z = u, for J,, we find

that E; can overtake/, at (z,t) and Ridy — Sorks +
Js + Rg. Similar with Case 3.2, after the perturbati%
can persist.

t

5

(—&,0) (¢,0)

Fig. 17. The solution for Case 3.5.1.

Due toﬁé can overtakeﬁ at (z3, t3), after the interac-
tion we obtainR + J + S which implies thatﬁ may be
extinguished after the perturbation.

Theorem 3.4In this case, we find that after perturbation,
the backward deflagration waveF can persist, while the
forward deflagration wavé F' may be extinggished.

Case 3.5.The Riemann problem a(kg, 0)is S +J+ ?
and the Riemann problem &,0) is S +J 4+ S.
Case 3.5.1f p1+pa—p < 0, it follows that Sg 55 — Sa.J55

and the contact discontinuity may not appear. The_ nefktig. 17.).

analysis are similar with Case 3.3.1 and it follows t
may be extinguished after the perturbation
preserve.

BecauseSs can overtakel, at the point(zs, t2), we know

can thatthere are tﬂo possibilities_.)ilﬁ /pap3+(\/P2—/Pa)p2 <
0, we obtain SgJy —

~J15%. Notice that?s can not
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overtakeJ; and the new shock Wavg can not overtake
Js in the_)finite time. While the new shock wawgs can t
overtakeS, at (z3,t3) (Fig. 18.).

t

g 3 (=<,0) (=,0)
8 4
(1) m) (r) Fig. 20. The solution for Case 3.5.2.

_>
If p. >0, we have?(;1 Jo — §>52 and§5284 — ?53 or
S J S, and there is no combustion after perturbation.

T ? Theorem 3.5 For this case, we conclude that after the
perturbation the combustion wave may occur.
u Case 3.6.Solution at(—«¢,0) is ﬁﬂr J+ ﬁ and at(e, 0)
=
is R+ J+ DF.

Fig. 19. The wave curves ifu, p).

In the (u, p) plane (Fig. 19.), we observe_t)hgre are at most
Mo intersection points. From GEC, we g&{S; — ? or (—¢,0) (¢,0)
S + J+ DT. The newly generated backward shock wave
can not overtakeJ,, thus S; can persist after the small
perturbation. Although there is no combustion in the forward
direction, the combustion wave occurs. - Sln"ar discuss with Case 3.2, we know thEgE N

If 2,/paps + (/P2 — +/Pa)p2 > 0, we know thatSgsJ, — ERG (Fig. 21.). R5 can not overtake/; in the finite time.

s, It follows that?(;l@l> — §>52 or %J? and there is Becauseﬁg can overtake/, at (m2,<t_2) and the sc@)tion of the

Fig. 21. The solution for Case 3.6.

no combustion after perturbation. new Riemann problem iBsJo — S or Ry +J3+ Rg. Similar
Case 3.5.2Whenp; + ps — p > 0, we obtain tha@;g — with Case 3.5, after the perturbation there is no combustion
?51 (Fig. 20.). wave occur in the backward direction.

When P1 75 P2,

w(t) = \/p1p2(uz —u1)? — (p2 — p1)(p2 — p1) (t —t1)

paus — pruy + 240
Us = )
P2 — P1

whenp; = po,

w(t) = (prur — pauz)(t — t1)

1

us = = (u1 + ua).
2

Fig. 22. The wave curves ifw, p).

Since g(;l will overtake J; at (xs, tgéth&a_re are two possi-
bilities. If p. < 0, we know S5, J» — Sor R+ Sor R, and - - _
the contact discontinuity may not appear. Similar discussionsPU€ 0 fis can overtakery at (w3, ;) (Fig. 22.). After
with Case 3.5,1, we conclude thator K + 55 — § +J+ 5 the interaction we obtairft or R + J + DF.
or S+J+D orD—f>7 and the combustion wave occurs after Theorem 3.6In this case, we find that after perturbation
the small perturbation. the combustion wave may occur.
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IV. CONCLUSION [21] Y.J. Liu, “The generalized Riemann problem for Chaplygin gas with
) ) ) combustion”,Journal of Applied Mathematics and Physiesl. 7, pp.
Here we give our main conclusions. 2738-2750, 2019.

We find that after the perturbatioF” can persist or may [22] W-C. Sheng and T. Zhang, “The Riemann problem for the transporta-
tion equations in gas dynamics¥lemoirs of the American Mathemat-

be extinguished, whileDT' can persist. On the other hand, ical Society vol. 137, no. 654, 1999.
DT may be extinguished, anBF' may be extinguished or [23]_L. Zhu, “Chaplygin Gas Dynamic System in Adiabatic Flow", Master
be transformed td71" after the perturbation. Although there Thesis,Shanghai University2010.
is no burning phenomenon, the combustion wave may occur.
The above conclusions indicate the instability of the unburnt
gas of (1) which revealed deeply the internal mechanism of
combustion phenomenon.
The ignition problem for the Chalygin gas dynamic system
(1) plays the important role in Chalygin system not only
the mathematical theory of the Chalygin system but also the
exploration of the internal mechanism of combustion.
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