
 Abstract— Swift identification of a set of influential load 

nodes within power systems is an important task for effective 

modern power grid operation and security. This paper 

suggests a suitable approach of Node Strength (NS) or Bus 

Strength (BS) scheme for effective and swift identification of 

sets of influential load nodes within power systems. This 

effective algorithm relies on the Network Structural 

Characteristics Theory (NSCT) of power systems. The NS 

scheme uses circuit theory laws to present the linear 

relationship among the network structure, the voltage and 

current in the network. The traditional Complex Network 

Theory (CNT) or Centrality-Based (Degree Centrality (DC), 

Betweeness Centrality (BC), Closeness Centrality (CC), 

PageRank Centrality (PRC) and Eigenvector Centrality (EC)) 

methods for identifying influential load nodes within power 

systems are also presented in the paper. Thereafter, the 

numerical values of the NS and each of the CNT-based 

methods associated with the load nodes, are determined. The 

relative importance of each load node is then ascertained 

through ranking (in the order of magnitude or priority) of the 

values obtained for NS and each of the CNT-based methods. 

Based on the order of priority, the sets of influential load 

nodes in the network are identified. Furthermore, 

performance analyses, using statistical correlation coefficient 

as well as structural risk assessment, are used to establish the 

best method suitable for quick identification of a set of 

influential load nodes in the system. The results obtained are 

corroborated with the network robustness assessment to 

further validate the proposed approach. The study uses IEEE 

5-bus, IEEE 14-bus and Nigerian 28-bus networks as case 

studies. The comparison of results obtained show that the NS 

or BS scheme suggested is more suitable for quick 

identification of sets of influential load nodes in a relatively 

large-sized power network. 
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Index Terms— Bus Strength, node degree, eigenvector, 

centrality, voltage collapse 

 

I. INTRODUCTION 

EVER in history has power systems experienced the 

revolution and transformation that are on-going around 

the world recently [1]. Consequently, this 

transformation of the traditional configuration of power 

systems has led to the emergence of an electric network 

operation  which is basically dependent on a two-way 

digital communication technology called smart grids [2]. 

Although, electric power networks are generally complex 

due to increase in the network interconnections, the new 

revolution has increased the complexity of the network 

structure. This, in turn, has led to various complications in 

solving various power system problems such as 

nonlinearity in the problem formulations. One of such 

power system problems is finding a quick solution for 

detecting various influential network nodes within the 

system. This will help the system operators to quickly 

identify the parts of the system that require urgent attention. 

Such attention could be the enhancement of voltage profile, 

reduction in power loss as well as the enhancement in 

power system transfer capability [3], [4]. Therefore, it is 

very imperative to identify the influential nodes so that the 

system's reliability, as well as its efficiency, can be 

improved upon. In the context of this study, critical nodes 

are referred to as those network nodes where there are 

needs for injection of reactive power. At these nodes, the 

voltage drop is extremely high and as such, there is a large 

amount of power loss associated with such nodes. 

However, there are some nodes within power networks 

whose outage, due to disturbance, could cause a detrimental 

effect (such as voltage instability) on the operation of the 

system. That is, when a disturbance occurs, removal of 

these nodes could lead to total blackout of the system. The 

importance of these nodes has been critically investigated 

and documented in the literature. Many existing studies 

have proved the importance of the location of nodes in real-

time power networks [5]. The optimum operation of power 

systems could be greatly affected if these nodes are 

suddenly disconnected during disturbance. Such nodes are 

usually referred to as the key nodes or influential nodes.  

Several approaches to predicting the distance to the 

location of collapse within the existing grids have been 

proposed in the open literature [2], [6]. The contributions 

offered, to the active stream of research, by these 

approaches have been documented. Various indices have 
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been proposed based on the static load-flow analysis using 

Newton-Raphson iterative method [7]–[9]. These 

approaches are not without their challenges. For instance, 

obtaining the required solution would require several 

iterations with complex computation in each iterative step 

as a result of Jacobian computations. Another challenge that 

could limit the practicability of the existing approaches is 

the selection of a suitable slack bus among the generator 

buses. This is a serious bottleneck to efficient power system 

operations as choosing wrong slack bus could lead to 

wrong results and hence wrong conclusion. The detail of 

various approaches for analyzing vulnerability has been 

reviewed and presented in the literature [7]. Vulnerability 

analysis of power systems could be referred to as the 

evaluation of the influence which a local failure has on the 

power network before the failure occurs so that proper 

measures could be put in place to avert the occurrence of 

such failure. These challenges are tackled, in this present 

study, by considering the network topologies, the 

interconnections of the network elements as well as the 

impedance between the network nodes. The main merit 

offered by this approach is that it eliminates some of the 

mathematical complexity observed in the traditional 

methods based on power-flow analysis. Also, it requires no 

slack bus selection. It also avoids repetitive operational 

steps in the result computations and hence, it is less time-

consuming. In other words, it results in a reduced 

computational time, and provides results for a real-time 

update of the network when there are changes in the 

practical structural characteristics of the network. 

Various techniques, that were proposed in the early 

studies by most of the authors as regards the evaluation of 

performance of influential nodes in power systems, are 

power-flow-dependent [6]. Such methods include 

continuation power flow method, modal analysis, voltage 

stability indices-based method, P–V curve, sensitivity 

analysis-based approach and Q–V curve. These methods 

are basically iterative-based since the problem formulations 

are nonlinear equations [10]. As such, the solutions can 

only be obtained through various iterative processes. 

Although, these methods provide valuable insights as to 

how the influential nodes in a power system can be 

detected, they failed to account for the network topology as 

well as the interconnectivity among the network generators, 

loads and transmission lines. The main advantage of the 

network topology, in solving this problem, is that it 

formulates the problem as a linear relationship between the 

nodal voltages and the current flowing through the links 

[1], [11]. Hence, the divergence of solution is completely 

avoided. In recent times, the theory of complex networks 

has attracted considerable attention in the field of natural 

and social sciences, computer science, biological science 

and economics [4], [12]. This is gaining vast attention more 

recently by power system engineers and researchers across 

the globe in solving various power system problems. 

Centrality-based methods have been proposed by various 

authors. Some of the centralities that are commonly used in 

complex network theory include Eigenvector, Betweenness, 

LeaderRank, Closeness, PageRank and Degree centralities 

[13]. The solution to the problem is usually formulated by 

decomposing the system admittance matrix using 

eigenvalue analysis. Although, the significance of many of 

these methods has been demonstrated in the literature, there 

are several bottlenecks hindering the holistic application of 

these methods for solving various power system problems. 

One of such challenges is the fact that some of these 

Complex Network Theory (CNT)-based methods are n 

usually precise while those that are precise are iterative in 

nature and hence, computationally complex with high time 

consumption. For instance, in identifying important nodes 

in a network, Degree Centrality (DC) is a straight forward 

approach but it does not take into consideration the full 

information of the network under consideration. As such, 

its application is limited and not suitable in most cases. For 

a relatively large system, application of Betweeness 

Centrality (BC) and Closeness Centrality (CC) is not 

usually suitable because they are computationally expensive 

with respect to time complexity. Although, application of 

PageRank Centrality (PRC) is most suitable for a relatively 

large network, it does not work well when applied to an 

undirected network. Its application can only be effective on 

a directed network because it uses global information of the 

network [26]. Consequently, the traditional CNT-based 

methods are less accurate in some networks and therefore 

less reliable in identifying sets of nodes whose outage could 

be detrimental to the operation of the system. This greatly 

limits the application of the traditional CNT-based 

approaches to real-time power networks.  

Based on the foregoing, it is of great importance to 
develop a faster and reliable alternative framework, which 
employs network local and global information in its 
formulation for influential nodes’ detection. In this paper, 
the method of Network Structural Characteristics Theory 
(NSCT) is suggested. The following are parts of the 
contributions offered by the study presented in this paper: 
First, an effective framework, based on circuit theory laws, 
which completely avoids iteration in order to minimize the 
time complexity of the solution, is developed in this study. 
Second, the connectivity index for risk vulnerability 
assessment is suggested and implemented to determine the 
network strength during critical outage conditions. Third, the 
results obtained from the comparative analysis of all the 
methods based on the risk vulnerability assessment show 
that the suggested NSCT-based approach is more accurate 
and can be easily applied on large real time practical 
networks. 

The remainder of the paper is organized as follows: Section 

II presents the theoretical background and the mathematical 

formulations of both the traditional CNT-based and the 

suggested NSCT-based methods. The results and discussion 

of results obtained are presented in section III while the 

paper is concluded in section IV. 

II. THEORETICAL BACKGROUND AND MATHEMATICAL 

FORMULATIONS 

This section presents the theoretical framework as well 
as the mathematical formulations for the traditional 
centrality measures suitable for identifying important nodes 
within a complex infrastructure such as power systems. 
There are several centrality measures in existence but the 
five suitable centrality measures for identifying important 
nodes are presented in this study. These include: degree 
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centrality, closeness centrality, eigenvector centrality, 
PageRank and betweenness centrality [14], [15]. These are 
presented in the sub-sections that follow. 

A. Traditional Complex Network Theory-Based 

Techniques  
Generally, the topological structure of any given power 

network is usually captured in the network bus admittance 
through the interconnections of the network elements as well 
as electrical parameters of the network. As such, the network 
bus admittance can easily be determined using complex-
weighted Laplacian method. Based on the foregoing, we 
modelled electric power network from the perspective of 
graph theory. Consider an electric power network modelled 
as a weighted graph  , ,G V E W  whose vertex set is 

defined by    
1 2 3

, , , . . . ,
n

V G v v v v  and the network edge 

set defined by    
1 2 3

, , , . . . ,
n

E G e e e e with each edge k  

between any two vertices i  and j  defined by 

 ,
k i j

e v v . The weight attached to any edge k  of the 

network is 
i j

w . If no edge exists between vertices i  and j , 

then 0
i j

w  . For any undirected weighted graph without 

any loop, 
i j j i

w w  and 0
i i j j

w w   and the weight 

matrix is symmetrical about its diagonal. The matrix for the 
weight matrix of the network graph can therefore be 
formulated as 

 

1 2 1 3 1

2 1 2 3 2

3 1 3 2 3

1 2 3

0 . . .

0 . . .

0 . . .

. . . . . . .

. . . 0

n

n

n

n n n

w w w

w w w

W G w w w

w w w

 

 

 

 

 

 

 
 

        (1) 

Also, 

 

1

2

3

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

. . . . . . 0

0 0 0 . . .
n

x

x

X G x

x

 

 

 

 

 

 

 
 

       (2) 

where 

1

n

i i j

j

j i

x w





   and the Laplacian for the network 

can be determined from 

       L G X G W G              (3) 

1) Degree Centrality (DC) Method 
This centrality measure shows the extent or degree of a 

vertex connection to the remaining parts of the system. 
Generally, the individual vertices that have more links 
attached to them than others are seen to be more connected 
compared to others within the system. This could be traced 
to the fact that more sources may be connected to such 
vertex thereby having access to information than any other 
vertex in the system.  

In general, the Laplacian matrix formulated in equation 
(3) can be used to determine the electrical degree centrality 
of any given node v  as  

   d e g ,

( )

1 1

v L v v

D C v

n n

 

 
    

(4)

 
      

,

( , )

1

n

i j V

j i

Y i j

n









       (5) 

where n  is the number of vertices. 

2) Closeness Centrality (CC) Method 
In determining the closeness centrality of a vertex, the 

shortest path between such vertex and all the other network 
vertices, which are connected to it via transmission line, are 
first determined. This centrality identifies the key node or 
vertex that requires a shorter electrical distance to 
communicate with all other connected vertices. It, therefore, 
ranks the closest vertex higher than the farthest. 
Mathematically, the closeness centrality of a node i  in a 

network can be defined by the expression 

,

1
( )

( , j )

i j V

n
C C v

d y i








                     (6) 

where ( , j )d y i indicates the shortest electrical path 

length between the network vertices i  and j . 

 3) Eigenvector Centrality (EC) Method 
In this method, the weight associated with the first 

eigenvector is given to each network vertex as a centrality 
value. This is usually related to the adjacency matrix A in 
determining how significant a vertex is in a network. The 
electrical adjacency matrix of a network can be expressed as 

 
t

A Y D g Y  
             

(7) 

where Y represents the network admittance and  .D g  

denotes the diagonal matrix, which is extracted from the 
original network matrix. 

The admittance matrix of the network Y can easily be 
obtained using 

 
T

Y A d i a g y A             (8)  

where y is the admittance vector of the network 

transmission links. The elements of the n -by- n  bus 

admittance matrix Y are determined from 

   

   

 

,

, , ;  i f   

 

, , ;  i f  

, 0 ;  o t h e r w i s e

i j V

i j

Y i j y i j i j

Y i j y i j i j

Y i j





   






 





 



       (9) 

The eigenvector centrality of a vertex i  can therefore be 

determined from the entry v  of the eigenvector   which 

corresponds to the largest eigenvalue 
m a x

 . Consequently, 

the weighted eigenvector centrality can be expressed as 

 
1m a x

1
( ) ,

n

k

k

E C v A v k 




 
    (10)  

where  A                 (11) 

4)  Betweeness Centrality (BC) Method 

In this method of approach, the weight associated with the 

first eigenvector 
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 

 

 
 

1

2

i j

i j
i v t V

v

B C v

n n




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




        (12) 

where 
i j

  represents the shortest electrical path from 

vertex  i  to vertex j  while  
i j

v  represents the sum 

total of all shortest electrical paths from vertex  i  to vertex 

j  which pass through v . 

 

5) PageRank Centrality (PRC) Method 
PageRank Centrality (PRC) approach is usually used to 

rank webpages in order to evaluate how important the 
webpage is via the structure of the hyperlink system. The 
application of PRC in identifying important nodes in a 
directed network has been extensively reported in the open 
literature. From the graph theoretical perspective, the 
webpage is usually modelled as a directed graph where the 
vertices correspond to the webpages and the hyperlinks 
between any two webpages correspond to the edges of the 

graph. Mathematically, a PRC for any given webpage, 
w

P  

can be expressed as 

 
 

  k w

k

w

P P P k

P R C P

P R C P

N P


         
(13) 

 

where  
w

P P denotes those pages that point towards 
w

P , 

 
k

N P denotes total out-link pages 
k

P . The solution to 

equation (13) can only be obtained through iterative 

procedures where  

 
 

  

1

k w

j

kj

w

P P P k

P R C P

P R C P

N P





       
(14) 

B.   Proposed Network Structural Characteristics 

Theory-Based Approach 

From the basic circuit theory standpoint, the network 
equations are generally formulated based on the fundamental 
Kirchhoff’s Law as expressed in equation (15). However, in 
a complex infrastructure system such as power networks, 
very few nodes are connected and as such equation (15) is 
used to capture the sparsity characteristics of power systems. 

YVI                          (15)

   

where I represents the generator and load injected current 

vector, Y  represents the network admittance matrix, and 

V  represents the generator and load voltage vectors for the 

system.  
The structural topology of the interconnections between 

network elements such as transmission lines and nodes is 
usually captured through the admittance matrix of the 
network given in equation (15).  Intuitively, Equation (15) 
shows that the branch currents are directly proportional to 
the node voltages where the constant of proportionality is the 
network admittance matrix, which represents the structural 
topology of the network. However, equation (15) becomes 
non-linear due to re-formulation during power-flow studies. 
Consequently, there is no known solution to this non-linear 
problem except through iterative processes, which are 

associated with various challenges such as divergence of the 
solution, local optimal solution, refactorization of Jacobian 
matrices, etc. In this study, the sparsity property of power 
network is explored to overcome some of the afore-
mentioned challenges associated with power-flow-based 
methods. 

By partitioning the equation (15) for a power network 

having n  buses from which there are G generator buses 

and L load buses, we can write  [1] 

             





































L

G

LLLG

GLGG

L

G

V

V

YY

YY

I

I

                           (16) 

where  
G

I  and  
L

I  are the elements of  I ,  
G

V and 

 
L

V  are the elements of vectors  V ,  
LL

Y represents the 

bus admittance of the branches that connect load bus to load 

bus,  
GG

Y represents the bus admittance of the branches 

that connect generator bus to generator bus, 

 
LG

Y represents the bus admittance of the branches that 

connect load bus to generator bus,  
GL

Y  represents the bus 

admittance of the branches that connect generator bus to 

load bus and  
LG

Y  represents the bus admittance of the 

branches that connect load bus to generator bus. 

Equation (16) can be manipulated algebraically to 
give      






































L

G

LLLG

GLGG

L

G

V

I

CW

KZ

I

V

          (17)   

From Equations (17), we can define the following sub-
matrices: 

The bus impedance of the transmission lines that connect 
load generator to generator bus as                   

              
1


GGGG

YZ                                                    (18) 

The matrix of the transmission lines that connect 
generator bus to load bus as 

          
GLGGGL

YYH
1


 
                     (19) 

The matrix of the transmission lines that connect 
generator bus to load bus as 

                
1


GGLGLG

YYW                                          (20)   

The bus impedance of the transmission lines that connect 
load bus to load bus, when the effect of the load buses has 
been completely eliminated, as  

   GLGGLGLLLL
YYYYC

1

                               (21) 

The topological characteristics of power networks are 
embedded in the equations (18) to (21). Although, some of 
these expressions have been used to solve various 
operational problems combating modern power systems, 
there are still many problems that are yet unsolved. This 
problem is tackled in this paper by exploring the advantages 
associated with the square matrix given in equation (21). 
This therefore provides more insight into how power system 
problems could be solved faster without the need for an 
iterative process which is tedious and time-consuming. 

An attempt is made in this paper to explore the 
associated benefits of the atomic theory to estimate the 
attractive force   existing between two buses. This force is 
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used to measure the strength and weakness associated with 
the transmission link between any two buses in a network.  

According to Coulomb’s Law, a push-pull force exists 

between two buses having charges 
1

Q  and 
2

Q . Also, 

according to Gravitational Law, a push-pull force exists 

between two bodies whose masses are 
1

M  and 

2
M respectively. Based on the foregoing, it can easily be 

inferred that in any given power network, the strength of 
influence between two nodes, connected by a transmission 

line whose impedance is Z , is given by [1] 

 

2

21

12,

Z

VVC
I

s
              (22) 

where the C in (15) is a constant. The nodal voltages at 

nodes 1 and 2 are 
1

V  and 
2

V  respectively. The impedance 

of the transmission line connecting nodes 1 and 2 is Z and it 
is referred to as the relative electrical distance between 
nodes 1 and 2. 

It can be seen that the expression given in equation (22) 
is analogous to the maximum power flowing from node 1 

whose voltage is 
1

V   to node 2 whose voltage is
 2

V  as 

given by 

  
2

21

max

Z

VV

P                          (23) 

where 

Z represents the equivalent relative electrical distance 

between nodes 1 and 2. 

Equation (22) can be easily manipulated to give  

 

1
2

i j i j i j
N S M K V V R E D



 
     
       

     (24) 

where NSM  is Network Strength Matrix, RED is the 

network equivalent Relative Electrical Distance between any 

two network nodes i  and j  while K is a constant. 

Therefore, the structural characteristics of an n -bus 

power system can easily be captured in N S M  whose 

diagonal element  ,N S M i i  represents the Node Strength 

 N S i  or Bus Strength  B S i  associated with node i . 

This implies that 

    ,N S i d i a g N S M i j         (25) 

C. Performance Evaluation of the Approaches 

1) Using Pearson’s correlation coefficient 

In this section, we present the performance evaluation for 

both the existing CNT-based methods and that of the 

NSCT-based method (Node Strength or Bus Strength) 

suggested in this paper. This is necessary in order to 

ascertain the effectiveness of each method in identifying the 

set of influential nodes in a power network. This evaluation 

helps in comparing the results obtained using the NSCT-

based method with those obtained using the traditional 

CNT-based approaches. The Pearson’s rank correlation 

coefficient is explored to validate the performance 

characteristics of the existing methods with reference to the 

structural-based method suggested in this paper.  

Generally, Pearson’s correlation coefficient between any 

two variables X  and Y can be defined by  

   

     

i i

p

i i

X X Y Y

r

X X Y Y

 



  



 

    (26)
 

where 
i

X   1 , 2 , . . . ,i N  represents the X -variable 

values in any given sample, N is the number of samples, 

X represents the mean of X -variable values, 
i

Y  

 1 , 2 , . . . ,i N  represents the Y -variable values in the 

given sample and  Y  represents the mean of Y -variable 
values. 

The strength of the association that exists between X  

and Y  is said to be very weak if 0 . 2
p

r  , weak if 

0 . 2 0 . 3 9
p

r  , moderate if 0 . 4 0 . 5 9
p

r  , strong if 

0 . 6 0 . 7 9
p

r   and very strong if 0 . 7 9
p

r  . 

2) Using Structural Risk Vulnerability against 

Targeted Attacks 
Generally, a targeted attack on a power network involves 

intentional criminal acts that could undermine the integrity 
of such power network. In order to present a holistic model 
of these threats, it is therefore usually assumed that the 
power system layout is fully known. The main aim is to 
evaluate the performance of the network while it is being 
subjected to maximum disruption while the number of 
attacked nodes is kept to barest minimum. In solving this 
vulnerability problem in a power system towards the 
intentional attacks, there is a need to identify the sets of 
influential nodes and their influence on the overall network 
performance. This identification, in advance, assists the 
system operators on how to continuously monitor and 
protect these influential nodes to ensure improvement in the 
system robustness. 

In this paper, we evaluate the impact which the outage of 
the identified influential nodes has on the network 
performance. This is implemented by determining the 
connectivity strength of the network when it is operating 
under various contingency conditions. In this paper, we 

define Connectivity Index  C I  for any given N -bus 

power network as  

1 0 0
o u t a g e

N N

C I

N



           (27) 

where 
o u t a g e

N  represents the number of outaged nodes 

due to removal of the identified influential nodes from the 

original network. The C I  is an index which lies between 0 

and 1.  The base case network scenario corresponds to a case 
when the CI is 100% since all the nodes are intact and no 
contingency is considered for the base case condition. 
Although, the case for CI corresponding to a situation where 
the number of outaged nodes is equal to the total number of 
network nodes  is considered a trivial scenario in this paper. 

It is often desirable to know the level of network 
robustness, most especially, when there is failure of one or 
more nodes which could lead to a total blackout of the 
system. In most social networks, the level of network 
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robustness considering node failure is usually measured 
using the network statistical properties such as characteristic 
path length, global efficiency, local efficiency, and the 
clustering coefficient of the graph as effective indicators. 
Traditionally, based on the statistical properties of network 
topology, the average characteristic path length of a graph 

G is defined by  

    
2

1
,

c

i j

L G d i j

n n


 
  

 
        (28) 

where  ,d i j represents the number of shortest 

distances between nodes i  and j within the graph. The 

shortest distance  ,d i j  increases as the path connecting 

the two nodes  i  and j increases. In order words, 

 ,d i j    as the path between nodes  i  and j  becomes 

increasingly large. However, in order to account for the 
electrical characteristic of the network, relative electrical 
distance is used which modifies (28) to give 

   
2

1
,

c

i j

L G R E D i j

n n


 
  

 
          (29) 

The network graph global efficiency, in terms of the 
relative electrical distance, can be defined as 

 
 

2

1 1

,
g

i j

E G

n n R E D i j


 


 
 

       (30) 

The local efficiency of the network graph, in terms of the 
global efficiency, can be expressed as 

   
1

l g i

i G

E G E G

n


             (31) 

The clustering coefficient of the graph is given by 

 
 

21

1

i

c

i G i i

E
C G

n k k





           (32) 

where 
i

E  is the i th number of edges and 
i

k  represents 

the degree of the node i . 

The clustering coefficient in a graph is used to determine 
the extent of closeness of a node with its neighbour in 
forming a clique. Its values range between the value of  0, 
which corresponds to no cluster and 1 which corresponds to 
maximum or strong cluster.  

III. RESULTS AND DISCUSSIONS 

The effectiveness of the existing CNT-based methods 
and the NS method suggested in this paper is tested using 
two different standard networks of IEEE (IEEE 5-bus and 
IEEE 14-bus networks) and a practical network of Nigerian 
28-bus system. The standard IEEE 5-bus system has two 
generator nodes and three load nodes which are 
interconnected by seven transmission links while the 
standard IEEE-14 system has five generator buses 
interconnected with the network nine load buses by twelve 
transmission lines. The Nigerian 28-bus system comprises 
ten generator nodes with 18 load nodes. In this study, all 
simulations are carried out using MATLAB 2019a software. 
For the sake of convenience, the generation nodes are 
numbered first before the load nodes. The results obtained 
are presented and discussed in the subsections that follow: 

A. Case I: The Standard IEEE 5-bus System 

Using the standard IEEE 5-bus network as the case 
study, the results obtained using five different CNT-based 
methods (Degree Centrality (DC), Eigenvector Centrality 
(EC), Pagerank Centrality (PRC), Closeness Centrality (CC) 
and Betweeness Centrality (BC)) as well as NSCT-based 
method (Node Strength (NS) otherwise referred to as Bus 
Strength (BS)) are presented in Table I. Based on these 
results, the load nodes are then ranked, using each method, 
in the order of magnitudes. For example, as presented in 
Table I, it is obvious that the load bus 4 has the maximum 
values of 9.4743, 8.3566, 3.5434, 8.6684, 1.5376 and 13.5315 
using Degree Centrality (DC) method, Eigenvector 
Centrality (EC) method, PageRank Centrality (PRC) 
method, Closeness Centrality (CC) method, Betweeness 
Centrality (BC) method and Node Strength (NS) method 
respectively. This implies that load node 4 will be ranked 
number 1 for all the methods. This is repeated for all the 
load nodes in the network. The ranking results are presented 
as shown in Table II. Since load node 4 is ranked number 1 
by all the methods, it implies that all the methods identified 
node 4 as the most important load node within the standard 
IEEE 5-bus system. 

TABLE I.  RESULTS FOR DIFFERENT APPROACHES USING A 5-BUS 

SYSTEM  

Load 

node 

no 

Methods 

DC EC PRC CC BC NS 

3 7.1479 4.3520 2.5453 7.5675 1.3535 12.1211 

4 9.4743 8.3566 3.5434 8.6684 1.5376 13.5315 

5 1.3546 6.5474 1.6356 4.5875 0.4759 3.8637 

TABLE II.  INFLUENTIAL NODE IDENTIFICATION IN THE STANDARD 

IEEE 5-BUS SYSTEM 

Node 

Ranking 

Node number 

DC EC PRC CC BC NS 

1 4 4 4 4 4 4 

2 3 5 3 3 3 3 

3 5 3 5 5 5 5 

 
  
The implication of this is that removal of load node 4 has 

the highest influence on the network. Such a node requires 
special attention as regards protection against its removal as 
its outage could lead to total collapse of the network. For the 
network under consideration, load node 4 is identified by all 
the methods as the most influential load node in the network. 

B. Case II: The Modified IEEE 14-bus System 

The numerical results obtained for influential node 
identification within the IEEE 14-bus system are presented 
in Table III. Base on the order of magnitudes, the results 
obtained for all the methods are ranked as presented in Table 
IV to show the relative importance of each node within the 
system under consideration. As presented in Table III, for 
the CNT-based centrality methods, it can be seen that DC 
method has a maximum value of 5.6772, EC has a maximum 
value of 0.6768, PRC has a maximum value of 2.5765, CC 
has corresponds to a maximum value of 0.1457, BC 
corresponds to a maximum value of 26.4747 while the 
maximum value of NS is 3.5468.  

The node corresponding to all these maximum values is 
load node 8 and hence, it is ranked number 1 for each of the 
methods. The nodes’ ranking results based on the order of 
priority for all the methods are presented in Table IV. It can 
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be seen that all the methods ranked load node 8 as number 1 
in the standard IEEE 14-bus network. It is, therefore, 
obvious that all the methods identified load node 8 as the 
most influential node in the standard 14-bus network. 

TABLE III.  RESULTS FOR DIFFERENT APPROACHES USING THE 

MODIFIED IEEE-14 BUS SYSTEM 

Load 

node 

no 

Methods 

DC EC PRC CC BC NS 

6 4.5463 0.5787 2.3431 0.0635  22.4444 2.3645 

7 3.3635  0.2456 2.0675 0.0465  15.6864 0.9867 

8 5.6772  0.6768 2.5765 0.1457 26.4747    3.5468 

9 3.8657  0.4256 1.3553 0.1036   0.0056 1.6723 

10 2.8365  0.1456 2.2635 0.0724   3.6690 0.6785 

11 2.0434  0.0189 1.5460 0.0523   5.6894 0.0296 

12 2.5658  0.0945 1.7588 0.0934   0.0057 0.3766 

13 2.9346  0.2003 1.3553 0.1256   6.3565 0.4656 

14 2.3576  0.0356 1.2466 0.1345   4.6367 0.0924 

TABLE IV.  INFLUENTIAL NODES IDENTIFICATION IN THE MODIFIED 

IEEE 14-BUS 

Node 

Ranking 

Node number 

DC EC PRC CC BC NS 

1 8 8 8 8 8 8 

2 6 6 6 14 6 6 

3 9 9 10 13 7 9 

4 7 7 7 9 13 7 

5 13 13 12 12 11 10 

6 10 10 11 10 14 13 

7 12 12 9 6 10 12 

8 14 14 13 11 12 14 

9 11 11 14 7 9 11 

C. Case III: The Nigerian 28-bus System 
The structural topology of the Nigerian 28-bus system, 

with all nodes intact, is as shown in Fig. 1. The results of 
analysis obtained for a set of influential nodes identified by 
using the CNT-based methods and the method of NS 
suggested in this paper, are presented in Table V. These 
results are ranked based on the order of magnitudes and the 
top 10 influential nodes identified are presented in Table VI.  

Based on the node ranking presented in Table VI for 
identifying a set of influential nodes in the Nigerian 28-bus 
system, it can be seen that DC, EC, PRC, CC, BC and NS 
methods ranked load nodes 14, 15, 14, 19, 19 and 19 as 
number 1 respectively while nodes 19, 14, 21, 14, 24 and 14 
are ranked number 2 respectively. As such, nodes 14 is 
identified by DC and PRC methods as the most influential 
node. Also, load node 19 is identified by CC, BC and NS 
methods as the most influential load node while the EC 
method identified load node 15 as the most influential node. 

In order to ascertain the reliability of these results, 
further analysis is highly desirable. This is because three 
different nodes are identified as the most influential load 
nodes by the different methods. That is, nodes 14 is 
identified by DC and PRC methods, node 19 is identified by 
CC, BC and NS and node 15 is identified by EC method. 
We therefore carried out the performance analysis based on 
Pearson’s rank correlation coefficient to determine the 
relationship strength between the CNT-based methods and 
the suggested NS method. Thereafter, we implement the 
structural risk analysis assessment by investigating the 
impact of removing the identified sets on influential nodes 
on the entire network using N-1 and N-2 contingency 
criteria. The results obtained from these analyses are 
presented in the subsections that follow: 

TABLE V.  INFLUENTIAL NODE IDENTIFICATION IN THE NIGERIAN 28-BUS SYSTEM 

Bus name Bus number Methods 

DC EC PRC CC BC NS 

Ajah 11 0.0370 0.0071 0.0213 0.0372 20 0.2119 

Akangba 12 0.0741 0.0228 0.0375 0.0438 26 0.3491 

Ikeja-West 13 0.0370 0.0206 0.0194 0.0430 10 0.1464 

Ajaokuta 14 0.1481 0.0661 0.0661 0.0466 97 2.3109 

Aladja 15 0.0741 0.0726 0.0295 0.0395 21 0.2143 

Benin 16 0.0370 0.0040 0.0209 0.0350 23 0.0370 

Jebba 17 0.0370 0.0159 0.0198 0.0278 18 0.0188 

Ayede 18 0.0741 0.0007 0.0406 0.0165 26 0.4743 

Jos 19 0.1111 0.0377 0.0476 0.0473 176 2.4478 

Kaduna 20 0.0741 0.0020 0.0376 0.0209 50 0.1080 

Osogbo 21 0.1111 0.0059 0.0530 0.0220 95 0.1484 

Kano 22 0.0741 0.0130 0.0366 0.0364 26 0.4417 

Alaoji 23 0.0370 0.0018 0.0204 0.0182 20 0.0169 

New Haven 24 0.1111 0.0150 0.0506 0.0365 131 0.0592 

Onitsha 25 0.0741 0.0573 0.0305 0.0366 10 0.1715 

Katampe 26 0.0370 0.0047 0.0197 0.0325 12 0.0033 

Birnin Kebbi 27 0.0370 0.0206 0.0194 0.0340 14 1.1789 

Gombe 28 0.0370 0.0002 0.0226 0.0142 18 2.1951 

TABLE VI.  THE TOP 10 INFLUENTIAL NODES IN THE NIGERIAN 28-BUS SYSTEM USING DIFFERENT METHODS 

Node 

Ranking 

Node numbering 

DC EC PRC CC BC NS 

1 14 15 14 19 19 19 

2 19 14 21 14 24 14 

3 21 25 24 12 14 28 

4 24 19 19 13 21 27 

5 12 12 18 15 20 18 

6 15 13 20 11 12 22 

7 18 27 12 25 18 12 

8 20 17 22 24 22 15 

9 22 24 25 22 16 11 

10 25 22 15 16 15 25 
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Fig. 1. Structural topology of the Nigerian 28-bus system with all the nodes intact 

 

Fig. 2. Correlation matrix for the 5-bus system 
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Fig. 3. Correlation matrix for the 14-bus system 

1) Performance Evaluation based on Pearson 

Correlation Coefficient 
In order to measure the strength of  linear relationship 

that exists among all the CNT-based  (DC, EC, CC, PRC 
and BC) methods and the NSCT-based method (BS), for 
effective detection of the set of influential nodes in a power 
system, the statistical-based approach of Pearson correlation 
coefficient is used. This has the capability to effectively 
measure the linear relationship between these methods (CNT 
and NSCT). The correlation matrices for the three networks 
considered in this work (5-bus, 14-bus and 28-bus) are 
presented in Figs. 2-4. 

As can be seen from Fig. 2, it can be seen that the 
correlation coefficients between the NSCT-based and CNT-
based methods are very high except with EC method whose 
correlation coefficient with BS method is very low (0.0797). 
This shows that a strong relationship exists between the 
node strength (BS) method and all CNT-based methods 
except EC method whose relationship is very weak in the 5-
bus network. The correlation matrix for the 14-bus network 
shown in Fig. 3 indicates a high value of correlation 
coefficient between the NSCT-based (BS) and DC, EC, PRC 
and BC methods. However, it can be seen that a low 
correlation coefficient of 0.2661 exists between the BS and 
CC methods. This implies that in the standard IEEE 14-bus 
system, a strong linear relationship exists between the 
NSCT-based method and DC, EC, PRC and BC methods 
while weak relationship exists between the BS and CC 
methods in the standard 14-bus network. 

The correlation matrix for the Nigerian 28-bus network 
which shows the type of relationship that exists between the 
NSCT-based method and CNT-based methods is shown in 
Fig. 4. As can be seen, the correlation coefficients between 
the BS and all the CNT-based methods are low. The 
implication of this is that there exists a weak correlation 
between these methods. 

Consequently, it can easily be inferred that the capability of 

the CNT-based methods in identifying the important nodes 

in the power system decreases with the system complexity. 

In other words, as the system size is becoming more 

complex, the CNT-based methods may not be suitable for 

identifying the critical nodes whose removal could be 

detrimental to the operation of the network. As such, the 

solution provided using CNT-based methods may not be 

sufficient in detecting influential nodes in a relatively large 

power system. The numerical values for the correlation 

coefficients for the three networks considered in this paper 

are presented in Table VII. As presented in Table VII, 

another bottleneck in identifying the sets of influential 

nodes in large power network is that no unique solution 

exists with the deployment of CNT-based methods and if it 

exists, it could be misleading. 
Based on the foregoing, there is the need to further 

investigate the capability strength of each method for 
identifying the influential nodes in a power system. This is 
carried out by investigating the impact which the removal of 
influential nodes, identified by each method, has on the 
entire network. The overall impact of influential node 
removal on the entire system is measured based on the 
connectivity index. The results obtained for this critical 
contingency assessment are presented and discussed in the 
section that follows: 

TABLE VII.  PEARSON’S RANK CORRELATION COEFFICIENT OF 

Network NS with respect to CBMs 

DC EC CC PRC BC 

5-bus 0.9893       0.0797     0.9918     0.9152     0.9996 

14-bus 0.9935     0.9786     0.2661     0.6948 0.7840 

28-bus 0.3909     0.3061     0.1918     0.3862     0.4659 
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Fig. 4. Correlation matrix for the Nigerian 28-bus system 

2) Performance Evaluation by Structural Risk 

Vulnerability Analysis 
We investigate the impact of the influential node 

removal on the entire Nigerian 28-bus system shown in Fig. 
1. In this analysis, N-1 and N-2 contingency criteria are 
explored. The first two influential nodes identified by each 
of the NSCT-based (NS) and CNT-based (CC, DC, BC, 
PRC and EC) methods are removed and the impact on the 
strength of the network is investigated using the percentage 
Connectivity Index (CI). The numerical results for the first 
two influential nodes identified by each method are 
presented in Table VIII. The affected load nodes when the 
identified influential nodes are removed as well as their 
associated CI are also presented in Table VIII. 

Considering the contingency analysis results presented in 
Table VIII, it can be seen that ten load buses are affected 
when the most influential node identified by NS method 
(node 19) is outaged and the estimated CI is 64.2%. The 
topological structure of the network under this contingency 
condition is presented in Fig. 5. When the second most 
influential node identified by NS method (14) is outaged, it 
can be seen that five load buses are affected and the 
estimated value of CI during this condition is 82.1%. The 
structure of the network under this contingency condition is 
shown in Fig. 6. The topological structure for the network 

when both load buses 14 and 19 are outaged is shown in Fig. 
7. The number of affected buses is fifteen and the CI drops 
to 46.4%. The lower value of CI associated with the removal 
of bus 19, as compared with that obtained when bus 14 is 
removed, suggests that removal of bus 19 from the network 
is more critical than that of bus 14. Also, based on the low 
percentage CI associated with the removal of buses 19 and 
14 (46.4%), it can be inferred that removal of these two 
buses is very detrimental to the operation of the network as it 
could lead to island formation that could result in total 
network blackout.   

Although, same risk vulnerability analysis is established 
when the CC method is used as presented in Table VIII, the 
CC method is associated with a high simulation time 
compared with the NS method. This is so because the NS 
method, which is solely dependent on the interconnectivity 
of the network and independent of the network loading 
conditions. As such, while the CC method is an iterative-
based method, the solution provided by the NS method does 
not involve iteration but provides the solution in just one 
computational time. For the sake of comparison, the time 
using CC method is 4.21 seconds while that of NS method is 
0.11 second. This shows the superiority of the NS method 
over the CC method. 
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Fig. 5. Structural topology of Nigerian 28-bus system when bus 19 is outaged as identified by NS or CC method

 

Fig. 6. Structural topology of Nigerian 28-bus system when bus 14 is outaged as identified by NS or CC method 
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Fig. 7. Structural topology of Nigerian 28-bus system when both buses 19 and 14 are outaged as identified by NS or CC method 

 

When the most influential node identified by the DC 

method (bus 14) is outaged, five other load buses are 

completely removed from the network (similar to Fig. 6). 

The associated percentage of CI for this scenario is 82.1 as 

presented in Table VIII. The structural interconnections of 

the network when the two load nodes 14 and 19 are 

removed from the network simultaneously are shown in Fig 

8 (similar to Fig. 7). Although, with an outage of two load 

nodes (14 and 19), the percentage CI for the network 

reduces to 46.4, which is the same as that obtained for both 

NS and CC methods, the CI associated with the identified 

most influential load node is very high (82.1%) with the use 

of NS and CC methods. The implication of this is that with 

the outage of bus 14, the network integrity is far better and 

the impact of its outage is less critical to the network 

compared to the load node (node 19) identified by NS and 

CC methods. 

 

TABLE VIII.  INFLUENCE OF INFLUENTIAL NODE DETECTION BASED ON 

CONNECTIVITY INDEX IN THE NIGERIAN 28-BUS NETWORK 

Meth

od 

Outaged 

node 

Affected nodes 
o u t a g e

N

 

C I (

%) 

NS 

19 

16 

18, 19  

20, 21, 22 

23, 24, 26, 28 

10 64.2 

14 
11, 12 

13, 14, 27 
5 82.1 

19 & 14 

11, 12 

13, 14, 16 

18, 19, 20, 21, 

22, 23, 24, 26, 27, 28 

15 46.4 

CC 

19 

16 

18, 19  

20, 21, 22 

23, 24, 26, 28 

10 64.2 

14 
11, 12 

13, 14, 27 
5 82.1 

19 & 14 

11, 12 

13, 14, 16 

18, 19, 20, 21, 

22, 23, 24, 26, 27, 28 

15 46.4 

DC 

14 
11, 14 

12, 13, 27 
5 82.1 

19 

16 

18, 19 

20, 21, 22 

23, 24, 26, 28 

10 64.2 

14 & 19 

11, 12 

13, 14, 16 

18, 19, 20, 21, 

22, 23, 24, 26, 27, 28 

15 46.4 

BC 

19 

16 

18, 19  

20, 21, 22 

23, 24, 26, 28 

10 64.2 

24 

18 

20, 21 

24, 23, 26, 28 

7 75.0 

19 & 24 

16 

18, 19,  

20, 21, 22, 

 23, 24, 26, 28 

10 64.2 

PRC 

14 
11, 14 

12, 13, 27 
5 82.1 

21 
18, 20 

21, 23, 28 
5 82.1 

14 & 21 

11 

12, 13 

14, 18, 20 

21, 23, 27, 28 

10 64.2 

EC 

15 15 1 96.4 

14 
11, 14 

12, 13, 27 
5 82.1 

15 & 14 
11, 14 

12, 13, 15, 27 
6 78.6 
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Fig. 8. Structural topology of Nigerian 28-bus system when both buses 14 and 19 are outaged as identified by DC method 

 
 

Fig. 9. Structural topology of Nigerian 28-bus system when bus 24 is outaged as identified by BC method 

Although, with the BC method, bus 19 is identified as 
the most influential node, the next node to the most 
influential node identified by this method is node 24. In 
order to verify the effectiveness of this method compared 
with the results obtained using the NS method, the 
topological structure for the network when the identified 
most influential node (node 19) and the next node to it 
(node 24) simultaneously removed from the network, is 
analyzed. Using N-1 criterion, removal of load node 19 
from the network leads to an outage of ten other nodes and 
the structural network for this scenario has been presented 

in Fig. 5. Also, Fig. 9 shows the structural network obtained 
when load node 24 is outaged from the original network. It 
can be seen that removal of load node 24 caused seven 
other load nodes to be removed. Furthermore, it can be 
seen, as presented in Table VIII, that when the two load 
nodes (19 and 24) are removed from the network, ten load 
nodes are affected which is the same as the number of load 
nodes affected when the most influential node (node 19) is 
removed as shown in Fig. 10. As such, the impact of 
removing load node 24 from the network is insignificant 
and the total estimated CI for this method remains 64.2% 
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which is less than 46.6% obtained for both NS and CC 
methods. 
When the PRC method is applied, the structural topology of 
the network with node 21 removed and both nodes 14 and 
21 removed are shown in Fig. 11 and Fig. 12 respectively. 
By going through a similar analogy, it can be seen that in 
PRC method, node 14 is identified as the most influential 

node whose outage affects only five load nodes with the CI 
of 82.1%. The second load node to this node 14 is identified 
as node 21 whose outage also affected five load nodes with 
the CI of 82.1. The overall network CI when these two load 
nodes are removed from the network is 64.2% which is 
much greater than that obtained with the NS and CC method.

 

Fig. 10. Structural topology of Nigerian 28-bus system when both buses 19 and 24 are outaged as identified by BC method 

 

    

Fig. 11. Structural topology of Nigerian 28-bus system when bus 21 is outaged as identified by PRC method 
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With the deployment of EC method, the most influential 
load node identified is node 15 whose removal only affects 
itself with the associated CI of 96.4%. This implies that 
when load node 15 is outaged, the effect on the remaining 
network interconnections is highly insignificant and the 
stability of the integrity of the network is maintained. The 

structural topology for such network is shown in Fig. 13. 
As shown in Fig. 14, the removal of both the first two sets 
of influential load nodes (15 and 14 as identified by the EC 
method) in the network affected six load nodes to be 
outaged from the network with the CI value of 78.6% as 
presented in Table VIII. 

 

Fig. 12. Structural topology of Nigerian 28-bus system when both buses 14 and 21 are outaged as identified by PRC method 

 

Fig. 13. Structural topology of Nigerian 28-bus system when bus 15 is outaged as identified by EC method 
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Fig. 14. Structural topology of Nigerian 28-bus system when both buses 15 and 14 are outaged as identified by EC method 

It can therefore be inferred from the structural risk analysis 

results obtained that the most influential node which could 

also be referred to as the most critical node in the network 

is load node 19 as identified by NS, CC, DC and BC 

methods. This is because the impact of removing this bus 

19 from the network is very high as seen from its associated 

CI value presented in Table VIII. It can also be seen that the 

load node whose outage presents the highest CI value is 

node 15 as identified by the EC method. This implies that 

removal of load node 15 from the network does not have 

any significant influence on the stability of the network. 

Also, based on this analysis, it can be seen that both PRC 

and EC methods are not suitable for identifying the most 

influential load nodes within a large undirected power 

system network. As a result of high degree of importance of 

the identified load node 19, there is therefore the need for 

this node to be provided with adequate protection in order 

to protect its outage which could be detrimental to the entire 

network. This will ensure maximum stability of the network 

and hence avoidance of frequent blackout of the system. 

 

2) Statistical evaluation of network robustness 

considering single-node and multi-node outages 
In this section we evaluated the basic statistical 

topological properties of the network in order to analyse the 
robustness of the network. This assessment is highly 
important so as to further validate the superiority of the 
results obtained using the proposed node strength method 
over other existing graph-theoretical-based methods. In this 
analysis, three scenarios are considered; base case (no 
outage) scenario, single-node case and multi-node outage 
scenario. We evaluated the global efficiency for the three 

cases and obtained the following results: 0.3298 was 
obtained for the no-outage case, 0.2557 was obtained when 
node 14 failed, 0.3264 was obtained when node 15 failed, 
0.2802 was obtained when node 21 failed, and 0.2154 was 
obtained when node 19 failed. It can be inferred from these 
results that the least average global efficiency of 0.2154 is 
associated with the removal of node 19 from the network. 
This significant reduction in the network average global 
efficiency from 0.3264 when all the nodes are intact to 
0.2154 when node 19 failed implies that the network is 
characterized by a low robustness when node 19 failed.  

For the sake of comparison, the results for both the base 
case and multi-node contingency are presented in Table IX.   
Table IX presents the results obtained for the base case 
scenario when all the nodes within the network are intact as 
well as the multi-node scenario when two nodes are 
simultaneously removed from the network. It can be seen 
from the results that for the base case scenario, the network 
characteristic path length is 4.1164, the global and local 
efficiency are 0.3298 and 0.8520 respectively while the 
clustering coefficient, which represents the extent to which 
the network nodes are clustered, gives 0.7304. 

These results show that with no contingency situation 
within the network, the average path length or distance 
between the network nodes is 4.1164 while it is found to be 
significantly increased when two nodes are outaged from the 
network. For example, when nodes 14 and 15 failed, the 
path length increased from 4.1164 to 12.1357, when nodes 
14 and 21 failed, it increased to 14.0471, when nodes 19 and 
24 failed, it turned out to be 12.3796 and when nodes 14 and 
19 failed, the average characteristic path length for the 
network increased to 14.5675.  
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TABLE IX.  MULTI-NODE CONTINGENCY SCENARIO 

 Base Case  Outaged nodes 

14, 15 14, 21 19, 24 14, 19 

c
L  4.1164 12.1357 14.0471 12.3796 14.5675 

g
E  0.3298 0.1504 0.1059 0.1272 0.0618 

c
C  0.7304 0.3445 0.2377 0.3625 0.1397 

l
E  0.8520 0.4761 0.4689 0.4786 0.1712 

 
Based on these results, it can be seen that the network 

has the highest average characteristic path length when 
nodes 14 and 19 are simultaneously removed from the 
network. The implication of this is that the rate at which 
power flows through the network is significantly reduced as 
the path length increased. As such, the network robustness 
decreased with an increase in the path length. Hence, the 
network will experience a relatively low robustness when 
nodes 14 and 19 failed. Since the clustering coefficient of a 
network ranges between 1 and 0, it can therefore be said that 
the network with a clustering coefficient of 0.7304, with no 
contingency as shown in Table IX, is relatively high. 
However, it can be seen that when two network nodes failed 
simultaneously, the clustering coefficient of the network 
dropped drastically. It can be seen that the outage nodes 14 
and 19 whose average clustering coefficient is 0.1397 
presented the least average clustering coefficient. This 
significant decrease from the base case to the contingency 
case means that there is a significant decrease in the network 
robustness which presents its worst case when nodes 14 and 
19 simultaneously failed. Considering the local and global 
efficiencies of the network, a significant difference can be 
seen by comparing the results when all the nodes are intact 
and the results when two nodes are removed from the 
network simultaneously. It can be seen from Table IX that 
the least local and global efficiency of 0.1712 and 0.0618 
respectively are obtained when nodes 14 and 19 failed. Since 
these topological properties measure how efficient and how 
robust a network is, it can be said that the network is less 
efficient with the least robustness when nodes 14 and 19 are 
simultaneously removed from the network. 

Based on the foregoing, it can be seen that the most 
critical node whose failure could lead to the disintegration of 
the network is node 19 as revealed by the network average 
global efficiency analyses. Furthermore, it can be shown that 
the worst-case contingency scenario which could lead to 
total collapse of the network is experienced when both buses 
14 and 19 are outaged from the network simultaneously. 
These results corroborated that obtained in the previous 
sections using rank correlation as well as connectivity index 
approaches.   

The comparison of the associated time complexities for 
the proposed approach and the five graph-theory-based 
methods presented are presented in Table X. It can be seen 
that the time complexity for all the methods increases as the 
network size increases. For example, considering the 5-bus 
system, it can be seen that the least time complexity of 0.04 
seconds is associated with the DC method followed by he 
proposed NS method with a time complexity of 0.08 seconds 

and then followed by the BC method with 0.09 seconds 
while the highest time complexity of 0.37 seconds is 
associated with the CC method. Considering 14-bus system, 
it can be seen that the least time complexity of 0.05 seconds 
is associated with the DC method followed by the proposed 
NS method with the time complexity of 0.09 seconds while 
the EC method has the highest time complexity of 0.48 
seconds. The least value of time complexity associated with 
the DC method could be attributed to the fact that the DC 
method has the simplest mathematical formulations and very 
easy to calculate amongst all graph-theory-based methods.  

However, it can be seen that as the network size 
increases to 28-bus, the least time complexity of 0.11 
seconds is associated with the NS method followed by the 
DC method with the time complexity of 0.18 seconds while 
the CC method has the highest time cost of 4.21 seconds. 
This shows that the proposed NS method has the least time 
cost when compared with the existing graph-theoretical-
based methods. This strong capability of the NS method to 
swiftly identify the most critical node within the network 
could be traced to the fact that it fully explores the sparsity 
property of the network under consideration and as such 
saves a lot of computational time and computer memory 
space required for storage since only the non-zero elements 
are to be stored. For the three networks considered in this 
paper, by exploring the sparsity method, the number of non-
zero elements to be stored in the computer memory in for the 
computation of the RED using the 5-bus, 14-bus and 28-bus 
systems are depicted in Figs. 15, 16 and 17 respectively.  

  These results are also presented in Table XI. It can be 
seen that the percentage of the non-zero elements to be 
stored decreases with the network size. For example, in a 5-
bus system, only 19 non-zero elements are stored in the 
computer memory out of the total 25 elements which gives a 
sparsity index of 0.76 (76%). Also, in the 14-bus system, out 
of the total 196 elements, only 54 non-zero elements are 
stored in the computer memory with a sparsity index of 
0.276 (27.6%) while for the 28-bus network, only 90 non-
zero elements out of the total 784 elements are stored in the 
computer memory with a sparsity index of 0.76 (11.5%). 

TABLE X.  COMPARISON OF TIME COMPLEXITY FOR THE APPROACHES 

Network 

Size 

Methods 

DC EC CC PRC BC NS 

5-bus 0.04 0.24 0.37 0.14 0.09 0.08 

14-bus 0.05 0.48 0.36 0.10 0.11 0.09 

28-bus 0.18 1.24 4.21 0.27 2.54 0.11 

TABLE XI.  SPACE COMPLEXITY ANALYSIS OF NS METHOD BASED ON 

SPARSITY CHARACTERISTICS 

Network 

size 

Number 

of 

nodes  

Number 

of lines 

Size of 

RED 

Proportion of 

non-zero 

elements 

Network 

Sparsity 

index 

5-bus 5 7 5  5 19/25 0.760 

14-bus 14 20 14  1

4 

54/196 0.276 

28-bus 28 31 28  2

8 

90/784 0.115 
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Fig. 15. Sparsity property of RED matrix in the IEEE 5-bus system 

 

Fig. 16. Sparsity characteristic of RED matrix in the IEEE 14-bus system 
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Fig. 17. Sparse symmetric matrix for the practical Nigerian 28-bus system 

IV  CONCLUSION 

Identification of a set of identification of a set of 
influential as well as the most influential buses within power 
systems has been presented in this paper. A NSCT-based NS 
framework, which is suitable for swift identification of sets 
of influential nodes is suggested in this paper. Different 
traditional CNT-based methods for detecting the sets of 
network influential nodes are also presented for the sake of 
comparison. The results obtained using the NS and CNT-
based methods were compared. The results showed that all 
the methods were resolute in quick identification of 
important load nodes that are susceptible to voltage 
instability during critical outages in a relatively small power 
system. However, it is found that the accuracy of the CNT-
based methods is not guaranteed as the network size 
becomes increasingly large. Consequently, the application of 
CNT-based methods may not be suitable for identifying a set 
of influential nodes in a large-sized power practical system.  
It can, therefore, be inferred based on the results that the NS 
scheme is a better alternative approach for quick 
identification of most influential load nodes. This method 
offers some benefits over other methods, for example, it 
does not involve complex mathematical formulations (non-
linear equations) and hence, the convergence issues faced by 
the iterative-based methods are completely eliminated 
thereby offering full advantage of space and time 
complexities during simulations. Consequently, this method 
is better positioned to serve as an efficacy, proficient and 
important tool for practical power system analysis, planning 
and operations.  
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