

Abstract—To overcome the challenges of obstacle avoidance

for Unmanned Aerial Vehicles (UAVs) in autonomous flights,

this paper proposes the Dual Experience Attention Convolution

Soft Actor-Critic (DAC-SAC) algorithm. This algorithm

integrates a dual experience buffer pool, a self-attention

mechanism, and the Soft-Actor-Critic algorithm with a

convolutional network. The dual experience buffer pools are

used to solve the problem of ineffective UAV training due to the

scarcity of successful training data. To overcome the drawbacks

of the original Soft Actor-Critic (SAC) algorithm in handling

image data, a Convolutional Neural Network (CNN) is applied

to reconstruct the actor and critic network, allowing for better

image feature extraction and classification. Furthermore, a

self-attention mechanism is employed by adding a convolutional

self-attention layer to the network. This modification enables

dynamic adjustments for the attention weights based on varying

input image features, effectively addressing focus-related

challenges. Two simulation experiments are performed and the

DAC-SAC algorithm achieves a 99.5% success rate in a known

environment and an 84.8% success rate when dealing with an

unknown environment. These results confirm that the proposed

algorithm enables autonomous obstacle avoidance for UAVs

even when considering depth images as input.

Index Terms—Deep Reinforcement Learning; DAC-SAC;

UAV; Self-Attention; Obstacle Avoidance

I. INTRODUCTION

multi-rotor aircraft, a type of Unmanned Aerial Vehicles

(UAVs), integrates automatic control, image processing,

and other technologies. It has gathered increasing attention in

various domains, including agricultural plant protection,

security monitoring, and research and rescue activities [1]-[3].

Manuscript received July 19, 2023; Revised January 3, 2024.

This work was supported by the Natural Science Foundation project of

Liaoning Province (2021-KF-12-06).
Yuan Gao is a postgraduate student of School of Computer Science and

Software Engineering, University of Science and Technology Liaoning,

Anshan, 114051, China. (e-mail: 1411251936@qq.com).
Ling Ren is a Lecturer of School of Innovation and entrepreneurship,

University of Science and Technology Liaoning, Anshan, 114051, China

(corresponding author, phone: 152-4220-3353; e-mail: 176878392 @qq.com
)

Tianwei Shi is an associate Professor of School of Computer Science and

Software Engineering, University of Science and Technology Liaoning,
Anshan, 114051, China. (e-mail: tianweiabbcc @163.com).

Teng Xu is a postgraduate student of School of Computer Science and

Software Engineering, University of Science and Technology Liaoning,
Anshan, 114051, China. (e-mail: 1220175209@qq.com).

Jianbang Ding is a postgraduate student of School of Computer Science

and Software Engineering, University of Science and Technology Liaoning,
Anshan, 114051, China. (e-mail: jianbang0219@qq.com).

In recent years, vision-based autonomous UAV flight

obstacle avoidance has become a prominent area of research.

When flighting in unknown environments, accurately

describing the environment through mathematical models

becomes challenging. Therefore, Some researchers have

taken advantage of Deep Learning's (DL) superior

performance in visual tasks, combining it with drones to gain

a sense of the environment. For instance, a model based on a

convolutional neural network (CNN) was used as an indoor

environment classifier to achieve indoor monocular

navigation of drones [4]. Deploying images as inputs to the

CNN allows UAV navigation in complex forest

environments [5]. Moreover, there exist approaches aiming

to train UAV controllers to autonomously predict the

instance when a UAV may crash [6]. However, DL-based

methods face challenges, such as excessive reliance on

labeled data, high computational resource requirements, and

limited model generalization capabilities. To address these

challenges, researchers have combined deep reinforcement

learning with UAVs.

Deep Reinforcement Learning (DRL) was realized by

combining DL with Reinforcement Learning (RL). RL aims

to learn optimal strategies through the interaction of an agent

with the environment. Thus, Deep Neural networks (DNNS)

were used in DRL to fit policies or value functions. It enables

agents to directly perceive information in high-dimensional

spaces and learn more complex strategies.

In the application of the DRL algorithm. The Proximal

Policy Optimization (PPO) was used to improve and adjust

stock trading strategies [7]. Therefore, a virtual network

function service chain (VNF-SC) deployment algorithm

based on DRL was proposed [8]. In addition, DRL has also

been applied to autonomous obstacle avoidance and tracking

of UAV flight paths [9]-[10].

However, the use of deep networks in deep reinforcement

learning can require a lot of computational resources,

resulting in excessively lengthy reasoning and training times.

Such as YOLOv6 and Visual Transformer network [11]-[12].

In addition, shallow network structures may not efficiently

extract the required features from the visual information.

Therefore, neural networks in DRL algorithms must be

crucially tailored to tackle these challenges. For instance, the

Variational Auto-Encoder (VAE) was applied to process

image information. Its generated features are input into the

DRL algorithm to avoid obstacles in UAV flights [13].

Therefore, UAVs’ autonomous flight obstacle avoidance

can be achieved using DRL. In addition, UAVs acquire data

through interactions with their environment, reducing the

Autonomous Obstacle Avoidance Algorithm for

Unmanned Aerial Vehicles Based on Deep

Reinforcement Learning

Yuan Gao, Ling Ren, Tianwei Shi, Teng Xu, Jianbang Ding

A

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

necessity, to some extent, for data annotation and enhancing

the model’s generalization capabilities.

Tackling the aforementioned challenges, the development

of an adaptive and intelligent obstacle avoidance algorithm to

complete autonomous flight obstacle avoidance for UAVs

has become an urgent research priority to deal with. This

algorithm considers input depth images and incorporates the

Soft-Actor-Critic (SAC), the dual experience buffer pool, the

convolutional actor-critic network, and the self-attention

mechanism algorithms. This proposed model trains the UAV

to complete the autonomous flight obstacle avoidance task in

a simulation environment.

In this study, the Unreal Engine 4 (UE4) was deployed to

build the simulation training and testing environment. Thus,

depth images, collected from the UE4 using AirSim, were

employed as inputs to facilitate the autonomous flight

obstacle avoidance of UAVs in simulation environments. As

a result, experimental findings demonstrate that, compared to

other DRL algorithms, the proposed DAC-SAC algorithm

exhibits faster convergence in UAV obstacle avoidance tasks,

performs exceptionally well in obstacle avoidance in the

training environment, and demonstrates a superior degree of

adaptability in unfamiliar environments.

To sum up, the remainder of this paper was organized as

follows: Section II provides an overview of the related work

regarding UAV obstacle avoidance navigation methods.

Section III outlines the methods developed in this study. In

Section IV, a detailed presentation of the experimental results

was generated, and Section V summarizes the findings and

limitations of this paper and proposes future research

directions.

II. RELATED WORK

A. Traditional Methods

In conventional approaches, UAVs rely on sensors to

identify obstacles, employ predefined strategies for

avoidance, and devise flight paths using path planning

algorithms. The optimal three-dimensional terrain obstacle

avoidance path was computed using a combination of

dynamic programming and tree search [14]. Moreover, to

optimize obstacle avoidance, an algorithm centered on a

single grid point was used [15]. The obstacle avoidance

path-solving model, based on mathematical optimization

methods, was intuitive and easy to grasp. However, when

constraint conditions became more complex, the

computational workload and difficulty escalated, posing a

challenge in meeting real-time requirements.

Furthermore, the Visual Simultaneous Localization And

Mapping (VSLAM) algorithm can attain UAV positioning,

navigation, map construction, and obstacle avoidance in

unknown environments through the perception and analysis

of the surrounding environment [16]. Traditional algorithms

have been extensively studied and applied, but they often

involve multiple parameters and need to be optimized for

specific environments.

B. Deep learning-based obstacle avoidance methods

The CNN presents a promising solution for the visual

navigation challenges in UAV obstacle avoidance algorithms

embedded in DL. Moreover, CNN has made significant

advances in the field of image processing, delivering superior

feature extraction results compared to the manual dimension

reduction. It can also enhance the sensing and obstacle

avoidance capabilities of UAVs. For instance, pre-training

the YOLO network and integrating it into the Advantage

Actor Critic (A2C) model enabled successful training of the

underwater vehicles for gate navigation [17]. Furthermore,

UAVs were trained using decision data, collected from

manually navigating through forests, resulting in a successful

forest navigation [5]. Similarly, the collection of urban road

data for drones’ train yields in successful avoidance of

common city obstacles [18].

However, within the domain of UAV obstacle avoidance

methods grounded in DL, certain challenges persist. These

encompass the need to manually collect and label extensive

datasets, coupled with the fact that DL models are typically

large and require extended inference times. This, in turn,

poses a potential compromise to the performance of UAV

obstacle avoidance.

C. Reinforcement learning-based obstacle avoidance

methods

Reinforcement learning embraces the "trial and error"

mechanism, emphasizing interactive learning with the

environment to derive optimal decisions guided by

environmental feedback. This approach holds great promise

in the realm of UAV obstacle avoidance. Reinforcement

learning can be classified into value function-based and

policy-based approaches. As an illustration of a value

function-based reinforcement learning algorithm, the

Q-learning algorithm has proven its utility in various

applications, including mobile robot navigation [19].

Moreover, DeepMind, introduced the Deep Q-Network

(DQN), an innovative DRL algorithm that combines DL with

reinforcement learning, to provide a continuous action spaces

or continuous state spaces [20]. Subsequently, various

scholars have explored the application of reinforcement

learning in the UAV domain [21]. Building upon the Double

DQN algorithm, researchers have achieved autonomous

obstacle avoidance for UAVs for indoor settings [22]. Some

scholars have even attempted to apply strategy-based DRL

algorithms to UAVs [23].

However, due to the high parameters’ complexity and

nonlinear characteristics of visual learning processes,

extensive data and computational resources are needed

during training. For instance, the CNN model requests a

substantial number of images and an extended training

duration to generate a suitable DRL strategy [24].

Furthermore, policy-based DRL algorithms display lower

convergence compared to discrete space DRL algorithms,

primarily because of the increased constraints in complex

environments [25].

Therefore, this paper employs a DRL approach that uses

depth images as input for UAV obstacle avoidance training.

The application of a depth image reduces the channel

dimension of the image, and the key depth feature

information was preserved, therefore facilitating faster

convergence in obstacle avoidance algorithms.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

Fig. 1. Structure of the UAV obstacle avoidance decision system

III. METHODS

Fig. 1 displays the structure of the UAV obstacle

avoidance decision system. The simulation environment was

designed using the UE4 game engine and AirSim, an

open-source platform provided by Microsoft. This simulator

offers a 3D flight and training environment for drones. Data

processing system consists of generating depth images in

real-time using AirSim. Moreover, the experience buffer pool

was employed to store the data. The UAV decision-making

system was built upon the SAC algorithm. Initially, when not

trained, the UAV's flight actions (e.g., forward, turn left, and

turn right) are determined through the actor network based on

the UAV’s current state. Subsequently, during training, the

decision-making system was mostly trained through the

extraction of data from the experience buffer pool. The actor

network optimizes the evaluation of its output actions using

the critic network to achieve improved flight action

classification. Finally, the UAV performs these actions in the

simulation environment, resulting in acquiring new flight

data.

Therefore, the remaining part of this section elaborates the

methods used to implement the DAC-SAC algorithm,

encompassing the simulation environment, the SAC

algorithm framework, the improved Actor-Critic network

structure, the self-attention mechanism, the dual experience

buffer pool, the delayed learning time, and, finally, the

reward function.

A. Simulation Environment

AirSim was an open-source drone and driverless car

simulator, developed by Microsoft [26]. It supports Unity 3D

and UE4 software, and integrates various sensors, such as

vision sensors, to capture high-resolution real-time scenarios.

Through the proposed experiment, firstly, a rectangular

closed corridor environment was constructed using the

powerful physics engine and rendering technology in

UE4.This environment served as the simulation setting for

UAV obstacle avoidance training and testing. Additionally,

in AirSim, depth images can be directly generated using

integrated vision sensors and they serve as inputs for the DRL

network.

B. Soft-Actor-Critic algorithm framework

In standard reinforcement learning algorithms, the main

objective for the agent consists of attaining the maximum

cumulative reward and acquiring an optimal strategy to

explore the environment.

To start, at time 𝑡, the agent selects a corresponding action

𝐴𝑡 based on its current state 𝑆𝑡 and strategy 𝑌 . Upon

execution, the agent involves with the environment, receiving

a corresponding reward 𝑅(𝑆𝑡|𝐴𝑡) based on the received

feedback from the environment. Furthermore, the action

value function 𝑄𝑌 was employed to estimate the expected

sum of rewards associated with considering a specific action

with respect to a given state. Subsequently, the expectation

function 𝐸(𝑆𝑡|𝐴𝑡) was applied to compute the expectation of

the next state, while considering the current action and state.

Finally, by accumulating the maximum reward and strategy

𝑌, the optimal strategy 𝑌∗ was computed. It can be expressed

as follows:

𝑌∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝐸(𝑆𝑡|𝐴𝑡) ∼ 𝑄𝑌 [∑ 𝑅(𝑆𝑡|𝐴𝑡)] . (1)

To address the challenge of continuous space problems,

three algorithms, namely Deep Deterministic Policy Gradient

(DDPG), Proximal Policy Optimization (PPO), and SAC,

were proposed [27]-[29]. Among them, the SAC algorithm

combines the Actor-Critic approach with maximum entropy

reinforcement learning, achieving an improved convergence

and stability.

Through policy optimization, an entropy regularization

term was incorporated into the SAC algorithm to maintain

policy randomness and promote the UAV for space

exploration. In addition, it maximizes the accumulation of

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

Fig. 2. DAC-SAC algorithm update process

reward expectations throughout the learning process,

ultimately yielding to the optimal strategy 𝑌∗ described as

follows:

𝑌∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝐸(𝑆𝑡|𝐴𝑡)~𝐷

[∑ 𝛾𝑡 (𝑅(𝑆𝑡|𝐴𝑡) + 𝛼𝐻(𝑌(∙ |𝑆𝑡)))
∞

𝑡=0
] . (2)

where 𝛼 represents the temperature factor and serves as the

weight for the entropy term 𝐻(𝑌(∙ |𝑆𝑡)). Considering the

dynamic nature of the immediate reward 𝑅(𝑆𝑡|𝐴𝑡), the use of

a fixed 𝛼 value may introduce training instability. Therefore,

automatic adjustment was required. Moreover, when 𝛼 was

small, the policy tends to consider the exploration of different

actions, while a larger 𝛼 value favorably disposes the policy

toward performing known optimal actions. In addition, the

entropy 𝐻(𝑌(∙ |𝑆𝑡)) was defined as follows:

𝐻(𝑌(∙ |𝑆𝑡)) = − ∫𝑌(𝑥|𝑆𝑡) log 𝜋(𝑥|𝑆𝑡)
𝑥

𝑑𝑥. (3)

where log 𝜋(𝑥|𝑆𝑡) indicates the logarithm of the conditional

probability that the random variable 𝜋 considers for the 𝑥

value under specific state St, and 𝑌(𝑥|𝑆𝑡) was the conditional

probability distribution where the random variable 𝑌

considers the value 𝑥 under the given state St .

The automatic adjustment of 𝛼 was approximated using an

iterative gradient descent method. This process optimizes 𝛼

based on the logarithm of the reference entropy 𝐻 and the

conditional probability distribution 𝑌(𝑥|𝑆𝑡). The

optimization formula was expressed as follows:

𝐹(𝛼) = 𝐸𝐴𝑡
[−𝛼 log 𝑌(𝐴𝑡|𝑆𝑡) − 𝛼𝐻]. (4)

In more detail, the update process of the DAC-SAC

algorithm was illustrated in Fig. 2 (A1 is action, A2 is next

action, S1 is state, S2 is next state, R is reward, D is done)

where the UAV stores the data including state S, action A,

reward R, next time state SS, and end sign ‘done’ generated

using the interaction process in a buffer. The target-critic

network gets UAV state and action feedback from the actor

network, computes the TDError value for the current strategy,

and optimizes the critic network. As for the actor network,

the critic network evaluates the Q value of the action taken

under the current policy, considering the current state as well

as the action fed back by the actor network. This information

was used to calculate losses, update actor networks, and

optimize obstacle avoidance strategies.

C. Improved Actor Critic network structure

The DRL algorithm, with its actor-critic structure, can

select any action residing inside the continuous action space.

However, DRL algorithms typically employ lightweight

network structures, making them unable to execute complex

visual information. To enable UAVs autonomous obstacle

avoidance using visual information as input, it was necessary

to optimize the lightweight structure of the actor-critic

network. The optimization approach involves a CNN to

implement the Gaussian strategy for both the actor and critic

networks. The formal network structure comprises four

convolutional layers, two convolutional self-attention layers,

two pooling layers, one fully connected layer, and, finally,

two parallel fully connected layers. As for the latter network

structure, it consists of four convolutional layers, two

convolutional attention layers, two pooling layers, and two

fully connected layers. The modified structure for both the

actor and critic networks was displayed in Fig. 3

In the network, Firstly, depth images were fed into the

actor network, and image features were extracted through

convolution and pooling. Secondly, Flatten layer was used to

compress the output tensor into one dimensional tensor, and

the data was fed into the fully connected layer. After passing

through this layer, the output data was sent to the parallel full

connection layer. Then, to calculate the mean and logarithmic

probability of the action. therefore, it uses reparameterization

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

to compute the action probability from the mean and

logarithmic probabilities of the action. Finally, input the state

and action outputs from the actor into the critic network. It

processes data through the same feature extraction method

and evaluates the actions output using the current actor

policy.

Fig. 3. Modified structure of Actor and Critic networks

D. Self-Attention

Self-attention mechanism was a technique used to increase

the expressive capabilities of NNs. The CNN was used to

implement the convolutional self-attention module. Initially,

this module was used to extract significant information from

the input tensor. Consequently, the extracted information was

weighted and combined with the original input, thereby

improving the expressive power of the initial input. The

structure of the self-attention technique was proposed in Fig.

4.

Fig. 4. Self-Attention structure

First, three convolutional layers convolve the input feature

graph X (Input) to obtain the query vector Q, the key vector K,

and the value vector V. The attention matrix was then derived

based on the multiplication of the query vector Q and key

vector K, followed by the generation of the normalized

attention matrix A (Attention Map). Subsequently, the value

vector V was multiplied by the attention matrix to yield the

weighted attention matrix O (Out). It was then reshaped to

match the format of the input feature graph X. Finally, the

output feature map Y (Output) was acquired by adjusting the

ratio between the weighted attention matrix and the input

feature map using a learnable scaling factor gamma. as

represented here below:

Y = γ ∗ O + X. (5)

Within the Actor-Critic network, the inclusion of a

convolutional attention layer enables adaptive adjustment of

attention weights in response to different input image

features. This addresses the focus area challenge, enhancing

the model’s learning and generalization capabilities.

E. Dual experience buffer pool

In the process of training UAVs for autonomous obstacle

avoidance, data collection becomes necessary for model

updates. Consequently, experience buffer pools are

formulated to store relevant data. Throughout the training

process, especially in its early stages, the amount of collision

data often outweighs instances of successful obstacle

avoidance. Storing all this data in a single Experience Buffer

Pool (EBP) can hinder the UAV’s ability to learn successful

obstacle avoidance strategies from failed experiences. In

response, a Dual Experience Buffer Pool (DEBP) was

introduced to manage the interaction between the UAV and

its environment. This DEBP consist of two components: 1)

an EBP for successful obstacle avoidance, and 2) an EBP of

unsuccessful obstacle avoidance. Thus, the DEBP assists the

model in obtaining a substantial amount of successful data

during the updates, thereby enhancing training and

empowering the UAV to learn optimal obstacle avoidance

strategies.

F. Delayed learning

Delayed learning was an effective strategy to enhance the

training efficiency of reinforcement learning algorithms.

During the typical training process of the Actor-Critic

network structure, real-time update strategies are frequently

applied. However, when considering autonomous obstacle

avoidance for UAVs, real-time updates may result in frequent

alterations regarding the obstacle avoidance strategy.

Therefore, the algorithm stability can be reduced, the

learning efficiency may diminish, and the jitter of the

obstacle avoidance strategy may increase.

Consequently, in the SAC algorithm’s training process, a

delayed learning strategy was introduced to postpone

network updates until reaching the conclusion of each

training round. This method was designed to minimize

instability in the training process and amplify learning

efficiency. The delayed learning strategy guarantees

consistency in the UAV’s obstacle avoidance strategy

approach, promoting stability in its interactions with the

environment. This, in turn, reduces the estimation error in Q

values attributed toward uncertainty. Meanwhile,

accumulated experiences are batch-updated to the model’s

parameters, enhancing training stability and convergence

speed. This strategy not only alleviates the oscillations often

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

encountered in the non-stationary gradient descent, but also

helps the model to process and utilize the long sequence

information more effectively. This, thereby, enables better

discovery of hidden structural features within the state space.

G. Reward Functions

The reward function comprises a conditional reward

function and a flight distance reward function. In accordance

with the requirements of the reinforcement learning

algorithm, specific types and values for conditional reward

are established, as detailed in Table Ⅰ.
TABLE Ⅰ.

CONDITIONAL REWARD TYPES AND CONDITIONAL REWARD VALUES

Award Type Award Values

Collision -30

Arrival at Destination +200

Flight Height Overrun -20

Maximum Number of Steps -20

The conditional reward function 𝑅𝑋 can be expressed as

follows:

𝑅𝑋 = {

𝑅𝐶 , Collision
𝑅𝑇 , Arrival at destination
𝑅𝑆, Maximum number of steps
𝑅𝐵, Flight height overrun

(6)

When calculating the reward function for flight distance,

the initial determination of the flight direction was based on

the UAV's yaw. Subsequently, the distance reward, denoted

as Dr, was obtained through the Euclidean distance between

the UAV and the target point. The flight distance reward,

denoted as RD, was then derived by calculating the sum of

weighted Dr and the cos(yaw) as follows:

𝑅𝐷 = ∑(−𝐷𝑟 ∗ 0.01 + cos(𝑦𝑎𝑤)) . (7)

During the training process, the conclusion of each

round was determined by assessing the collisions and the

number of taken steps. The final reward function R was

defined as follows:

𝑅 = 𝑅𝑋 + 𝑅𝐷. (8)

IV. EXPERIMENT

A. Environment Setup

The simulation environment information and the

experimental equipment setup are displayed in Table Ⅱ.
TABLE Ⅱ.

EXPERIMENTAL EQUIPMENT SETUP AND SIMULATION ENVIRONMENT

INFORMATION

Hardware/Frameworks Parameters and Versions

CPU Intel Core i7-11700

GPU NVIDIA RTX 3060TI

RAM 80 GB

Operating System Windows 10

Program Language Python 3.9

ML Library Pytorch 1.12.1

Simulator Airsim 1.8.1

Game Engine Unreal Engine 4.27.2

In the experiments, UE4 was used to design two simulation

environments, identified as Environment 1 and Environment

2. These environments are identical as they possess

dimensions of 55 meters in length, 10 meters in width, and 5

meters in height. Moreover, they are specifically designed for

UAV obstacle avoidance training.

In Environment 1, cylindrical obstacles, numbered from 1

to 4, are placed at respective intervals of 8 meters and 2

meters along the length and width, whereas cylindrical

obstacles, numbered from 5 to 7 and from 12 to 21, are

spaced at intervals of 6 meters and 2 meters regarding the

length and width, respectively. moreover, obstacles

numbered from 8 to 11 are placed at intervals of 6 meters

along the length 1.5 meters along the width. As for the

diameter of the cylindrical obstacle, it was set to 1 meter. Fig.

5 presents a top view of Environment 1, and Environment 1

was shown in Fig. 6.

Fig. 5. Top view of Environment 1

Fig. 6. Environment 1

Environment 2, on the other hand, features wall-type

cylindrical obstacles, numbered from 1 to 5, with each

obstacle positioned 9 meters apart. As for the wall, it has a

length of 10 meters and a height of 5 meters. Moreover, the

irregular area enclosed within the walls represents the UAV’s

traversable area. A top view of Environment 2 was

highlighted in Fig. 7, while the complete details of this

environment are featured in Fig. 8.

The "Start" mark represents the take-off position of the

UAV in the environment, and the "End" area represents the

safe landing area of the UAV.

The security zone’s dimensions are set to a length of 10

meters and a width of 1 meter. A successful obstacle

avoidance was completed when the UAV safely reaches the

safety zone.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

Fig. 7. Top view of Environment 2

Fig. 8. Environment 2

B. Dual Experience Buffer Pool and Self-Attention Setup

To validate the effectiveness of the dual experience buffer

pool and the self-attention network in enhancing the UAV

obstacle avoidance performance, the proposed experimental

setup was divided into two parts: the evaluation of the

effectiveness of the DEBP and the assessment of the

effectiveness of the self-attention network.

In more detail, in the first part, Environment 1 was used as

the validation environment for this method. Consequently,

the cumulative reward size of 1000 training rounds, during

the training process, was compared between the use of DEBP

and EBP.

As for the second part, the DEBP was initially used for

training, and the network was trained for 1000 rounds with

and without the application of the self-attention layer. The

cumulative reward size of the 1000 training rounds was then

evaluated.

C. Delayed learning Setup

To verify whether delay learning strategy was effective for

the stability of UAV obstacle avoidance strategy,

environment 1 was firstly adopted as the verification

environment of the method. Secondly, the delayed learning

strategy was applied to train the UAV for 500 rounds using

the DEBP and the self-attention network; moreover, the

network was updated after each round. Finally, the UAV was

trained for 500 rounds using DEBP and self-attention

network instead of the delayed learning strategy, and the

network will be updated after each round. The effectiveness

of the delayed learning strategy was judged based on the

cumulative reward size through the UAV training.

D. Training Setup

The training process consists of two stages: the first stage

consists of data acquisition, where the UAV takes random

actions to gather sufficient state and action data. This data

was then stored in a buffer pool. The second stage consists of

training where the UAV initially refrains from taking random

actions; it instead inputs the state into the policy network to

obtain the action output. Subsequently, the UAV’s state and

the action data, produced by the policy network, are saved in

the buffer pool. After each training round, data within the

buffer pool was extracted to update the policy network, and

the updated strategy network was employed for the next

round of training. Based on the reward setup, the drone will

receive a greater reward for collision-free and longer flights.

These rewards will be calculated after each turn.

E. Testing Setup

During testing, the UAV was launched from the starting

position (start). A successful obstacle avoidance was

considered if the UAV reaches the safe area; therefore, the

count of successes was tallied.

To evaluate the obstacle avoidance ability of the trained

UAV, obstacle avoidance tests are conducted in both

Environment 1 and Environment 2 (with obstacle sequence 1,

2, 3, 4, and 5 – 12345 for simplicity) for 100, 200, and 500

rounds. Subsequently, the obstacles’ order in Environment 2

was adjusted to 45231, 23145, 32541, and 53412, while

keeping the same number of rounds for obstacle avoidance

tests. The top view of obstacle sequences 45231, 23145,

32541, and 53412 was shown in Figs. 9-12, where the top

view of the transposed obstacle sequence was displayed in

Fig. 13. Lastly, a new environment, referred to Environment

3, was created by combining different obstacles from

Environment 1 and Environment 2. In addition, obstacle

avoidance rate tests are conducted for 100, 200, and 500

rounds, as illustrated in Fig. 14.

Fig. 9. Top view with obstacle sequence 45231

Fig. 10. Top view with obstacle sequence 23145

Fig. 11. Top view with obstacle sequence 32541

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

Fig. 12. Top view with obstacle sequence 53412

Fig. 13. Environment 3 Top view

Fig. 14. Environment 3

F. Dual Experience Buffer Pool and Self-Attention Results

The cumulative reward for 1000 rounds of training, using

the EBP and DEBP, was shown in Fig. 15. Additionally, the

cumulative reward for 1000 rounds of training with and

without the self-attention layer was illustrated in Fig. 16.

Fig. 15. Cumulative rewards for DEBP and EBP

Fig. 16. Rewards with and without added attention

By comparing the size of the cumulative reward values, the

cumulative reward in DEBP was higher than in EBP for

roughly 60% of the cases. Furthermore, the cumulative

reward attained with the self-attention layer network

surpasses that achieved without the use of the self-attention

layer in approximately 60% of the cases. These findings

validate the efficiency of DEBP and the self-attention

network in improving UAV obstacle avoidance performance.

G. Delay learning Result

The cumulative reward for 500 rounds of training, with

and without delayed learning strategies, was displayed in Fig.

17. (DL is Delay learning)

Fig. 17. Training accumulation reward

By comparing the size of the cumulative reward value, the

implementation of the delayed learning strategy yields in

better results. These results demonstrate the effectiveness of

delayed learning strategy regarding the stability of UAV

obstacle avoidance strategy, and enhance the obstacle

avoidance ability of UAV.

H. Training Results

The UAV was trained in both Environment 1 and

Environment 2 (using the obstacle sequence 12345), where

the network was updated after each episode. Following the

findings of each episode, the cumulative reward (refer to Fig.

18) was recorded. In Fig. 18, the horizontal axis represents

the number of training rounds whereas the vertical axis

denotes the cumulative reward value for each round (it was

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

worth noting that the cumulative reward shown in the figure

was the smoothed data).

Fig. 18. Training accumulation reward

The comparison of the cumulative reward values during

the training phase reveals a growing trend as the number of

training rounds progresses. Data growth stabilizes after

approximately 3500 training rounds, suggesting that the

UAV’s policy selection has achieved stability and the

DAC-SAC algorithm has reached a state of convergence.

Referring to the cumulative reward values, it was obvious

that the trained DAC-SAC algorithm empowers the UAV to

autonomously navigate diverse known environments while

avoiding obstacles.

I. Testing Results

The success rate of obstacle avoidance, denoted as 𝛿𝑖, was

defined as the ratio of the number of successes (𝑆) to the total

number of test rounds (𝑇) for a given test iteration 𝑖:
𝛿𝑖 = 𝑆 ÷ 𝑇. (9)

After the training phase, the model exhibiting the most

effective obstacle avoidance performance was selected for

testing. Therefore, the best-performing obstacle avoidance

model in Environment 1 was chosen, and obstacle avoidance

tests, consisting of 100, 200, and 500 rounds, are conducted

within that environment. The model having the best obstacle

avoidance performance in Environment 2 (12345) was also

selected, and tests are conducted for the same number of

rounds. The results of these tests are presented in Table Ⅲ.
TABLE Ⅲ.

OBSTACLE AVOIDANCE TEST RESULTS FOR 100, 200, AND 500 ROUNDS IN

ENVIRONMENT 1 AND ENVIRONMENT 2 (12345)

Test rounds Environment 1
Environment 2

(12345)

500 0.992 0.992

200 0.995 0.995

Subsequently, the model with the best obstacle avoidance

performance in Environment 2 (12345) was selected. The

obstacle order in this environment then changes to 53412,

45231, 23145, and 34125; however, the UAV’s obstacle

avoidance was still tested for 100, 200, and 500 rounds. The

test results are presented in Table Ⅳ. The average obstacle

avoidance success rate was calculated using the below

equation:

𝛿̅ = (𝛿100 + 𝛿200 + 𝛿500) ÷ 3. (10)

Finally, the model demonstrating the best obstacle

avoidance capabilities after training in Environments 1 and 2

(12345) was deployed. Obstacle avoidance tests are then

conducted in Environment 3 for 100, 200, and 500 rounds.

The results of these tests are displayed in Table Ⅴ.

According to the experimental results in Table Ⅲ, the

DAC-SAC algorithm in enabling autonomous UAV obstacle

avoidance in known environments, the success rate reached

more than 99.5%. This underscores the algorithm’s high

stability and reliability in handling obstacle avoidance tasks

within familiar settings.

According to the experimental results in Table Ⅳ, in a

similar new environment without retraining, the highest

average obstacle avoidance success rate reached 97.43%.

This shows that the algorithm was adept at autonomously

avoiding obstacles even without retraining.

Notably, according to the experimental results in Table Ⅴ,

the highest obstacle avoidance success rate of 84.8% was

TABLE Ⅳ.

AVERAGE OBSTACLE AVOIDANCE SUCCESS RATE IN ENVIRONMENT 2 WITH CHANGED OBSTACLE ORDER

Order of obstacles in environment 2 53412 45231 23145 32541

Success count for 100 rounds 96 84 90 96

Success count for 200 rounds 197 184 186 195

Success count for 500 rounds 489 467 476 484

Average successful obstacle avoidance rate 0.9743 0.898 0.9273 0.9676

TABLE Ⅴ

RESULT OF OBSTACLE AVOIDANCE SUCCESS RATE FOR 100, 200, AND 500 ROUNDS IN ENVIRONMENT 3

Test Rounds Environment 3（Env1-Best-Model） Environment 3（Env2-Best-Model）

500 0.770 0.848

200 0.705 0.810

100 0.690 0.790

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

achieved without the need for re-training in a new

environment. This suggests the algorithm’s proficiency in

autonomous obstacle avoidance, even in unfamiliar

environments. Furthermore, the experimental results

demonstrate that the proposed algorithm was well-suited for

autonomous flight and obstacle avoidance for UAVs,

characterized by its fast learning ability across various

environments, and exhibiting robust generalization and

adaptability to new surroundings.

Compared to SAC algorithm using the VAE model [31],

the DAC-SAC algorithm just requires 3500 rounds to achieve

relatively optimal results. This significantly alleviates the

slow convergence issue commonly observed in DRL

algorithms.

For a direct comparison of superiority, the DAC-SAC and

the TD3 algorithms are trained for 3000 rounds, and the

cumulative rewards are compared, as shown in Fig. 19. The

results clearly show that the DAC-SAC algorithm surpasses

the TD3 algorithm in both the growth rate and the peak value

regading the reward value.

Fig.19. Accumulated reward values for TD3 and DAC-SAC

V. CONCLUSION

Concerning the end-to-end autonomous UAV obstacle

avoidance problem, a deep reinforcement learning-based

autonomous flight obstacle avoidance method, called

DAC-SAC, was proposed. This method consists of an actor

and critic network with convolutional self-attention layers

and a DEBP. The lightweight network, implemented using

this method, can directly process the depth image data. In

opposite to other obstacle avoidance algorithms, this

approach just uses visual sensors as input to enable

autonomous flight obstacle avoidance of UAVs in continuous

motion space. Moreover, it was applicable to multiple

obstacle types, and has excellent obstacle avoidance ability in

unknown environment.

In the realized experiments, the UAV flight actions include

forward, turning left, and turning right movements. While

testing known environments, the trained DAC-SAC

algorithm achieved 99.5% success rate when performing

obstacle avoidance. To simulate UAV flight in an unknown

environment, the test environment was reconfigured without

retraining the UAV; however, the DAC-SAC algorithm still

competed the highest obstacle avoidance success rate of

84.8%. Since the UAV was not aware of the obstacles in the

new environment, this resulted in a lower obstacle avoidance

success rate. Compared to the TD3 algorithm, having a

cumulative reward peak value of 247.6, the DAC-SAC

algorithm reached a peak value of approximately 319.1.

Moreover, the slope of the cumulative reward value for the

DAC-SAC algorithm between 0 and 3000 rounds was equal

to 0.13182, while the slope for the TD3 algorithm was about

0.10998. Therefore, the DAC-SAC algorithm significantly

outperforms the TD3 algorithm in terms of the growth rate of

the reward value and the peak value of the cumulative reward.

When compared to the results of an 8000-round VAE-SAC

model in similar research [31], the DAC-SAC algorithm

achieved relatively ideal results in just 3500 rounds. This

helped, to some extent, addressing the issue of slow

convergence speed of DRL algorithms for UAV obstacle

avoidance tasks.

The future works will investigate three objectives: first,

enabling the autonomous flight of the UAV in all directions

in a 3D space to avoid obstacles, thus improving their

avoidance ability in complex environments; second,

enhancing the UAV’s obstacle avoidance capability in

unknown new environments; and, finally, continuing the

implement efforts to optimize the actor-critic network

structure to enhance the memory and processing capability of

the UAV for continuous state information.

REFERENCES

[1] Shubo, Wang, Chen Jian, and Peng Bingzhong. "Analysis on The

Industrial Chain of Agricultural Unmanned Aerial Vehicles in

China." Journal of China Agricultural University 23.32 (2018):

131-139.

[2] Outay, Fatma, Hanan Abdullah Mengash, and Muhammad Adnan.
"Applications of Unmanned Aerial Vehicle (UAV) in Road Safety,

Traffic and Highway Infrastructure Management: Recent Advances

and Challenges." Transportation Research Part A: policy and
practice 141 (2020): 116-129.

[3] M. Atif, R. Ahmad, W. Ahmad, L. Zhao and J. J. P. C. Rodrigues,

"UAV-Assisted Wireless Localization for Search and Rescue," in IEEE
Systems Journal, vol. 15, no. 3, pp. 3261-3272, Sept. 2021,

[4] Padhy, R. P., Verma, S., Ahmad, S., Choudhury, S. K., & Sa, P. K.

(2018). Deep Neural Network for Autonomous UAV Navigation in
Indoor Corridor Environments. Procedia Computer Science, 133,

643-650.

[5] A. Giusti et al., "A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots," in IEEE Robotics and Automation

Letters, vol. 1, no. 2, pp. 661-667, July 2016

[6] D. Gandhi, L. Pinto and A. Gupta, "Learning to Fly by Crashing," 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Vancouver, BC, Canada, 2017, pp. 3948-3955

[7] Yaoming Li, and Yun Chen, "Enhancing A Stock Timing Strategy by
Reinforcement Learning," IAENG International Journal of Computer

Science, vol. 48, no.4, pp930-939, 2021

[8] Hejun Xuan, Xuelin Zhao, Jianwei Fan, Yahui Xue, Fangfang Zhu, and
Yanling Li, "VNF Service Chain Deployment Algorithm in 5G

Communication Based on Reinforcement Learning," IAENG

International Journal of Computer Science, vol. 48, no.1, pp1-7, 2021
[9] Azar, A. T., Koubaa, A., Ali Mohamed, N., Ibrahim, H. A., Ibrahim, Z.

F., Kazim, M., ... & Hameed, I. A. (2021). Drone Deep Reinforcement

Learning: A Review. Electronics 2021, 10, 999.
[10] B.Rubí, B.Morcego and R. Pérez, "A Deep Reinforcement Learning

Approach for Path Following on A Quadrotor," 2020 European Control

Conference (ECC), St. Petersburg, Russia, 2020, pp. 1092-1098
[11] Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., ... & Chu, X.

(2023). Yolov6 v3. 0: A Full-scale Reloading. arXiv preprint

arXiv:2301.05586.
[12] Dosovitskiy, A, Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X,

Unterthiner, T., ... & Houlsby, N. (2020). An Image is Worth 16x16

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

Words: Transformers for Image Recognition at scale. arXiv preprint
arXiv:2010.11929.

[13] Zhou, Y., & Ho, H. W. Online Robot Guidance and Navigation in

Non-stationary Environment with Hybrid Hierarchical Reinforcement
Learning. Engineering Applications of Artificial Intelligence, 2022,

114, 105152.

[14] Denton, R. V. (1985). Demonstration of an Innovative Technique for
Terrain Following/Terain Avoidance, -The Dynapath Algorithm.

In NAECON (pp. 522-529).

[15] Bousson, K. (2005, August). Single gridpoint Dynamic Programming
for Trajectory Optimization. In AIAA Atmospheric Flight Mechanics

Conference and Exhibit (p. 5902).

[16] Y. Park and S. Bae, "Keeping Less is More: Point Sparsification for
Visual SLAM," 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp.

7936-7943
[17] Zieliński, P., & Markowska-Kaczmar, U. (2021). 3D Robotic

Navigation using a Vision-based Deep Reinforcement Learning

Model. Applied Soft Computing, 110, 107602.
[18] A. Loquercio, A. I. Maqueda, C. R. del-Blanco and D. Scaramuzza,

"DroNet: Learning to Fly by Driving," in IEEE Robotics and

Automation Letters, vol. 3, no. 2, pp. 1088-1095, April 2018
[19] Low, E. S., Ong, P., & Cheah, K. C. (2019). Solving the Optimal Path

Planning of a Mobile Robot using Improved Q-learning. Robotics and

Autonomous Systems, 115, 143-161.
[20] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., ... & Hassabis, D. (2015). Human-level Control
through Deep Reinforcement Learning. nature, 518(7540), 529-533.

[21] Vamvoudakis, K. G., Vrabie, D., & Lewis, F. L. (2014). Online

Adaptive Algorithm for Optimal Control with Integral Reinforcement
Learning. International Journal of Robust and Nonlinear

Control, 24(17), 2686-2710.

[22] Xie, L., Wang, S., Markham, A., & Trigoni, N. (2017). Towards
Monocular Vision based Obstacle Avoidance through Deep

Reinforcement Learning. arXiv preprint arXiv:1706.09829.

[23] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li and L. Wang, "Joint Optimization
of Multi-UAV Target Assignment and Path Planning Based on

Multi-Agent Reinforcement Learning," in IEEE Access, vol. 7, pp.

146264-146272, 2019
[24] M. Savva et al., "Habitat: A Platform for Embodied AI Research,"

2019 IEEE/CVF International Conference on Computer Vision

(ICCV), Seoul, Korea (South), 2019, pp. 9338-9346

[25] Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., &

Batra, D. (2019). Dd-ppo: Learning Near-perfect Pointgoal Navigators

from 2.5 Billion Frames. arXiv preprint arXiv:1911.00357.
[26] Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim:

High-fidelity Visual and Physical Simulation for Autonomous

Vehicles. In Field and Service Robotics: Results of the 11th
International Conference (pp. 621-635). Springer International

Publishing.

[27] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., &
Wierstra, D. (2015). Continuous Control with Deep Reinforcement

Learning. arXiv preprint arXiv:1509.02971.

[28] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O.
(2017). Proximal Policy Optimization Algorithms. arXiv preprint

arXiv:1707.06347.

[29] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J.
(2018). Soft Actor-Critic Algorithms and Applications. arXiv preprint

arXiv:1812.05905.

[30] Fujimoto, S., Hoof, H., & Meger, D. (2018, July). Addressing Function
Approximation Error in Actor-Critic Methods. In International

Conference on Machine Learning (pp. 1587-1596). PMLR.

[31] Xue, Z., & Gonsalves, T. (2021). Vision Based Drone Obstacle
Avoidance by Deep Reinforcement Learning. AI, 2(3), 366-380.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

__

