
 

  

Abstract—To overcome the challenges of obstacle avoidance 

for Unmanned Aerial Vehicles (UAVs) in autonomous flights, 

this paper proposes the Dual Experience Attention Convolution 

Soft Actor-Critic (DAC-SAC) algorithm. This algorithm 

integrates a dual experience buffer pool, a self-attention 

mechanism, and the Soft-Actor-Critic algorithm with a 

convolutional network. The dual experience buffer pools are 

used to solve the problem of ineffective UAV training due to the 

scarcity of successful training data. To overcome the drawbacks 

of the original Soft Actor-Critic (SAC) algorithm in handling 

image data, a Convolutional Neural Network (CNN) is applied 

to reconstruct the actor and critic network, allowing for better 

image feature extraction and classification. Furthermore, a 

self-attention mechanism is employed by adding a convolutional 

self-attention layer to the network. This modification enables 

dynamic adjustments for the attention weights based on varying 

input image features, effectively addressing focus-related 

challenges. Two simulation experiments are performed and the 

DAC-SAC algorithm achieves a 99.5% success rate in a known 

environment and an 84.8% success rate when dealing with  an 

unknown environment. These results confirm that the proposed 

algorithm enables autonomous obstacle avoidance for UAVs 

even when considering depth images as input. 

 
Index Terms—Deep Reinforcement Learning; DAC-SAC; 

UAV; Self-Attention; Obstacle Avoidance 

 

I. INTRODUCTION 

multi-rotor aircraft, a type of Unmanned Aerial Vehicles 

(UAVs), integrates automatic control, image processing, 

and other technologies. It has gathered increasing attention in 

various domains, including agricultural plant protection, 

security monitoring, and research and rescue activities [1]-[3]. 

 
Manuscript received July 19, 2023; Revised January 3, 2024. 

This work was supported by the Natural Science Foundation project of 

Liaoning Province (2021-KF-12-06).  
Yuan Gao is a postgraduate student of School of Computer Science and 

Software Engineering, University of Science and Technology Liaoning, 

Anshan, 114051, China. (e-mail: 1411251936@qq.com).  
Ling Ren is a Lecturer of School of Innovation and entrepreneurship, 

University of Science and Technology Liaoning, Anshan, 114051, China 

(corresponding author, phone: 152-4220-3353; e-mail: 176878392 @qq.com 
)  

Tianwei Shi is an associate Professor of School of Computer Science and 

Software Engineering, University of Science and Technology Liaoning, 
Anshan, 114051, China. (e-mail: tianweiabbcc @163.com).  

Teng Xu is a postgraduate student of School of Computer Science and 

Software Engineering, University of Science and Technology Liaoning, 
Anshan, 114051, China. (e-mail: 1220175209@qq.com).  

Jianbang Ding is a postgraduate student of School of Computer Science 

and Software Engineering, University of Science and Technology Liaoning, 
Anshan, 114051, China. (e-mail: jianbang0219@qq.com). 

In recent years, vision-based autonomous UAV flight 

obstacle avoidance has become a prominent area of research. 

When flighting in unknown environments, accurately 

describing the environment through mathematical models 

becomes challenging. Therefore, Some researchers have 

taken advantage of Deep Learning's (DL) superior 

performance in visual tasks, combining it with drones to gain 

a sense of the environment. For instance, a model based on a 

convolutional neural network (CNN) was used as an indoor 

environment classifier to achieve indoor monocular 

navigation of drones [4]. Deploying images as inputs to the 

CNN allows UAV navigation in complex forest 

environments [5]. Moreover, there exist approaches aiming 

to train UAV controllers to autonomously predict the 

instance when a UAV may crash [6]. However, DL-based 

methods face challenges, such as excessive reliance on 

labeled data, high computational resource requirements, and 

limited model generalization capabilities. To address these 

challenges, researchers have combined deep reinforcement 

learning with UAVs. 

Deep Reinforcement Learning (DRL) was realized by 

combining DL with Reinforcement Learning (RL). RL aims 

to learn optimal strategies through the interaction of an agent 

with the environment. Thus, Deep Neural networks (DNNS) 

were used in DRL to fit policies or value functions. It enables 

agents to directly perceive information in high-dimensional 

spaces and learn more complex strategies. 

In the application of the DRL algorithm. The Proximal 

Policy Optimization (PPO) was used to improve and adjust 

stock trading strategies [7]. Therefore, a virtual network 

function service chain (VNF-SC) deployment algorithm 

based on DRL was proposed [8]. In addition, DRL has also 

been applied to autonomous obstacle avoidance and tracking 

of UAV flight paths [9]-[10].  

However, the use of deep networks in deep reinforcement 

learning can require a lot of computational resources, 

resulting in excessively lengthy reasoning and training times. 

Such as YOLOv6 and Visual Transformer network [11]-[12]. 

In addition, shallow network structures may not efficiently 

extract the required features from the visual information. 

Therefore, neural networks in DRL algorithms must be 

crucially tailored to tackle these challenges. For instance, the 

Variational Auto-Encoder (VAE) was applied to process 

image information.    Its generated features are input into the 

DRL algorithm to avoid obstacles in UAV flights [13]. 

Therefore, UAVs’ autonomous flight obstacle avoidance 

can be achieved using DRL. In addition, UAVs acquire data 

through interactions with their environment, reducing the 
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necessity, to some extent, for data annotation and enhancing 

the model’s generalization capabilities. 

Tackling the aforementioned challenges, the development 

of an adaptive and intelligent obstacle avoidance algorithm to 

complete autonomous flight obstacle avoidance for UAVs 

has become an urgent research priority to deal with. This 

algorithm considers input depth images and incorporates the 

Soft-Actor-Critic (SAC), the dual experience buffer pool, the 

convolutional actor-critic network, and the self-attention 

mechanism algorithms. This proposed model trains the UAV 

to complete the autonomous flight obstacle avoidance task in 

a simulation environment.  

In this study, the Unreal Engine 4 (UE4) was deployed to 

build the simulation training and testing environment. Thus, 

depth images, collected from the UE4 using AirSim, were 

employed as inputs to facilitate the autonomous flight 

obstacle avoidance of UAVs in simulation environments. As 

a result, experimental findings demonstrate that, compared to 

other DRL algorithms, the proposed DAC-SAC algorithm 

exhibits faster convergence in UAV obstacle avoidance tasks, 

performs exceptionally well in obstacle avoidance in the 

training environment, and demonstrates a superior degree of 

adaptability in unfamiliar environments. 

To sum up, the remainder of this paper was organized as 

follows: Section II provides an overview of the related work 

regarding UAV obstacle avoidance navigation methods. 

Section III outlines the methods developed in this study. In 

Section IV, a detailed presentation of the experimental results 

was generated, and Section V summarizes the findings and 

limitations of this paper and proposes future research 

directions. 

 

II. RELATED WORK 

A. Traditional Methods 

In conventional approaches, UAVs rely on sensors to 

identify obstacles, employ predefined strategies for 

avoidance, and devise flight paths using path planning 

algorithms. The optimal three-dimensional terrain obstacle 

avoidance path was computed using a combination of 

dynamic programming and tree search [14]. Moreover, to 

optimize obstacle avoidance, an algorithm centered on a 

single grid point was used [15]. The obstacle avoidance 

path-solving model, based on mathematical optimization 

methods, was intuitive and easy to grasp. However, when 

constraint conditions became more complex, the 

computational workload and difficulty escalated, posing a 

challenge in meeting real-time requirements.  

Furthermore, the Visual Simultaneous Localization And 

Mapping (VSLAM) algorithm can attain UAV positioning, 

navigation, map construction, and obstacle avoidance in 

unknown environments through the perception and analysis 

of the surrounding environment [16]. Traditional algorithms 

have been extensively studied and applied, but they often 

involve multiple parameters and need to be optimized for 

specific environments. 

 

B. Deep learning-based obstacle avoidance methods 

The CNN presents a promising solution for the visual 

navigation challenges in UAV obstacle avoidance algorithms 

embedded in DL. Moreover, CNN has made significant 

advances in the field of image processing, delivering superior 

feature extraction results compared to the manual dimension 

reduction. It can also enhance the sensing and obstacle 

avoidance capabilities of UAVs. For instance, pre-training 

the YOLO network and integrating it into the Advantage 

Actor Critic (A2C) model enabled successful training of the 

underwater vehicles for gate navigation [17]. Furthermore, 

UAVs were trained using decision data, collected from 

manually navigating through forests, resulting in a successful 

forest navigation [5]. Similarly, the collection of urban road 

data for drones’ train yields in successful avoidance of 

common city obstacles [18]. 

However, within the domain of UAV obstacle avoidance 

methods grounded in DL, certain challenges persist. These 

encompass the need to manually collect and label extensive 

datasets, coupled with the fact that DL models are typically 

large and require extended inference times. This, in turn, 

poses a potential compromise to the performance of UAV 

obstacle avoidance. 

 

C. Reinforcement learning-based obstacle avoidance 

methods 

Reinforcement learning embraces the "trial and error" 

mechanism, emphasizing interactive learning with the 

environment to derive optimal decisions guided by 

environmental feedback. This approach holds great promise 

in the realm of UAV obstacle avoidance. Reinforcement 

learning can be classified into value function-based and 

policy-based approaches. As an illustration of a value 

function-based reinforcement learning algorithm, the 

Q-learning algorithm has proven its utility in various 

applications, including mobile robot navigation [19]. 

Moreover, DeepMind, introduced the Deep Q-Network 

(DQN), an innovative DRL algorithm that combines DL with 

reinforcement learning, to provide a continuous action spaces 

or continuous state spaces [20]. Subsequently, various 

scholars have explored the application of reinforcement 

learning in the UAV domain [21]. Building upon the Double 

DQN algorithm, researchers have achieved autonomous 

obstacle avoidance for UAVs for indoor settings [22]. Some 

scholars have even attempted to apply strategy-based DRL 

algorithms to UAVs [23].  

However, due to the high parameters’ complexity and 

nonlinear characteristics of visual learning processes, 

extensive data and computational resources are needed 

during training. For instance, the CNN model requests a 

substantial number of images and an extended training 

duration to generate a suitable DRL strategy [24]. 

Furthermore, policy-based DRL algorithms display lower 

convergence compared to discrete space DRL algorithms, 

primarily because of the increased constraints in complex 

environments [25]. 

Therefore, this paper employs a DRL approach that uses 

depth images as input for UAV obstacle avoidance training.  

The application of a depth image reduces the channel 

dimension of the image, and the key depth feature 

information was preserved, therefore facilitating faster 

convergence in obstacle avoidance algorithms. 
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Fig. 1. Structure of the UAV obstacle avoidance decision system 

 

III. METHODS 

Fig. 1 displays the structure of the UAV obstacle 

avoidance decision system. The simulation environment was 

designed using the UE4 game engine and AirSim, an 

open-source platform provided by Microsoft. This simulator 

offers a 3D flight and training environment for drones. Data 

processing system consists of generating depth images in 

real-time using AirSim. Moreover, the experience buffer pool 

was employed to store the data. The UAV decision-making 

system was built upon the SAC algorithm. Initially, when not 

trained, the UAV's flight actions (e.g., forward, turn left, and 

turn right) are determined through the actor network based on 

the UAV’s current state. Subsequently, during training, the 

decision-making system was mostly trained through the 

extraction of data from the experience buffer pool. The actor 

network optimizes the evaluation of its output actions using 

the critic network to achieve improved flight action 

classification. Finally, the UAV performs these actions in the 

simulation environment, resulting in acquiring new flight 

data. 

Therefore, the remaining part of this section elaborates the 

methods used to implement the DAC-SAC algorithm, 

encompassing the simulation environment, the SAC 

algorithm framework, the improved Actor-Critic network 

structure, the self-attention mechanism, the dual experience 

buffer pool, the delayed learning time, and, finally, the 

reward function.  

 

A. Simulation Environment 

AirSim was an open-source drone and driverless car 

simulator, developed by Microsoft [26]. It supports Unity 3D 

and UE4 software, and integrates various sensors, such as 

vision sensors, to capture high-resolution real-time scenarios.  

Through the proposed experiment, firstly, a rectangular 

closed corridor environment was constructed using the 

powerful physics engine and rendering technology in  

 

UE4.This environment served as the simulation setting for 

UAV obstacle avoidance training and testing. Additionally, 

in AirSim, depth images can be directly generated using 

integrated vision sensors and they serve as inputs for the DRL 

network. 

 

B. Soft-Actor-Critic algorithm framework 

In standard reinforcement learning algorithms, the main 

objective for the agent consists of attaining the maximum 

cumulative reward and acquiring an optimal strategy to 

explore the environment.  

To start, at time 𝑡, the agent selects a corresponding action 

𝐴𝑡  based on its current state 𝑆𝑡  and strategy  𝑌 . Upon 

execution, the agent involves with the environment, receiving 

a corresponding reward 𝑅(𝑆𝑡|𝐴𝑡)  based on the received 

feedback from the environment. Furthermore, the action 

value function 𝑄𝑌  was employed to estimate the expected 

sum of rewards associated with considering a specific action 

with respect to a given state. Subsequently, the expectation 

function 𝐸(𝑆𝑡|𝐴𝑡) was applied to compute the expectation of 

the next state, while considering the current action and state. 

Finally, by accumulating the maximum reward and strategy 

𝑌, the optimal strategy 𝑌∗ was computed. It can be expressed 

as follows: 

𝑌∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝐸(𝑆𝑡|𝐴𝑡) ∼ 𝑄𝑌 [∑ 𝑅(𝑆𝑡|𝐴𝑡)] . (1) 

To address the challenge of continuous space problems, 

three algorithms, namely Deep Deterministic Policy Gradient 

(DDPG), Proximal Policy Optimization (PPO), and SAC, 

were proposed [27]-[29]. Among them, the SAC algorithm 

combines the Actor-Critic approach with maximum entropy 

reinforcement learning, achieving an improved convergence 

and stability.  

Through policy optimization, an entropy regularization 

term was incorporated into the SAC algorithm to maintain 

policy randomness and promote the UAV for space 

exploration. In addition, it maximizes the accumulation of 

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

 
______________________________________________________________________________________ 



 

 
Fig. 2. DAC-SAC algorithm update process 

 

reward expectations throughout the learning process, 

ultimately yielding to the optimal strategy 𝑌∗ described as 

follows: 

𝑌∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝐸(𝑆𝑡|𝐴𝑡)~𝐷

[∑ 𝛾𝑡 (𝑅(𝑆𝑡|𝐴𝑡) + 𝛼𝐻(𝑌(∙ |𝑆𝑡)))
∞

𝑡=0
] . (2)

 

where 𝛼 represents the temperature factor and serves as the 

weight for the entropy term 𝐻(𝑌(∙ |𝑆𝑡)). Considering the 

dynamic nature of the immediate reward 𝑅(𝑆𝑡|𝐴𝑡), the use of 

a fixed 𝛼 value may introduce training instability. Therefore, 

automatic adjustment was required. Moreover, when 𝛼 was 

small, the policy tends to consider the exploration of different 

actions, while a larger 𝛼 value favorably disposes the policy 

toward performing known optimal actions. In addition, the 

entropy 𝐻(𝑌(∙ |𝑆𝑡)) was defined as follows: 

𝐻(𝑌(∙ |𝑆𝑡)) = − ∫𝑌(𝑥|𝑆𝑡) log 𝜋(𝑥|𝑆𝑡)
𝑥

𝑑𝑥. (3) 

where log 𝜋(𝑥|𝑆𝑡) indicates the logarithm of the conditional 

probability that the random variable 𝜋 considers for the 𝑥 

value under specific state St, and 𝑌(𝑥|𝑆𝑡) was the conditional 

probability distribution where the random variable 𝑌 

considers the value 𝑥 under the given state St . 

The automatic adjustment of 𝛼 was approximated using an 

iterative gradient descent method. This process optimizes 𝛼 

based on the logarithm of the reference entropy 𝐻 and the 

conditional probability distribution 𝑌(𝑥|𝑆𝑡).  The 

optimization formula was expressed as follows: 

𝐹(𝛼) = 𝐸𝐴𝑡
[−𝛼 log 𝑌(𝐴𝑡|𝑆𝑡) − 𝛼𝐻]. (4) 

In more detail, the update process of the DAC-SAC 

algorithm was illustrated in Fig. 2 (A1 is action, A2 is next 

action, S1 is state, S2 is next state, R is reward, D is done) 

where the UAV stores the data including state S, action A, 

reward R, next time state SS, and end sign ‘done’ generated 

using the interaction process in a buffer. The target-critic 

network gets UAV state and action feedback from the actor 

network, computes the TDError value for the current strategy, 

and optimizes the critic network. As for the actor network, 

the critic network evaluates the Q value of the action taken 

under the current policy, considering the current state as well 

as the action fed back by the actor network. This information 

was used to calculate losses, update actor networks, and 

optimize obstacle avoidance strategies. 

 

C. Improved Actor Critic network structure 

The DRL algorithm, with its actor-critic structure, can 

select any action residing inside the continuous action space. 

However, DRL algorithms typically employ lightweight 

network structures, making them unable to execute complex 

visual information. To enable UAVs autonomous obstacle 

avoidance using visual information as input, it was necessary 

to optimize the lightweight structure of the actor-critic 

network. The optimization approach involves a CNN to 

implement the Gaussian strategy for both the actor and critic 

networks. The formal network structure comprises four 

convolutional layers, two convolutional self-attention layers, 

two pooling layers, one fully connected layer, and, finally, 

two parallel fully connected layers. As for the latter network 

structure, it consists of four convolutional layers, two 

convolutional attention layers, two pooling layers, and two 

fully connected layers. The modified structure for both the 

actor and critic networks was displayed in Fig. 3 

In the network, Firstly, depth images were fed into the 

actor network, and image features were extracted through 

convolution and pooling. Secondly, Flatten layer was used to 

compress the output tensor into one dimensional tensor, and 

the data was fed into the fully connected layer. After passing 

through this layer, the output data was sent to the parallel full 

connection layer. Then, to calculate the mean and logarithmic 

probability of the action. therefore, it uses reparameterization 
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to compute the action probability from the mean and 

logarithmic probabilities of the action. Finally, input the state 

and action outputs from the actor into the critic network. It 

processes data through the same feature extraction method 

and evaluates the actions output using the current actor 

policy. 

 

 
Fig. 3. Modified structure of Actor and Critic networks 

 

D. Self-Attention 

Self-attention mechanism was a technique used to increase 

the expressive capabilities of NNs. The CNN was used to 

implement the convolutional self-attention module. Initially, 

this module was used to extract significant information from 

the input tensor. Consequently, the extracted information was 

weighted and combined with the original input, thereby 

improving the expressive power of the initial input. The 

structure of the self-attention technique was proposed in Fig. 

4. 

 

 
Fig. 4. Self-Attention structure 

 

First, three convolutional layers convolve the input feature 

graph X (Input) to obtain the query vector Q, the key vector K, 

and the value vector V. The attention matrix was then derived 

based on the multiplication of the query vector Q and key 

vector K, followed by the generation of the normalized 

attention matrix A (Attention Map). Subsequently, the value 

vector V was multiplied by the attention matrix to yield the 

weighted attention matrix O (Out). It was then reshaped to 

match the format of the input feature graph X. Finally, the 

output feature map Y (Output) was acquired by adjusting the 

ratio between the weighted attention matrix and the input 

feature map using a learnable scaling factor gamma. as 

represented here below: 

Y = γ ∗ O + X. (5) 

Within the Actor-Critic network, the inclusion of a 

convolutional attention layer enables adaptive adjustment of 

attention weights in response to different input image 

features. This addresses the focus area challenge, enhancing 

the model’s learning and generalization capabilities. 

 

E. Dual experience buffer pool 

In the process of training UAVs for autonomous obstacle 

avoidance, data collection becomes necessary for model 

updates. Consequently, experience buffer pools are 

formulated to store relevant data. Throughout the training 

process, especially in its early stages, the amount of collision 

data often outweighs instances of successful obstacle 

avoidance. Storing all this data in a single Experience Buffer 

Pool (EBP) can hinder the UAV’s ability to learn successful 

obstacle avoidance strategies from failed experiences. In 

response, a Dual Experience Buffer Pool (DEBP) was 

introduced to manage the interaction between the UAV and 

its environment. This DEBP consist of two components: 1) 

an EBP for successful obstacle avoidance, and 2) an EBP of 

unsuccessful obstacle avoidance. Thus, the DEBP assists the 

model in obtaining a substantial amount of successful data 

during the updates, thereby enhancing training and 

empowering the UAV to learn optimal obstacle avoidance 

strategies. 

 

F. Delayed learning 

Delayed learning was an effective strategy to enhance the 

training efficiency of reinforcement learning algorithms. 

During the typical training process of the Actor-Critic 

network structure, real-time update strategies are frequently 

applied. However, when considering autonomous obstacle 

avoidance for UAVs, real-time updates may result in frequent 

alterations regarding the obstacle avoidance strategy. 

Therefore, the algorithm stability can be reduced, the 

learning efficiency may diminish, and the jitter of the 

obstacle avoidance strategy may increase.  

Consequently, in the SAC algorithm’s training process, a 

delayed learning strategy was introduced to postpone 

network updates until reaching the conclusion of each 

training round. This method was designed to minimize 

instability in the training process and amplify learning 

efficiency. The delayed learning strategy guarantees 

consistency in the UAV’s obstacle avoidance strategy 

approach, promoting stability in its interactions with the 

environment. This, in turn, reduces the estimation error in Q 

values attributed toward uncertainty. Meanwhile, 

accumulated experiences are batch-updated to the model’s 

parameters, enhancing training stability and convergence 

speed. This strategy not only alleviates the oscillations often 
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encountered in the non-stationary gradient descent, but also 

helps the model to process and utilize the long sequence 

information more effectively. This, thereby, enables better 

discovery of hidden structural features within the state space. 

 

G. Reward Functions 

The reward function comprises a conditional reward 

function and a flight distance reward function. In accordance 

with the requirements of the reinforcement learning 

algorithm, specific types and values for conditional reward 

are established, as detailed in Table Ⅰ. 
TABLE Ⅰ. 

CONDITIONAL REWARD TYPES AND CONDITIONAL REWARD VALUES 

Award Type Award Values 

Collision -30 

Arrival at Destination +200 

Flight Height Overrun -20 

Maximum Number of Steps -20 

 

The conditional reward function 𝑅𝑋 can be expressed as 

follows: 

𝑅𝑋 = {

𝑅𝐶 , Collision
𝑅𝑇 , Arrival at destination
𝑅𝑆, Maximum number of steps
𝑅𝐵, Flight height overrun

(6) 

When calculating the reward function for flight distance, 

the initial determination of the flight direction was based on 

the UAV's yaw. Subsequently, the distance reward, denoted 

as Dr, was obtained through the Euclidean distance between 

the UAV and the target point. The flight distance reward, 

denoted as RD, was then derived by calculating the sum of 

weighted Dr and the cos(yaw) as follows:  

𝑅𝐷 = ∑(−𝐷𝑟 ∗ 0.01 + cos(𝑦𝑎𝑤)) . (7) 

During the training process, the conclusion of each 

round was determined by assessing the collisions and the 

number of taken steps. The final reward function R was 

defined as follows: 

𝑅 = 𝑅𝑋 + 𝑅𝐷. (8) 

 

IV. EXPERIMENT 

A. Environment Setup 

The simulation environment information and the 

experimental equipment setup are displayed in Table Ⅱ. 
TABLE Ⅱ. 

EXPERIMENTAL EQUIPMENT SETUP AND SIMULATION ENVIRONMENT 

INFORMATION 

Hardware/Frameworks Parameters and Versions 

CPU Intel Core i7-11700 

GPU NVIDIA RTX 3060TI 

RAM 80 GB 

Operating System Windows 10 

Program Language Python 3.9 

ML Library Pytorch 1.12.1 

Simulator Airsim 1.8.1 

Game Engine Unreal Engine 4.27.2 

In the experiments, UE4 was used to design two simulation 

environments, identified as Environment 1 and Environment 

2. These environments are identical as they possess 

dimensions of 55 meters in length, 10 meters in width, and 5 

meters in height. Moreover, they are specifically designed for 

UAV obstacle avoidance training.  

In Environment 1, cylindrical obstacles, numbered from 1 

to 4, are placed at respective intervals of 8 meters and 2 

meters along the length and width, whereas cylindrical 

obstacles, numbered from 5 to 7 and from 12 to 21, are 

spaced at intervals of 6 meters and 2 meters regarding the 

length and width, respectively. moreover, obstacles 

numbered from 8 to 11 are placed at intervals of 6 meters 

along the length 1.5 meters along the width. As for the 

diameter of the cylindrical obstacle, it was set to 1 meter. Fig. 

5 presents a top view of Environment 1, and Environment 1 

was shown in Fig. 6.  

 

 
Fig. 5. Top view of Environment 1 

 

 
Fig. 6. Environment 1  

 

Environment 2, on the other hand, features wall-type 

cylindrical obstacles, numbered from 1 to 5, with each 

obstacle positioned 9 meters apart. As for the wall, it has a 

length of 10 meters and a height of 5 meters. Moreover, the 

irregular area enclosed within the walls represents the UAV’s 

traversable area. A top view of Environment 2 was 

highlighted in Fig. 7, while the complete details of this 

environment are featured in Fig. 8.  

The "Start" mark represents the take-off position of the 

UAV in the environment, and the "End" area represents the 

safe landing area of the UAV. 

The security zone’s dimensions are set to a length of 10 

meters and a width of 1 meter. A successful obstacle 

avoidance was completed when the UAV safely reaches the 

safety zone. 

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 650-660

 
______________________________________________________________________________________ 



 

 
Fig. 7. Top view of Environment 2 

 

 
Fig. 8. Environment 2  

 

B. Dual Experience Buffer Pool and Self-Attention Setup 

To validate the effectiveness of the dual experience buffer 

pool and the self-attention network in enhancing the UAV 

obstacle avoidance performance, the proposed experimental 

setup was divided into two parts: the evaluation of the 

effectiveness of the DEBP and the assessment of the 

effectiveness of the self-attention network. 

In more detail, in the first part, Environment 1 was used as 

the validation environment for this method. Consequently, 

the cumulative reward size of 1000 training rounds, during 

the training process, was compared between the use of DEBP 

and EBP. 

As for the second part, the DEBP was initially used for 

training, and the network was trained for 1000 rounds with 

and without the application of the self-attention layer. The 

cumulative reward size of the 1000 training rounds was then 

evaluated. 

 

C. Delayed learning Setup 

To verify whether delay learning strategy was effective for 

the stability of UAV obstacle avoidance strategy, 

environment 1 was firstly adopted as the verification 

environment of the method. Secondly, the delayed learning 

strategy was applied to train the UAV for 500 rounds using 

the DEBP and the self-attention network; moreover, the 

network was updated after each round.  Finally, the UAV was 

trained for 500 rounds using DEBP and self-attention 

network instead of the delayed learning strategy, and the 

network will be updated after each round. The effectiveness 

of the delayed learning strategy was judged based on the 

cumulative reward size through the UAV training. 

D. Training Setup 

The training process consists of two stages: the first stage 

consists of data acquisition, where the UAV takes random 

actions to gather sufficient state and action data. This data 

was then stored in a buffer pool. The second stage consists of 

training where the UAV initially refrains from taking random 

actions; it instead inputs the state into the policy network to 

obtain the action output. Subsequently, the UAV’s state and 

the action data, produced by the policy network, are saved in 

the buffer pool. After each training round, data within the 

buffer pool was extracted to update the policy network, and 

the updated strategy network was employed for the next 

round of training. Based on the reward setup, the drone will 

receive a greater reward for collision-free and longer flights. 

These rewards will be calculated after each turn. 

 

E. Testing Setup 

During testing, the UAV was launched from the starting 

position (start). A successful obstacle avoidance was 

considered if the UAV reaches the safe area; therefore, the 

count of successes was tallied.  

To evaluate the obstacle avoidance ability of the trained 

UAV, obstacle avoidance tests are conducted in both 

Environment 1 and Environment 2 (with obstacle sequence 1, 

2, 3, 4, and 5 – 12345 for simplicity) for 100, 200, and 500 

rounds. Subsequently, the obstacles’ order in Environment 2 

was adjusted to 45231, 23145, 32541, and 53412, while 

keeping the same number of rounds for obstacle avoidance 

tests. The top view of obstacle sequences 45231, 23145, 

32541, and 53412 was shown in Figs. 9-12, where the top 

view of the transposed obstacle sequence was displayed in 

Fig. 13. Lastly, a new environment, referred to Environment 

3, was created by combining different obstacles from 

Environment 1 and Environment 2. In addition, obstacle 

avoidance rate tests are conducted for 100, 200, and 500 

rounds, as illustrated in Fig. 14. 

 

 
Fig. 9. Top view with obstacle sequence 45231 

 

 
Fig. 10. Top view with obstacle sequence 23145 

 

 
Fig. 11. Top view with obstacle sequence 32541 
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Fig. 12. Top view with obstacle sequence 53412 

 

 
Fig. 13. Environment 3 Top view 

 

 
Fig. 14. Environment 3 

 

F. Dual Experience Buffer Pool and Self-Attention Results 

The cumulative reward for 1000 rounds of training, using 

the EBP and DEBP, was shown in Fig. 15. Additionally, the 

cumulative reward for 1000 rounds of training with and 

without the self-attention layer was illustrated in Fig. 16. 

 

 
Fig. 15. Cumulative rewards for DEBP and EBP 

 
Fig. 16. Rewards with and without added attention 

By comparing the size of the cumulative reward values, the 

cumulative reward in DEBP was higher than in EBP for 

roughly 60% of the cases. Furthermore, the cumulative 

reward attained with the self-attention layer network 

surpasses that achieved without the use of the self-attention 

layer in approximately 60% of the cases. These findings 

validate the efficiency of DEBP and the self-attention 

network in improving UAV obstacle avoidance performance. 

G. Delay learning Result 

The cumulative reward for 500 rounds of training, with 

and without delayed learning strategies, was displayed in Fig. 

17. (DL is Delay learning) 

 

 
Fig. 17. Training accumulation reward 

 

By comparing the size of the cumulative reward value, the 

implementation of the delayed learning strategy yields in 

better results. These results demonstrate the effectiveness of 

delayed learning strategy regarding the stability of UAV 

obstacle avoidance strategy, and enhance the obstacle 

avoidance ability of UAV. 

 

H. Training Results 

The UAV was trained in both Environment 1 and 

Environment 2 (using the obstacle sequence 12345), where 

the network was updated after each episode. Following the 

findings of each episode, the cumulative reward (refer to Fig. 

18) was recorded. In Fig. 18, the horizontal axis represents 

the number of training rounds whereas the vertical axis 

denotes the cumulative reward value for each round (it was 
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worth noting that the cumulative reward shown in the figure 

was the smoothed data). 

 

 
Fig. 18. Training accumulation reward 

 

The comparison of the cumulative reward values during 

the training phase reveals a growing trend as the number of 

training rounds progresses. Data growth stabilizes after 

approximately 3500 training rounds, suggesting that the 

UAV’s policy selection has achieved stability and the 

DAC-SAC algorithm has reached a state of convergence. 

Referring to the cumulative reward values, it was obvious 

that the trained DAC-SAC algorithm empowers the UAV to 

autonomously navigate diverse known environments while 

avoiding obstacles. 

 

I. Testing Results 

The success rate of obstacle avoidance, denoted as 𝛿𝑖, was 

defined as the ratio of the number of successes (𝑆) to the total 

number of test rounds (𝑇) for a given test iteration 𝑖: 
𝛿𝑖 = 𝑆 ÷ 𝑇. (9) 

After the training phase, the model exhibiting the most 

effective obstacle avoidance performance was selected for 

testing. Therefore, the best-performing obstacle avoidance 

model in Environment 1 was chosen, and obstacle avoidance 

tests, consisting of 100, 200, and 500 rounds, are conducted 

within that environment. The model having the best obstacle 

avoidance performance in Environment 2 (12345) was also 

selected, and tests are conducted for the same number of 

rounds. The results of these tests are presented in Table Ⅲ.  
TABLE Ⅲ. 

OBSTACLE AVOIDANCE TEST RESULTS FOR 100, 200, AND 500 ROUNDS IN 

ENVIRONMENT 1 AND ENVIRONMENT 2 (12345) 

Test rounds Environment 1 
Environment 2 

(12345) 

500 0.992 0.992 

200 0.995 0.995 

 

Subsequently, the model with the best obstacle avoidance 

performance in Environment 2 (12345) was selected. The 

obstacle order in this environment then changes to 53412, 

45231, 23145, and 34125; however, the UAV’s obstacle 

avoidance was still tested for 100, 200, and 500 rounds. The 

test results are presented in Table Ⅳ. The average obstacle 

avoidance success rate was calculated using the below 

equation: 

𝛿̅ = (𝛿100 + 𝛿200 + 𝛿500) ÷ 3. (10) 

Finally, the model demonstrating the best obstacle 

avoidance capabilities after training in Environments 1 and 2 

(12345) was deployed. Obstacle avoidance tests are then 

conducted in Environment 3 for 100, 200, and 500 rounds. 

The results of these tests are displayed in Table Ⅴ. 

According to the experimental results in Table Ⅲ, the 

DAC-SAC algorithm in enabling autonomous UAV obstacle 

avoidance in known environments, the success rate reached 

more than 99.5%. This underscores the algorithm’s high 

stability and reliability in handling obstacle avoidance tasks 

within familiar settings.  

According to the experimental results in Table Ⅳ, in a 

similar new environment without retraining, the highest 

average obstacle avoidance success rate reached 97.43%. 

This shows that the algorithm was adept at autonomously 

avoiding obstacles even without retraining.  

Notably, according to the experimental results in Table Ⅴ, 

the highest  obstacle  avoidance success  rate  of  84.8%  was  
 

TABLE Ⅳ. 

AVERAGE OBSTACLE AVOIDANCE SUCCESS RATE IN ENVIRONMENT 2 WITH CHANGED OBSTACLE ORDER 

Order of obstacles in environment 2 53412 45231 23145 32541 

Success count for 100 rounds 96 84 90 96 

Success count for 200 rounds 197 184 186 195 

Success count for 500 rounds 489 467 476 484 

Average successful obstacle avoidance rate 0.9743 0.898 0.9273 0.9676 

 

TABLE Ⅴ 

RESULT OF OBSTACLE AVOIDANCE SUCCESS RATE FOR 100, 200, AND 500 ROUNDS IN ENVIRONMENT 3 

Test Rounds Environment 3（Env1-Best-Model） Environment 3（Env2-Best-Model） 

500 0.770 0.848 

200 0.705 0.810 

100 0.690 0.790 
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achieved without the need for re-training in a new 

environment. This suggests the algorithm’s proficiency in 

autonomous obstacle avoidance, even in unfamiliar 

environments. Furthermore, the experimental results 

demonstrate that the proposed algorithm was well-suited for 

autonomous flight and obstacle avoidance for UAVs, 

characterized by its fast learning ability across various 

environments, and exhibiting robust generalization and 

adaptability to new surroundings. 

Compared to SAC algorithm using the VAE model [31], 

the DAC-SAC algorithm just requires 3500 rounds to achieve 

relatively optimal results. This significantly alleviates the 

slow convergence issue commonly observed in DRL 

algorithms.  

For a direct comparison of superiority, the DAC-SAC and 

the TD3 algorithms are trained for 3000 rounds, and the 

cumulative rewards are compared, as shown in Fig. 19. The 

results clearly show that the DAC-SAC algorithm surpasses 

the TD3 algorithm in both the growth rate and the peak value 

regading the reward value. 

 

 
Fig.19. Accumulated reward values for TD3 and DAC-SAC 

 

V. CONCLUSION 

Concerning the end-to-end autonomous UAV obstacle 

avoidance problem, a deep reinforcement learning-based 

autonomous flight obstacle avoidance method, called 

DAC-SAC, was proposed. This method consists of an actor 

and critic network with convolutional self-attention layers 

and a DEBP. The lightweight network, implemented using 

this method, can directly process the depth image data. In 

opposite to other obstacle avoidance algorithms, this 

approach just uses visual sensors as input to enable 

autonomous flight obstacle avoidance of UAVs in continuous 

motion space. Moreover, it was applicable to multiple 

obstacle types, and has excellent obstacle avoidance ability in 

unknown environment. 

In the realized experiments, the UAV flight actions include 

forward, turning left, and turning right movements. While 

testing known environments, the trained DAC-SAC 

algorithm achieved 99.5% success rate when performing 

obstacle avoidance. To simulate UAV flight in an unknown 

environment, the test environment was reconfigured without 

retraining the UAV; however, the DAC-SAC algorithm still 

competed the highest obstacle avoidance success rate of 

84.8%. Since the UAV was not aware of the obstacles in the 

new environment, this resulted in a lower obstacle avoidance 

success rate. Compared to the TD3 algorithm, having a 

cumulative reward peak value of 247.6, the DAC-SAC 

algorithm reached a peak value of approximately 319.1. 

Moreover, the slope of the cumulative reward value for the 

DAC-SAC algorithm between 0 and 3000 rounds was equal 

to 0.13182, while the slope for the TD3 algorithm was about 

0.10998. Therefore, the DAC-SAC algorithm significantly 

outperforms the TD3 algorithm in terms of the growth rate of 

the reward value and the peak value of the cumulative reward. 

When compared to the results of an 8000-round VAE-SAC 

model in similar research [31], the DAC-SAC algorithm 

achieved relatively ideal results in just 3500 rounds. This 

helped, to some extent, addressing the issue of slow 

convergence speed of DRL algorithms for UAV obstacle 

avoidance tasks. 

The future works will investigate three objectives:  first, 

enabling the autonomous flight of the UAV in all directions 

in a 3D space to avoid obstacles, thus improving their 

avoidance ability in complex environments; second, 

enhancing the UAV’s obstacle avoidance capability in 

unknown new environments; and, finally, continuing the 

implement efforts to optimize the actor-critic network 

structure to enhance the memory and processing capability of 

the UAV for continuous state information. 
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