
 

  

Abstract—In understanding human behaviour, computers 

sometimes condense their analysis of human behaviour into an 

analysis of the state of movement of keypoints in the human 

body. Thus, the technique of human pose estimation provides a 

convenient means for machines to recognise people's behaviour. 

The lightweight pose estimation network enables computers to 

detect human poses in real-time. This paper proposes 

Lightweight HRNet, a bottom-up lightweight network for 

multi-person human pose estimation. The network is proposed 

based on the HRNet architecture and includes four network 

branches with different resolutions and two network stages. The 

network backbone uses the ShuffleNet model, which allows the 

network to be better used on smaller devices. Notably, 

Lightweight HRNet focuses on a problem with multi-resolution, 

multi-branch parallel networks: not all stages of the network 

contain information about the feature maps of all its branches. 

Therefore, we proposed the Channel Exchange Module (CEM), 

which improves the exchange of information between each stage 

of the network and each of its branches. Among the tasks of 

human pose estimation, the addition of CEM improved the 

network accuracy of Lightweight HRNet by 0.9% in the 

COCO2017 test-dev. Finally, the network was able to achieve 

46.6% accuracy on the COCO2017 test-dev. This accuracy is 

superior in the study of bottom-up lightweight human pose 

estimation networks. 

 
Index Terms—Human Pose Estimation, Lightweight 

Network, HRNet 

 

Ⅰ. INTRODUCTION 

ULTI-PERSON pose estimation techniques are a 

fundamental topic in the study of human behaviour 

through computer vision. Human behaviour recognition 

techniques, such as fall detection [1] and hazardous 
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behaviour detection [2], often rely on human pose estimation. 

Depending on the order of recognition, multi-person human 

pose estimation has been categorised into top-down and 

bottom-up approaches. The top-down detection method 

initially employs object detection techniques to identify all 

individuals within the image, followed by a sequential 

estimation of the pose for each detected individual. The 

bottom-up approach begins by detecting the keypoints of all 

the individuals in the image, and then classifies and links 

these keypoints in order. As object detection and 

single-person human pose estimation tasks are performed 

sequentially, the detection time for top-down pose estimation 

increases with the number of people in the input image. This 

method has a slower detection speed compared to the 

bottom-up method, but it has higher accuracy.  

Among the tasks of human pose estimation, especially the 

bottom-up multi-person human pose estimation task, the 

network is required to be able to capture global and local 

image information effectively. This is attributed to the 

presence of multiple detection targets with varying sizes in 

the input image. The multi-resolution network [3, 4, 5, 6] can 

effectively achieve this purpose and is therefore frequently 

used in human pose estimation. This particular network 

architecture is well suited for the task of detecting small 

targets such as keypoint detection. If the Stacked Hourglass 

Network [5] is the serial network among multi-resolution 

networks, which repeatedly learns the local and global 

information of the images to understand all the input 

"knowledge points" more thoroughly and deeply, then the 

HRNet series of networks is the parallel network among 

multi-resolution networks. It learns the local and global 

information of the input images separately and combines all 

the "knowledge points" in the output stage of the network. In 

summary, the HRNet series of networks [3, 4, 6] exhibits 

superior performance compared to the former [5]. It exhibits 

superior accuracy with a reduced number of parameters and 

FLOPs.  

Since the development of human pose estimation tasks, 

several outstanding networks [7, 8, 9, 10] have emerged for 

human pose estimation. They are both able to achieve high 

detection accuracy in pose estimation tasks. However, 

although the accuracy of detection has improved, the 

increased network size has posed a significant challenge for 

most networks in achieving real-time attitude detection tasks. 

Consequently, numerous scholars have initiated 

investigations into lightweight networks for human pose 

estimation [11, 12, 13, 14]. Most of them are mainly used in 

single-people pose estimation tasks or in combination with 

object detection techniques for top-down human pose 

estimation tasks. Limited networks are available for 

lightweight human pose estimation using bottom-up methods. 

Lightweight HRNet: A Ligtweight Network for 

Bottom-Up Human Pose Estimation  

Jinzhen Liao, Wenhua Cui, Ye Tao, Tianwei Shi, and Lijia Shen 

M 

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 661-670

 
______________________________________________________________________________________ 



 

Compared to the top-down approach, the bottom-up 

approach has a significant advantage in terms of detection 

speed in the multi-person human pose estimation task. This is 

because it eliminates the need for an additional human 

detector. Therefore, this paper considers it appropriate to 

adopt a bottom-up detection approach to achieve a 

lightweight design of multi-person human pose estimation 

network. 

In this paper, we present Lightweight HRNet, a 

state-of-the-art lightweight network designed for bottom-up 

multi-person human pose estimation. Fig. 1. illustrates the 

structure of the network. The architectural design of a 

multi-resolution, multi-branch parallel network serves as the 

fundamental basis for Lightweight HRNet. The Lightweight 

HRNet adopts the parameter formulation and principles of 

Efficient HRNet [4]. It is inspired by the ShuffleNet series of 

networks [15] to propose a more efficient backbone network. 

The Lightweight HRNet consists of two stages and four 

network branches. Each stage involves a different network 

branch. However, the Lightweight HRNet has an issue where 

the information fusion between sub-networks only occurs 

after the convolution of each stage. As a result, there is no 

information exchange between branches that have not yet 

joined the current stage and those that have, until the stage is 

complete. As shown in Fig. 1, the first stage of the network 

does not contain information about the third and fourth 

branches. According to K. Su et al. [16], shuffling the 

channels of feature maps can improve the fusion of feature 

maps in different branches of multi-branch parallel network 

modules. Inspired by this, this paper focuses on the fact that 

the feature map information flow in this multi-branch parallel 

network is also weak, and thus proposes a more efficient 

Channel Exchange Module (CEM) embedded in the 

Lightweight HRNet. With this module embedded, 

information exchange between feature maps of different 

network branches and different network stages can also be 

accomplished. This ensures that each stage of a 

multi-resolution parallel network can contain information 

from other network branches, enhancing the flow of 

information between the feature maps of each branch 

between different network branches. 

The Lightweight HRNet is based on the network 

architecture of HRNet [6]. The bottom-up human pose 

estimation algorithm selected is Associative Embedding [17]. 

The validation of Lightweight HRNet was performed in 

COCO2017. After the experiment, Lightweight HRNet 

achieved an accuracy of 46.6% in the COCO2017 test-dev, 

while only using 5.5M parameters and 5.5B FLOPs. The 

addition of the Channel Exchange Module (CEM) improves 

the accuracy of the network by 0.9% without any additional 

FLOPs or parameters in the network architecture. This good 

accuracy performs well and demonstrates the potential of this 

lightweight network for bottom-up multi-person human pose 

estimation. 

 
 

Fig. 1.  Lightweight HRNet structure 
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Ⅱ. RELATED WORK 

A. Single Person Human Pose Estimation 

Deep learning enables computer systems to perform tasks 

automatically. Advances in computer vision technology have 

been driven by the development of deep learning, which is 

now being used in a number of fields [18, 19]. On the 

contrary, neural network research is driving the growth of the 

deep learning techniques. A. Toshev et al. [20] were the 

earliest to use neural networks for human pose estimation 

task. They transformed the 2D human pose estimation 

problem by switching the focus from an initial image 

processing and template matching task to a more mature 

approach of extracting image features and regressing 

keypoint positions using Convololutional Neural Networks 

(CNNs). There is a relatively strong similarity between some 

keypoints, such as between pairs of keypoints, between the 

wrist and elbow, and so on. To distinguish them accurately, it 

is important to combine the global information of the images 

and constantly compare similar keypoints to make correct 

predictions. Therefore, obtaining global information about 

the image is important for the quality of keypoint detection, 

and many studies of pose estimation networks have focused 

on this problem. S.-E. Wei et al. [10] proposed to improve the 

intermediate supervision of the network by expanding the 

receptive field of the convolution and incorporating the 

original input image throughout the network process, 

allowing effective learning of spatial connections between 

distant pixel points in the feature map. Y. Chen et al. [7] 

proposed a network with four feature maps of different 

resolutions. The higher resolution feature maps capture local 

information from the input image for keypoint identification, 

while the lower resolution feature maps provide global 

context to complement keypoint recognition. To address 

challenging keypoint recognition tasks, multiple branch 

networks are employed in parallel. K. Su et al. [16] proposed 

the idea of dimensionally exchanging feature maps of 

multi-branch networks, which effectively enhances the 

information exchange between feature maps of different 

branches. 

B. Multi-person Human Pose Estimation 

Approaches to multi-person human pose estimation have 

been divided into two main groups: top-down detection 

methods and bottom-up detection methods. The top-down 

approach to multi-person pose estimation is a variation of 

single-person pose estimation that incorporates object 

detection techniques. It first detects the whole person in the 

image and then does a single-person pose estimation for each 

detected individual. 

The bottom-up method process is also performed in two 

stages. In the first stage, a method similar to top-down 

keypoint detection is used to extract all keypoints in the input 

image, and faces similar challenges to top-down keypoint 

detection. The detection approach used in this stage is similar 

to top-down keypoint detection, using the heatmap to 

estimate the accurate location of these keypoints. In the 

second stage, the detected keypoints are categorised and then 

grouped into the same category if they belong to the same 

person. This stage is a major focus of research in bottom-up 

pose estimation algorithms. E. Insafutdinov et al. [21] were 

the earliest to apply bottom-up approaches to multi-person 

human pose estimation. Although a human body detector was 

also used, the authors employed the Non-Maximum 

Suppression and ILP optimisation model to categorise the 

keypoints within the human body detection frame with 

overlapping relationships, which provided a new idea for the 

multi-person human pose estimation algorithm. Associative 

Embedding (AE) has been proposed by A. Newell et al. [17]. 

They suggest that in addition to generating a heatmap of 

keypoints during the keypoint detection stage, a label should 

be generated for each keypoint to facilitate categorization. If 

the corresponding label values of multiple keypoints from 

different categories are closely aligned, it is possible to 

classify them into the same category. Z. Cao et al. [22] 

proposed the introduction of a vector PAF as an identifier for 

keypoint connections between pairable human keypoints (e.g. 

left wrist and left elbow). Subsequently, by using the greedy 

algorithm, all keypoint connections can be established and 

matched to the different individuals. 

C. Lightweight Human Pose Estimation Network 

Most of the lightweight human pose estimation networks 

are modified from the original large-scale networks. The 

modification methods generally fall into two categories, one 

is to simplify the original network structure and the other is to 

introduce a network lightweighting module. Distillation 

learning is an effective way to recover accuracy in neural 

networks. M. W. Oktavian et al. [23] then applied distillation 

learning to disease detection, effectively improving the 

accuracy of the network. In the approach to simplifying the 

original network structure, distillation learning has also been 

applied to lightweight networks for pose estimation. F. Zhang 

et al. [13] proposed to proposed to halve the network 

structure of Stacked Hourglass Networks (SHN). This 

operation significantly reduces the network parameters. At 

the same time, the pruned network distilled learning from the 

original network, recovering a small part of the accuracy loss 

caused by pruning the network. D. Osokin [11] compared the 

efficiency of OpenPose [22] at different stages. He removed 

inefficient network structures, reduced the size of the 

network's convolution kernel in the prediction stage, and 

shared parameters of two different branches of the network 

for different tasks. C. Neff et al. [4] proposed EfficientHRNet, 

which sets different network parameters. The size of the 

resulting network structure is different depending on the 

parameters set, with the smallest structure having only 3.7M 

parameters and FLOPs of 2.1B. Bazarevsky et al. [24] 

employed the SHN architecture to build a tracker that 

accelerates human pose estimation by linking frame-to-frame 

poses to the body frame.  

Most approaches to incorporating lightweight network 

modules replace the conventional convolutional modules of 

the original network architecture with lightweight modules to 

achieve parameter and FLOPs reduction goals. A. 

Krizhevsky et al. [25] introduced depthwise separable 

convolution, which successfully reduced the number of 

parameters of the network by splitting the ordinary 

convolution into two parts: depthwise convolution and 

pointwise convolution. X. Zhang et al. [15] proposed to 

shuffle the feature maps of different groups on the basis of 

grouped convolution, which achieves the purpose of 
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enhancing the information exchange between networks and 

ensuring the network accuracy. 

Bottom-up detection is less commonly used in lightweight 

networks for human pose estimation because it is more 

accurate compared to another detection method. In this paper, 

we argue that bottom-up networks for human pose estimation 

provide inherent advantages in speed of detection. For simple 

pose estimation scenes, the bottom-up approach is sufficient 

to design a lightweight pose estimation network. 

Ⅲ. LIGHTWEIGHT HRNET ARCHITECTURE 

A. Introduction to the Overall Structure of the Network 

Fig. 1 shows the overall architecture of Lightweight 

HRNet. It has a total of four network branches with different 

resolutions and two network stages. In the network, the Lite 

Conv Module of the network replaces the normal convolution 

in the backbone part of the network, reducing the parameters 

of the network to some extent. The Channel Exchange 

Module (CEM) of the network is embedded before the 

feature maps of each different resolution enter their 

corresponding network branches, which recovers some 

accuracy for the lightweight network. The Fuse Module is 

embedded after each stage of the network to fuse the feature 

map information of network branches with different 

resolutions to ensure the flow of information between the 

branches. 

As shown in Fig. 1. The input image is first input to the 

network backbone, resulting in four feature maps of different 

resolutions. These feature maps are then joined together 

through the Channel Exchange Module (CEM) to facilitate 

information exchange without changing their resolution or 

channel. Each of these four feature maps then enters a 

separate branch within the network, and after each stage of 

processing, the branch feature maps are fused in the Fusion 

Module. Finally, all the feature map information generated 

from the branches with different resolutions is fused in the 

Fusion Module to produce heatmaps and tagmaps for 

predicted keypoints. 

B. Lightweight HRNet Backbone 

In the backbone of Lightweight HRNet, there are four 

feature maps flowing into four network branches. For 

convenience of description, the feature map in the nth branch 

that will enter the subnetwork in the backbone network is 

denoted as nA  and the feature map on the nth branch in the 

mth stage of the network is denoted as nmB . Efficient HRNet 

[4] sets all the parameters according to the device and 

application in which it is used. In the Lightweight HRNet 

backbone, the dimensions of nA  and nmB  are set according 

to the method of setting network parameters in Efficient 

HRNet. Efficient HRNet sets the parameter r for users to 

choose the size of the network according to their needs, such 

as 1, 2, 3, 4r = − − − − . The calculation of inputR  is shown in 

equation (1). 

 512 32inputR r= +  (1) 

The dimension 
naW  of nA  is calculated as shown in equation 

(2). 

 ( ) 1.1
n

r
aW g r=   (2) 

where ( ) 24,40,112,320g r = when 1, 2, 3, 4r = − − − − . 

However, in the original paper [4], when using this network 

for the pose estimation task, it appears as if the final result of 

naW  is also fine-tuned to meet the needs. The dimension 

nmbW  of the feature map nmB  on the branch is calculated as 

shown in equation (3). 

 32 1.25
nm

r
bW n=   (3) 

The size nR  of the resolution of the feature map nmB  on 

each branch is calculated according to equation (4). 

 
1

( )
2

n
n inputR R=   (4) 

where inputR  is the size of the resolution of the image at the 

time of input to the network obtained in equation (1). 

For the parameter selection of Lightweight HRNet, we 

experimented with the network parameters 0, 1, 2r = − − . The 

network representation was found to be best with 

Lightweight HRNet when 2r = −  was defined. Compared to 

Efficient HRNet, Lightweight HRNet improves accuracy by 

0.8% compared to the 3H−  network in Efficient HRNet, 

while maintaining basically the same FLOPs and parameters 

as the 3H−  network in Efficient HRNet. Therefore, in this 

paper, 2r = −  is chosen as the parameter of Lightweight 

HRNet for further optimisation. 

According to equations (1) - (4), the convolution process 

and the parameters of each feature map of the backbone 

network of Lightweight HRNet when 2r = −  are shown in 

Table Ⅰ, and the sizes of its feature maps for different 

branches with different network stages are shown in Table Ⅱ. 

C. Lite Conv Module 

The Lite Conv Module of the network is shown in Fig. 2, 

which is inserted in the middle of the partial convolution 

TABLE I 

LIGHTWEIGHT HRNET BACKBONE ( 2r = − ) 

Feature map 

serial number 

Convolutional operations  

in backbone 

Input 3 448 448   

 channelconv 3 3,stride 2,out 16=  = =  

1 16 448 448   

 Lite Conv Module 

2 24 112 112   

 Lite Conv Module 

3 32 56 56   

 Lite Conv Module 

4 64 28 28   

 channelconv 3 3,stride 2,out 96=  = =  

5 96 28 28   

 Lite Conv Module 

6 160 14 14   

 channelconv 3 3,stride 2,out 264=  = =  

7 264 14 14   
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process of the backbone network. This module follows the 

idea of group convolution [25] and ShuffleNet [15] by 

replacing part of the normal convolution process with a 

two-stage convolution operation.  

In the previous section, we determined the dimensions of 

each feature map in the backbone of the network, and it 

becomes clear that the entire convolution process consists of 

a sequence of operations aimed at increasing dimensionality. 

The first stage of the convolution operation in the Lite Conv 

module involves unifying the dimensions of the input feature 

maps to define the size, followed by the simultaneous feeding 

of these feature maps into both branches. For ease of 

description, the two branches of the network in the first stage 

will be named 11C  and 12C , respectively. Assume that the 

dimension size of the input feature map of a module 

identified in the previous section is inputW  and the dimension 

size of the output feature map is outputW . In the 11C  branch, 

the size of the feature map dimension is not changed, so the 

final feature map output in this branch has dimension outputW . 

However, the operation of dimensionality reduction of the 

original feature map is required in 12C . The size of 

dimensionality reduction will be determined by the 

dimension of the final output feature map and the dimension 

of the input feature map, i.e., the dimension of the final 

output feature map in the 12C  branch of the network is 

output inputW W− . The final feature map output in this stage is 

the stitching of the feature maps output from the 11C  and 

12C  networks, and the size of the output feature map 

dimension is still outputW . This is equivalent to the fact that 

the convolution operation of 12C  is the addition of the 

dimensions of the input feature maps to the dimensions of the 

output feature maps, so that the dimensional size of the 

feature maps after the stitching of the output feature maps of 

11C  and 12C  matches the dimensional size of the output 

feature maps. 

The second stage of the convolution operation is added to 

ensure the depth of the network. In the second stage of the 

convolution operation, the dimensional size of the feature 

map is no longer altered and the feature map is divided 

equally into two parts. The network performs a convolution 

operation on only one part of it, leaving the other part of the 

feature map without any processing. Subsequently, the 

feature maps of the two parts were stitched together. It is 

worth noting that in both the first and second stages of the 

convolution operation, the shuffle module is added to 

improve the information exchange between the feature maps, 

that is, the feature maps are disrupted and reorganised in 

terms of different dimensions. Instead of two standard 

convolution operations, the network uses the Lite Conv 

Module, which is able to effectively reduce the number of 

parameters in the network while maintaining the depth of the 

network compared to normal convolution. 

D. Channel Exchange Module 

The whole process of the Channel Exchange Module 

(CEM) is shown in Fig. 3. The operation process of the 

TABLE Ⅱ 

LIGHTWEIGHT HRNET BRANCH FEATURE MAP SIZE ( 2r = − ) 

 Branch1 Branch2 Branch3 Branch4 

Backbone 24 112 112   32 56 56   96 28 28   264 14 14   

Afer CEM 24 112 112   32 56 56   96 28 28   264 14 14   

Stage1 21 112 112   42 56 56     

Stage2 21 112 112   42 56 56   83 28 28   166 14 14   

 

 
 

 
Fig. 2.  Lite Conv Module structure 
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concat and shuffle module in CEM is shown in Fig. 4 [15]. It 

should be noted that the stitching of feature maps requires 

that the feature maps have the same resolution size, but in the 

Lightweight HRNet network these feature maps do not have 

the same resolution size. To address this problem, CEM 

unifies all their resolutions by the operation of up-sampling 

into the size of the feature map R R  which is the largest 

resolution among them, and this does not increase any FLOPs 

and parameters amount of the network. After the task of 

channel exchange is completed, the CEM will use normal 

convolution with a convolution kernel size of 3 3  and a 

step size of 2n to complete the downsampling operation of 

the feature map to recover the size of the feature map 

resolution. Since the network has four network branches, the 

 

 
Fig. 4.  The operation process of the concat and shuffle module in CEM [15] 

 
 

Fig. 3.  Channel Exchange Module structure  
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whole CEM is equivalent to four convolution operations, just 

enough to replace the dimensionality-decreasing convolution 

performed by nA  when it enters the branch network. In this 

way, the CEM does not add any parameters or FLOPs to the 

whole network. 

For the ease of description, the feature maps after CEM are 

named as 1A  , 2A  , 3A  , 4A  . Although the network needs to 

obtain more complete information about the input image by 

enhancing the exchange of information between feature maps, 

the network still expects that after the channel exchange is 

completed, nA   can still retain most of its own dimensional 

information nA , rather than having its own dimensional 

information completely replaced. Moreover, in the process of 

channel exchange, each feature map also expects to exchange 

as much as possible with the dimensions of feature maps that 

have less relevance to itself. Therefore, CEM divides nA  

into two equal parts, takes only one part to exchange 

information with other feature maps, and puts the information 

of the other part into nA   as it is.  

After the above channel exchange in CEM, the number of 

dimensions of the original feature map nA  contained in nA   

is shown in Table Ⅲ-Ⅳ. Table III shows the case when all 

the feature maps of the four branches are performed with 

channel exchange. Table IV shows the case when only half of 

the four branching feature maps are channel exchanged. In 

the first stage of Lightweight HRNet, the feature map only 

has the information of the first and second branch feature 

maps, but lacks the information of the third and fourth branch 

feature maps, then it is expected that 1A   and 2A   can be 

exchanged to the dimension information of 3A  and 4A  as 

much as possible in the CEM. However, it is worth noting 

that these feature maps have different and widely varying 

dimensions, and if all the dimensional information of the 

feature maps is exchanged according to the allocation shown 

in Fig. 4, it may result in most or all of the dimensional 

information of the feature maps themselves being exchanged. 

As shown in Table III, if all the information of the feature 

map is exchanged dimensionally, the information of 3A  in 

the feature map after exchanging channel information 3A   

only accounts for 1/4 of its information, and even 2A   doesn't 

contain the information of 2A . It doesn't make sense for a 

feature map to lose most or all of its own information as it 

goes about exchanging information. 

Therefore, as shown in Fig. 3, each feature map nA  is 

segmented in the CEM. It is divided equally into two parts, 

1nA  and 2nA , with only one half of 1nA  exchanging 

dimensions, and the other half, 2nA , being left unprocessed. 

Once the dimensions of 1nA  have been exchanged, they are 

stitched together with the corresponding 2nA  which has not 

been processed in any way. As shown in Table IV when only 

half of the feature map is taken for information exchange. 

Such approach allows each feature map nA  to keep at least 

half of its own information after the channel exchange is 

completed, so that no more information will be lost when the 

resolution size of nA   is recovered later. In addition, when 

assigning the dimensions of the features again, CEM adjusts 

the order of the feature maps when assigning the dimensions, 

so that 1A  , 2A   can contain as much information as possible 

about the dimensions in 3A , and 4A . 

IV.  EXPERIMENTS 

Lightweight HRNet experiments were performed in 

Python 3.9, pytorch 1.13.0 and all training was done on the 

NVIDIA GeForce RTX 3090 device. The experiment is 

described and analysed below. 

A. Experimental Dataset 

The dataset used for Lightweight HRNet is COCO2017. 

The COCO dataset [26] is a large dataset that can be used for 

various tasks, including object detection, semantic 

segmentation, and pose detection. It contains 250,000 

pedestrians with keypoint annotations, each with 17 

keypoints, which can be used for the human pose estimation 

task of the network. The COCO2017 dataset is divided into 

three sets: training, validation, and test. The training set, 

which is used for training the network, contains more than 

118,000 images, the validation set contains more than 5,000 

images, and the test set contains more than 40,000 images. 

The accuracy of human pose estimation on this dataset has 

been validated through widely recognized methods. The 

COCO dataset has been used to train many pose estimation 

tasks, and the resulting models have been validated on both 

the COCO test-dev and COCO val datasets. The 

experimental results of Lightweight HRNet are validated on 

COCO2017 test-dev and COCO2017 val to enable 

comparison with other attitude networks. 

B. Evaluation Indicators 

The evaluation indicators of the COCO dataset in human 

pose estimation mainly refer to its evaluation indicators in 

TABLE Ⅲ 

THE EXCHANGE OF FEATURE MAPS OF EACH BRANCH  

BEFORE JOINING CEM 

 1A (24) 2A (32) 3A (96) 4A (264) 

1A  (24) 6 8 10 0 

2A  (32) 0 0 14 18 

3A  (96) 6 8 24 58 

4A  (264) 12 16 48 188 

 

TABLE Ⅳ 

THE EXCHANGE OF FEATURE MAPS OF EACH BRANCH  

AFTER JOINING CEM 

 1A (24) 2A (32) 3A (96) 4A (264) 

1A  (24) 12 0 12 0 

2A  (32) 0 20 0 12 

3A  (96) 3 4 60 29 

4A  (264) 9 8 24 223 
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object detection: Average Precision (AP) and Average Recall 

(AR). In our task, Ground Truth (GT) denotes the true 

position of human keypoints manually labelled in the dataset, 

and Bounding Box (Bbox) denotes the position of human 

keypoints predicted by the network, and the similarity 

measure between them is OKS. The full name of OKS is 

Object Keypoint Similarity and it is calculated as shown in 

equation (5). 
2 2 2exp( / 2 ) ( 0)

( 0)

i i

i

p ii p p

p

i p

d S v
OKS

v

 



− 
=






 (5) 

where p denotes a person among the GT. ip  represents the 

ith keypoint of the person, and ip
d denotes the euclidean 

distance between the ith detected keypoint of the person in 

the Bbox and the ith keypoint of the person in the GT. It is 

calculated as shown in equation (6). 

 ( )( )i i ii ip p p
d x x y y = − −  (6) 

where ( , )i ix y  is Bbox, i.e., the position of the ith person's 

keypoint detected by the network; ( , )i ip p
x y  is GT, i.e., the 

position of the ith keypoint of the pedestrian p manually 

labelled. ip
v   is a manually labelled parameter, and 0ip

v =  

means that this keypoint is not labelled, then no computation 

is done for this keypoint either. pS  denotes the scale factor 

of the person p among the labelled pedestrians, which is the 

area of the pedestrian detection boxes in the image. i  

denotes the difficulty of detection of the corresponding 

keypoint on the network. 

The human pose estimation task mainly takes the average 

accuracy AP as an evaluation indicator. AP is computed 

differently for top-down and bottom-up method. This section 

only concerns the AP settings for bottom-up human pose 

estimation. Assuming that there are M individuals labelled 

among the input images and the number of people predicted 

by the network is N. Since the correspondence between M 

and N is not known, it is necessary to sequentially calculate 

the OKS of the labelled M individuals respectively with the 

predicted N. Then a threshold T is artificially determined as 

the criterion for the network to correctly detect the human 

body pose maps. The bottom-up AP values are calculated as 

shown in (7). 

( )

1

pm p

m p

OKS T
AP

 
=

 

 
 (7) 

where m represents the human pose map in GT and p 

represents the human pose map detected by the network. The 

mAP is a commonly used detection indicator. Specifically, it 

is to obtain multiple AP values by setting different artificial 

thresholds T in the AP indicator, and mAP can be obtained by 

averaging these AP values. In this paper, mAP is used as an 

evaluation indicator for the pose estimation. 

In addition to this, since we are doing research on 

lightweight networks, this paper also uses the number of 

parameters and Floating Point Operations (FLOPs) as 

evaluation indicators. 

C. Experimental Results 

1) Validation results of Lightweight HRNet at different 

parameters before adding the CEM 

The validation results of the network on COCO2017 val 

TABLE  Ⅴ 

COMPARISON OF NETWORK EFFECT BETWEEN LIGHTWEIGHT HRNET AND EFFICIENT HRNET IN DIFFERENT PARAMETERS 

Method Network Backbone Input size #Params FLOPs AP(val) AP(test-dev) 

Efficient HRNet 

0H  0B  512 23.3M 25.6B 64.8 64.0 

1H−  1B−  480 16M 14.2B 59.2 59.1 

2H−  2B−  448 10.3M 7.7B 52.9 52.8 

3H−  3B−  416 6.9M 4.2B 44.8 44.5 

4H−  4B−  384 3.7M 2.1B 35.7 35.5 

Ours 

(Lightweight HRNet) 

0r =  - 512 13.2M 15.6B 55.2 54.9 

1r = −  - 480 8.8M 9.3B 49.0 48.5 

2r = −  - 448 5.9M 5.5B 45.4 45.7 

 

 

 
Fig. 5.  Lightweight HRNet results comparison before and after CEM is added 
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and COCO2017 dev-test for the selection of the parameter r 

before adding the CEM  to Lightweight HRNet are shown in 

Table Ⅴ. At 0, 1r = − , the Lightweight HRNet does not 

perform well compared to the Effcient HRNet. Taking the 

validation results in COCO2017 dev-test as an example, at 

0r = , the number of parameters and the FLOPs amount of 

Lightweight HRNet are above and below 1H− , but the 

accuracy is below 1H− ; when 1r = − , the number of 

parameters and the FLOPs of Lightweight HRNet are around 

2H− , but the accuracy is below 2H− . However, for 2r = − , 

the number of parameters and the FLOPs of Lightweight 

HRNet can be reduced by 42.7% and 28.5% respectively 

compared to 2H− , and its parameters and the FLOPs are in 

the range of 3H− , while the accuracy is 1.2% higher than that 

of 3H− . 

2) Comparison of results before and after adding CEM 

The validation results of Lightweight HRNet (LH) before 

and after the addition of the CEM on the COCO2017 val and 

COCO2017 dev-test datasets are shown in Table Ⅵ. With the 

addition of CEM, the Lightweight HRNet network was able 

to improve accuracy by 1.2% on the COCO2017 val dataset 

and 0.9% on the COCO2017 dev-test dataset. And after 

comparison, it is found that after adding CEM to the network, 

the network is more accurate in capturing the keypoints in the 

images, as shown in Fig. 5. 

3) Comparison with other bottom-up lightweight 

networks for human pose estimation 

The validation results of Lightweight HRNet with other 

bottom-up lightweight networks at COCO2017 val are shown 

in Table Ⅶ. Compared to Lightweight OpenPose, 

Lightweight HRNet is 39% less FLOPs and 43% more 

parameters than Lightweight OpenPose in terms of 

computational complexity; In detection accuracy, 

Lightweight HRNet's AP improved by 3.8%. Compared with 

Efficient HRNet's 3H− , which has similar number of 

parameters and FLOPs, Lightweight HRNet's FLOPs 

increases by 31% and the parameters decreases by 14%, but 

Lightweight HRNet's AP improves by 1.8. Compared to the 

smaller model 4H− , Lightweight HRNet's model parameters 

and FLOPs are both increased, but the accuracy is improved 

by 10.9%. 

4) Comparison with other bottom-up human pose 

estimation networks 

The validation results of Lightweight HRNet with other 

bottom-up human pose estimation networks on COCO2017 

test-dev are shown in Table Ⅷ. Compared to other 

state-of-the-art bottom-up networks, Lightweight HRNet has 

one-fifth or even one-tenth the number of parameters and 

FLOPs of other large-scale pose estimation networks (e.g. 

Hourglass [5], HigherHRNet [3]), although it has no 

advantage in detection accuracy in the pose estimation task. 

If Lightweight HRNet is used in some edge devices, this 

accuracy is enought for human pose estimation tasks in 

simple scenarios. 

Ⅴ. CONCLUSION 

In this paper, we propose Lightweight HRNet, a new 

bottom-up lightweight human pose estimation network. The 

TABLE  Ⅷ 

COMPARISON OF LIGHTWEIGHT HRNET WITH OTHER BOTTOM-UP HUMAN POSE ESTIMATION NETWORKS 

Method Network Backbone Input size #Params FLOPs AP 

Associative Embedding 

Hourglass Hourglass 512 277.8M 206.9B 56.6 

HRNet HRNet-W32 512 28.5M 38.9B 64.1 

HigherHRNet HRNet-W32 512 28.6M 47.9B 66.4 

HigherHRNet HRNet-W48 640 63.8M 154.3B 68.4 

Efficient HRNet 

+ 

Associative Embedding 

0H  0B  512 23.3M 25.6B 64.0 

1H−  1B−  480 16M 14.2B 59.1 

2H−  2B−  448 10.3M 7.7B 52.8 

3H−  3B−  416 6.9M 4.2B 44.5 

4H−  4B−  384 3.7M 2.1B 35.5 

PifPaf - ResNet-512 - - - 66.7 

PersonLab - ResNet-512 1401 68.7M 405.5B 66.5 

OpenPose - - - 25.94M 160B 61.8 

Ours - - 448 5.9M 5.5B 46.6 

 

 

TABLE Ⅵ 

COMPARISON OF LIGHTWEIGHT HRNET BEFORE AND  

AFTER THE ADDITION OF CEM 

Method #Params FLOPs AP(val) AP(test-dev) 

LH 5.9M 5.5B 45.4 45.7 

LH+CEM 5.9M 5.5B 46.6 46.6 

 

 

TABLE Ⅶ 

COMPARISON OF THE EFFECTIVENESS OF LIGHTWEIGHT HRNET WITH   

OTHER BOTTOM-UP LIGHTWEIGHT NETWORKS 

Method Input size #Params FLOPs AP 

3H−  416 6.9M 4.2B 44.8 

4H−  384 3.7M 2.1B 35.7 

Lightweight 

OpenPose 
368 4.1M 9.0B 42.8 

Ours 448 5.9M 5.5B 46.6 
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advantage of bottom-up human pose estimation is that it does 

not require additional human target detection tasks and can 

detect human pose in one step. This detection is ideal for 

real-time detection tasks. Lightweight HRNet is a lightweight 

network designed around the HRNet architecture with two 

network stages and four network branches. Lightweight 

HRNet backbone consists of normal convolution and Lite 

Conv Module, which compresses the number of parameters 

and FLOPs of the model compared to normal convolution. 

The parameters of the network backbone were determined on 

the calculation of the parameters of Efficient HRNet. At the 

same time, the network adds the CEM, which is placed before 

the backbone network's feature map enters the branch 

network, effectively improving the exchange of information 

between different branches of the network. 

In the COCO2017 dev-test dataset, the addition of CEM 

effectively brought a 0.9% accuracy improvement to the 

network. Compared to other top-down human pose 

estimation networks, Lightweight HRNet has only 5.9M 

parameters and 5.5B FLOPs. It achieves an accuracy of 

46.6% on COCO2017 test-dev, which is outperforming the 

lightweight bottom-up human pose estimation network. The 

low complexity of Lightweight HRNet enables it to be 

flexibly applied to a variety of lightweight devices for 

real-time human pose estimation tasks.  
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