
A Blank Element Selection Algorithm for Element
Fill-in-blank Problems in Client-side Web

Programming
Huiyu Qi, Nobuo Funabiki, Khaing Hsu Wai, Flasma Veronicha Hendryanna, Khin Thet Mon,

Mustika Mentari, and Wen Chung Kao

Abstract—Nowadays, web applications play central roles in
information systems using the Internet. Then, client-side web
programming using HTML, CSS, and JavaScript should be
mastered first by novice students. Previously, we have presented
the element fill-in-blank problem (EFP) for its self-study. An
EFP instance requests to fill in the blank elements in the given
source code by referring to the screenshots of the corresponding
web page. The correctness of any answer is marked through
string matching. However, these blanks were manually selected
by considering the importance of elements and the uniqueness
of their correct answers. In this paper, we propose a blank
element selection algorithm to automatically generate a new EFP
instance from a given source code for client-side web program-
ming. We define the seven rules on blank element selections from
the code, and implement the procedure in Python using the open
source BeautifulSoup and regular expressions.‘For evaluations,
we applied the algorithm to the 47 source codes used for manual
generations and obtained the better EFP instances with more
blanks. Besides, we verified the effectiveness by generating 10
new instances with the algorithm and assigning them to 40
students. In addition, we extended its application to three source
codes for games and verified the effectiveness by assigning
them to 20 students, to further validate the applicability of
the algorithm in EFP instance generations. We also evaluated
the relationships between the number of blanks, the number
of lines in source codes, the submission times and answer rates
of students to further assess the adaptability of the algorithm.
These results allow us to measure the algorithm’s versatility
in generating a wide range of EFP instances and contributes
to comprehensive understanding of instance difficulties and
learning outcomes.

Index Terms—client-side web programming, element fill-in-
blank problem, blank-element selection, algorithm, Python,
BeautifulSoup, regular expression, correlation coefficient.

Manuscript received March 24, 2023; revised December 23, 2023.
H. Qi is a PhD student of the Department of Information and

Communication Systems, Okayama University, Okayama, Japan, email:
pbr17iqa@s.okayama-u.ac.jp

N. Funabiki is a professor of the Department of Information and
Communication Systems, Okayama University, Okayama, Japan, email:
funabiki@okayama-u.ac.jp

K. H. Wai is a PhD student of the Department of Information and
Communication Systems, Okayama University, Okayama, Japan, email:
khainghsuwai@s.okayama-u.ac.jp

K. T. Mon is a PhD student of the Department of Information and
Communication Systems, Okayama University, Okayama, Japan, email:
p3x78b2r@s.okayama-u.ac.jp

M. Mentari is a PhD student of the Department of Information and
Communication Systems, Okayama University, Okayama, Japan, email:
pqt85hm5@s.okayama-u.ac.jp

F. V. Hendryanna is an employee of the PT Telkom Indonesia Tbk,
Malang, Indonesia. e-mail: veronichaflasma@gmail.com

W. C Kao is a professor of the Department of Electrical En-
gineering National Taiwan Normal University Taipei, Taiwan. e-mail:
jungkao@ntun.edu.tw

I. INTRODUCTION

Nowadays, most people around the world agree with
values that computers will bring to all the aspects of our
private and professional lives. Computers can flexibly solve
diverse practical problems in societies by adopting proper
programs to them. It can be said that programming provides
conveniences and solutions for us. As a result, a variety of
computer systems have been designed and implemented with
different architecture and programming languages, where
programming plays significant roles. Among various com-
puter systems that have been used, web applications will
be the most important, providing vital tools and various
services in our daily lives with use of the Internet. Web-client
programming using hyper text markup language (HTML),
cascading style sheets (CSS), and JavaScript is essential to
provide dynamic behaviors of web pages on web browsers
in web applications [1]. With its rich libraries and short
coding capabilities, web-client programming has become a
common way to implement a variety of user interfaces,
both on personal computers and smartphones. Nevertheless,
even now, web-client programming courses are not offered
as standard courses in many universities around the world,
due to time and instructors limitations. More conventional
and fundamental programming languages such as em C or
Java should be taught first before web-client programming
is taught in the university curriculum. Therefore, there is
a strong desire to have self-learning tools to promote web-
client programming among people who have not formally
studied it in universities. Previously, we have developed a
web-based programming learning assistant system (PLAS)
for self-studies of popular programming languages, such
as C, C++, Java, Python, and JavaScript. PLAS provides
several types of programming exercise problems at different
difficulty levels to meet the different learning needs of
students. By solving offered exercise problems in PLAS,
students can gradually advance the stage of programming
learning. In particular, PLAS provides the grammar-concept
understanding problem (GUP) [2], the value trace problem
(VTP) [3]-[5], the code modification problem (CMP) [6],
the element fill-in-blank problem (EFP) [7][8], the code
completion problem (CCP) [9], and the code writing problem
(CWP) [10]. For any problem type, the correctness of the
student’s answer is automatically checked by unit test for
CWP or by string matching with the correct answers for the
others. The outline and the learning goal of each problem
type are described as follows:

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

• GUP reminds the knowledge and concepts of reserved
words and common libraries in the source code, for
grammar study.

• VTP questions the values of important variables and
output messages in the source code, for code reading
study.

• CMP asks to modify the source code to satisfy the
requested output, for library use study.

• EFP requests to fill in the blank elements in the source
code with their originals by understanding the syntax
and semantics, for code understanding study.

• CCP is different from EFP only in no show of the
locations of the missing elements.

• CWP needs to write the source code from scratch that
can pass the given test code, for coding study.

It is expected that by solving these problem types in this
order, students can continue programming learning without
dropping out, and can reach the sufficient level of profi-
ciency. For web-client programming, we have implemented
GUP and VTP so far. Previously, we have presented the
element fill-in-blank problem (EFP) for self-study of web-
client programming. An EFP instance requests to fill in the
blank elements in the given source code by referring to the
screenshots of the corresponding web page. The correctness
of any answer is marked through string matching with the
stored unique correct answer. In a web page, HTML and CSS
use tags in the document object model (DOM) to define the
static components. Then, JavaScript refers to them to provide
dynamic changes or actions to the components through
libraries. Since it is important to understand how to relate the
three languages together in a source code, the corresponding
elements are often blanked in the EFP instance. An EFP
instance intends that a student can effectively understand
the source code including use of tags with libraries by
reading it while watching the screenshots of the web page.
In our previous studies, we generated 21 EFP instances on
basic grammar topics [11] and 26 ones on applicative topics
[12] respectively. Based on the generated instances, we also
analyzed the rules for the blank element selection [13]. We
evaluated the EFP instances by asking students to solve
them and analyzing the results. It was concluded that the
instances on basic grammar topics are suitable for novice
students, whereas the instances on applicative topics are hard
for them. However, in previous studies, the blank elements
were manually selected by considering the importance of the
elements and the uniqueness of their correct answers. This
manual selection can cause the high load to a teacher in
generating new EFP instances. Actually, it may not be easy
to correctly select the blank elements from a source code
that have unique correct answers. Therefore, the algorithm to
automatically select the blank elements from the given code
is desired. In this paper, we propose a blank element selection
algorithm to automatically generate a new EFP instance
from a given source code for client-side web programming.
For this algorithm, we define the seven rules on the blank
element selection from the code. We implement the algorithm
procedure in Python using an open source BeautifulSoup [14]
and regular expressions [15]. For evaluations of the proposal,
we applied the algorithm to 47 client-side web programming
source codes that were used in manual EFP generations,
and examined the differences of the generated EFP instances

from the previous ones. Then, the same results were basically
obtained except for random tiebreak resolutions when two or
more elements have the same priority. Thus, the correctness
of the proposal was confirmed. Besides, we generated 10
EFP instances from newly collected source codes by applying
the algorithm, and assigned them to students in Okayama
University and State Polytechnic of Malang who have studied
C and Java programming in the department courses but
have not studied web-client programming in any course.
It is noted that some of them had solved EFP instances
for other programming languages. Their solution results
confirmed the validity of the proposal in applications to new
source codes. In addition, we extended the evaluation of
the algorithm to the learning field of game-based web-client
programming. We newly generated three EFP instances using
the source codes for simple video games by applying the
algorithm. These source codes have longer lines than the
previous. These instances are assigned to 20 students where
the solution results confirmed the validity. Furthermore, we
examined the relationships between the number of lines of
the source code, the number of generated blanks, the submis-
sion times and the correct answer rate of students. Notably,
an EFP instance from a longer code and a higher number
of blanks generally exhibited the lower correctness rates.
This finding emphasizes the importance of providing students
with progressively challenging instances, which will allow
them to build web-client programming competence over time.
The rest of this paper is organized as follows: Section II
introduces adopted technologies in the proposal. Section III
discusses related works in literature. Section IV reviews
our previous works. Section V presents the blank element
selection algorithm. Section VI, Section VII, Section VIII
and Section IX evaluates the algorithm by comparisons
with manual generations, new instance generations, game-
based instance generations, and instance characteristics using
correlation coefficient respectively. Section X concludes this
paper with future works.

II. ADOPTED TECHNOLOGIES

In this section, we review adopted technologies to imple-
ment the proposed algorithm.

A. BeautifulSoup

BeautifulSoup is included in the Python’s built-in standard
library. It is an open source parser for web scraping that
retrieves and analyzes data from HTML and XML files.
HTML are widely used in websites that are published on the
Internet. It offers a high degree of cross-platform flexibility.
In the algorithm implementation, the BeautifulSoup library
is used to parse the web page to find the necessary elements
by using the regular expression together. It has the moderate
execution speed and the high document fault tolerance.

The parsing process using BeautifulSoup in a Python
program is given as follows:

1) Import BeautifulSoup from bs4. For example, from bs4
import BeautifulSoup

2) Read the HTML file by f: html = f.read().
3) Make the BeautifulSoup object with

’html.parser’ by soup = BeautifulSoup
(html, ’html.parser’).

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

4) Use the find all() function under the soup object to find
the name of the element that needs to be matched. For
example, soup.find_All(’tag name’) is used.

B. Regular expression

Regular expression represents a sequence of special char-
acters that can help checking whether a given string matches
the certain pattern or not.

The matching process using regular expression in a Python
program is given as follows:

1) Import the regular expression module as re. For exam-
ple, import re.

2) Use re.compile(pattern, flag=0) to convert regular ex-
pressions to objects. This function generates a regular
expression object based on a pattern string and optional
flags arguments. This object has a set of methods for
regular expression matching and replacement.

3) Use the search() function to search the HTML files for
the existence of the string regular expression declared
in the re.compile() function.

4) If the string character is exists, the first successful
match will be returned.

III. RELATED WORKS

In this section, we discuss related works in literature in
web programming, regular expression, and web scraping.

A. Web Programming

In [16], Lahtinen et al. studied the difficulties in learning
programming to support developing learning materials for
basic programming courses through an international survey
of opinions from teachers and students. They include pro-
gram design to solve the task, functionality divisions into
procedures, bug finding, error handling, and library use.

In [17], Knutas et al. presented an automated assessment
system for web programming assignments. It was imple-
mented using the Cypress end-to-end testing framework and
integrated with Learning Management Systems (LMS) using
the Learning Tools Interoperability (LTI) interface.

In [18], Kar et al. showed the gap between the skill
requirements of software industries and web programming
courses in universities, and proposed two different courses
for frontend programming and backend one.

In [19], Arawjo et al. proposed a strategy for teaching pro-
gramming using gamified semantics, blending game elements
with programming exercises to increase engagement and
understanding. It outlines the method’s efficacy in fostering
active learning and improved comprehension of program-
ming concepts through interactive and playful educational
experiences.

B. Regular Expression

In [20], Chapman et al. explored the backgrounds of use
of regular expressions, and the characteristics and behavioral
similarities in open source Python projects. They analyzed
about 4,000 projects in GitHub and extracted nearly 14,000
unique regular expression patterns. The most difficult part
of using regular expressions is composing and reading them.

They proposed a method to measure the similarity of be-
haviors between different regular expressions by generating
strings that match one regular expression and pair testing the
rest. They found that capturing the contents of parentheses,
searching for separators and matching alternative values are
common behaviors.

In [21], Larson et al. presented Automatic Checking of Reg-
ular Expressions (ACRE). ACRE takes a regular expression
as the input and performs 11 different checks on it based
on common mistakes. It is simple to use where the user
just enters a regular expression and presses the button. The
incorrect part is highlighted.

C. Web Scraping
In [22], Onyenwe et al. introduced the steps of using Beau-

tifulSoup to extract information from e-commerce web pages.
The main steps process scraping data from the pages. They
conducted experiments using the largest online shopping site
in Finland. They developed web pages, made web scraping
source codes, and processed scraped data. The results showed
that this approach to e-commerce sites can improve product
search operations.

In [23], Thivaharan et al. presented three Python libraries,
BeautifulSoup, LXml, and RegEx, which can be used to
extract digital contents scattered across the Internet. RegEx
has the inherent drawback of the limited rule extractions of
web pages with more internal tags. As a result, it can perform
only moderately complex contexts. Other two libraries have
the ability to extract web page contents in critical contexts.
They demonstrated overwhelming advantages of RegEx in
different scenarios.

In [24], Darmawan et al. aimed to determine the per-
formance of the web scraping method with the application
of multi-processing. Four web crawling methods were se-
lected in the experiment, namely CSS selector, HTML DOM,
RegEx, and XPath. The results show that RegEx uses the
least memory size, XPath takes the least CPU time, and CSS
Selector method takes the smallest bandwidth usage.

In [25], Khder et al. proposed that the web scraping is
a highly useful tool in the information age, and an essential
one at different fields in any company that wishes to maintain
the online presence. They introduced the application of data
crawling in various fields, such as AI, data science, big data,
business intelligence, cloud computing, and cyber security.
Moreover, the automatic data extraction or web scraping is
becoming more prevalent in corporate and academic research
projects.

In [27], Singrodia et al. reviewed various aspects of
Web Scraper. The authors describe the working principle,
advantages and disadvantages of web scrap systems, and
finally the application of the web scrap system. Web scraping
is an automatic web data extraction function instead of
manual copying. The goal of web scraper is to focus on
the conversion of unstructured data while saving it in an
organized database. It provides error-free data, saves the time
to provide quick results and stores all the data stored in one
location. This facilitates access and makes analyzing the data
easier. This article also introduces tools for Web Scraping,
including the rvest platform and regular expressions.

In [28], Andersson et al. proposed a structured way to
build a Python-based web scraper that collects data from

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

TimeEdit and saves it. The user can then upload this text file
to a dynamic website where the data is extracted from the file
and saved to a database that is predetermined and unique to
that user. The pre-study showed that it was feasible to build
the web scraper in pure code, but a lot of time had to be
spent analyzing how TimeEdit worked and how to scrape the
right information. By continually iterating on the problems
encountered, it was possible to build the entire platform with
some shortcomings.

In [29], Opera et al. investigated the opportunities to
extract data from web pages. They proposed solutions for
extracting historical data from websites that do not provide
APIs or csv files. The data is extracted from this website
using BeautifulSoup and Selenium libraries. However, they
simulated a case using only Selenium and showed an almost
6-fold increase in execution time. Therefore, the authors
recommend using both BeautifulSoup and Selenium libraries
for this task.

D. Correlation Analysis

In [30], Sahoo et al. provided a comprehensive guide to
leveraging Python for exploratory data analysis (EDA). It
covers essential techniques, libraries like Pandas and Mat-
plotlib, and practical examples, empowering researchers and
data scientists to efficiently analyze and visualize datasets
for insights and informed decision-making in diverse fields.

In [31], Gupta et al. investigated sentiment analysis on
Twitter using machine learning. Employing various algo-
rithms in Python, the study explores the effectiveness of
sentiment classification. The findings contribute to under-
standing sentiment trends on Twitter and the performance
of machine learning models in this context.

In [32], Sial et al. conducted a comparative analysis of data
visualization libraries, focusing on Matplotlib and Seaborn
in Python. Evaluating their features and performance, it pro-
vides insights into their strengths and weaknesses. The study
aids researchers and data scientists in selecting the most
suitable library for diverse visualization tasks, enhancing data
exploration.

In [33] et al. provided a comprehensive overview and
comparison of free Python libraries for data mining and
big data analysis. Assessing the features and capabilities
of various libraries, it guides researchers and analysts in
selecting appropriate tools for extracting insights from large
datasets, contributing to the field of data science.

IV. REVIEW OF PREVIOUS WORKS

In this section, we review our previous works on the
element fill-in-blank problem (EFP) for web-client program-
ming.

A. EFP Instance for Web-client Programming

In an EFP instance for web-client programming, a source
code composed of HTML, CSS, and JavaScript with several
blanks and a set of screenshots in the corresponding web
page are given to a student. The first screenshot illustrates
the web page that is generated by the source code. The
second or other screenshot is the web page that will be
generated when the user takes some input action on the page.
For example, click a button on the web page. Students are

asked to understand the source code and the output page by
referring to the screenshots and filling in the blanks with the
appropriate elements. The correctness of each answer will be
checked by string matching with the original element in the
source code.

B. Blank Element Candidates

The source code for web-client programming typically is
composed by three different languages, HTML, CSS, and
JavaScript. Therefore, in an EFP instance, the following
elements in the source code can be blank:

• HTML: tag element, property, id and its name, output
text message,

• CSS: property,
• JavaScript: reserved word, identifier(function and vari-

able name), id and its name, library class/method, output
text message.

The tag element in HTML is the most basic unit in the
HTML language and is the most important component of
HTML. Here, tag is a fixed sequence of characters that is
being described in the HTML syntax defined to represent
a specific function. For example, the JavaScript code is
described between <script> tag and </script> tag in
the source code. Property is a fixed string of characters that
is defined in HTML or CSS syntax to represent a property
of a particular kind. Id is a string of characters, which is
defined by the code author and stands for a DOM component
in HTML. Reserved word is a fixed sequence of characters
that has been defined in JavaScript grammar to represent a
specific function. Identifier is a character sequence, defined
by the code author, representing a variable or a function.

From our observations in a lot of simple source codes
in web-client programming, we found that the elements
for the following seven components should be selected for
blanks from a source code: 1) tag element, 2) CSS syntax,
3) JavaScript identifier, 4) JavaScript reserved word, 5)
JavaScript library class/method, 6) Id name, and 7) text
message.

C. Limitations of Blank Element Selection

To be a unique correct answer for any blank, some rules
must be followed at selecting blanks.

First, all the elements representing the same id or identifier
should not be blanked in the source code. Otherwise, it
becomes impossible for a student to fill in them with the
original element. For example, tag appears in pair in HTML.
If all of them are blanked, it would be very difficult for many
students to answer them correctly. Thus, one of them should
be left as a hint. Actually, in our blank selections, only one
element among them is randomly selected for the blank to
make it easy.

Second, the property representing the text size or the font
type should not be blanked in the source code, because
it is difficult or impossible to distinguish them from the
screenshot of the web page. On the other hand, the color
property can be easily distinguished when a basic color is
used, which can be blanked.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

D. Example of Element Fill-in-blank Problem Generation

Here, we explain the manual EFP instance generation
procedure using a simple example of ID=4 for basic topics
in [11].

1 Problem #4 source code
2 <html>
3 <head>
4 <title>contentChange</title>
5 <script>
6 function myFunction(){
7 document.getElementById("myPar").

innerHTML="Hello World";
8 document.getElementById("myDiv").

innerHTML="How are you?";
9 document.getElementById("myBtn").

innerHTML="Stop Click";
10 }
11 </script>
12 </head>
13 <body>
14 <h1>My Web Page</h1>
15 <p id="myPar">I am a paragraph.</p>
16 <div id="myDiv">I am a div.</div>
17 <p>
18 <button onclick="myFunction()" id="myBtn">

Click here</button>
19 </p>
20 <p>When you click the button above, the two

elements will change.</p>
21 </body>
22 </html>

Fig. 1: Source code.

1 Problem #4 source code
2 < html>
3 < head>
4 < title>contentChange< /title>
5 < script>
6 _1_ myFunction(){
7 document.getElementById("myPar").

innerHTML=" _2_ ";
8 _3_ .getElementById(" _4_ ").innerHTML="

How are you?";
9 document. _5_ ("myBtn"). _6_ =" _7_ ";

10 }
11 < /script>
12 < /head>
13 < body>
14 < h1> _8_ < /h1>
15 < p id=" _9_ "> I am a paragraph.< /p>
16 < div id="myDiv"> _10_ < /div>
17 < p>
18 < button onclick=" _11_ " id=" _12_ "> _13_

< / _14_ >
19 < /p>
20 < p>When you click the button above, the two

elements will change.< /p>
21 < /body>
22 < /html>
23
24 Answer:
25 function,,Hello World,,document,,myDiv,,
26 getElementById,,innerHTML,,Stop Click,,
27 My Web Page,,myPar,,I am a div.,,
28 myFunction(),,myBtn,,Click here,,button,,

Fig. 2: Input text file.

1) Source Code: First, a proper source code should be
selected to generate the EFP instance that can cover the topics

in web-client programming to be studied there. In this EFP
example, the source code in Figure 1 is selected to study the
topic of using JavaScript functions to change a text message
by clicking a button. In the generated web page, when the
button is clicked, the two text messages on the paragraphs
and the note inside the button will be changed. Through
solving this instance, it is expected for a student to learn
how to call the JavaScript function by the HTML button
click using the id and how to change the messages inside
and outside the button.

2) Source Code with Blanks and Correct Answers: Next,
the blank elements are manually selected from the source
code, to make the input text file to the answer interface
generator that has been implemented by Java. Here, the file
in Figure 2 was generated from the source code in Figure 1.
Each blank element is expressed by two underbars with the
blank number, such as _1_. The correct answers to the
blanks are included at the last of the file, where the answers
to different blanks are separated by the double commas ,,.

3) Answer Interface: Finally, the answer interface gen-
erator is executed with the input text file, to generate the
necessary HTML/CSS/JavaScript files for this EFP instance.
After that, the screenshots of the necessary web pages are
added into the HTML file manually, so that students can
answer the blanks correctly by referring to them.

Figure 3 shows the answer interface. It runs on a web
browser, and allows both the online and offline use, since
the answer marking is processed by running the JavaScript
program on the browser. The correct answers are encrypted
using SHA256 to avoid cheating by students.

The left side of the interface shows the source code with
the answer forms to fill in the corresponding blanks. The
right side shows the screenshots of the initial web page and
the page after the button click. When the “Answer“ button
in the interface is clicked, the JavaScript marking function
is executed to check the correctness of the answers through
string matching with the correct ones. If the answer is not
correct, the background color of the input form becomes red.
If it is correct, it becomes white. A student can repeat answer
submissions until all the answers become correct or he/she
gives up answering them.

V. BLANK ELEMENT SELECTION ALGORITHM

In this section, we present the seven rules for the blank
element selection, the blank element selection algorithm
based on them, and its implementation in Python.

A. Seven Rules for Blank Element Selection

In the algorithm, the following seven rules are applied to
select the blank elements from the given source code that
consists of HTML, CSS, and JavaScript:

1) Tag element in HTML should be selected because the
same tag appears in pair where either one should be
selected randomly for the blank so that the remaining
one will be the hint.

2) Property in HTML and CSS should be selected when
the value can be guessed from the screenshot. In our
implementation, color and width attributes are selected.

3) JavaScript identifier should be selected because the
same identifier appears in HTML twice or more times

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

Fig. 3: Interface of ID=4 for basic topics.

Fig. 4: Interface of ID=10 for basic topics by algorithm.

where the elements except for the randomly selected
one should be blanked so that the selected one will be
the hint.

4) JavaScript reserved word should be selected because
it has been defined in JavaScript grammar.

5) JavaScript library class/method should be selected be-
cause it has been defined in JavaScript programming.

6) Id name in HTML and JavaScript should be selected
because the same id appears both in HTML and
JavaScript where either one should be selected ran-
domly for the blank so that the remaining one will be

the hint.
7) Text message in HTML and JavaScript should be

selected because it appears in the screenshot of the
generated web page.

B. Flexibility in Rule Application
In this subsection, we will explore the flexibility of the

blank element selection rules.
1) Adjusting the instance difficulty with the blank element

selection rules: a notable feature of the blank element
selection rules is the ability to adjust the difficulty of

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

generated EFP instances. By skillfully manipulating
the rules, we can generate EFP instance sets of varying
complexity.
The property selection rule plays a key role in this
process. This rule selects elements based on their posi-
tions in the nested HTML structure and their relevance
to the CSS style. For example, if our goal is to let
students solve more complex web-client programming
instances, the CSS syntax rule could be configured
to select the elements that are deeply embedded in
the HTML hierarchy, such as the element’s position,
length width, font, and other properties. Conversely,
if the goal is to provide basic grammar practices
suitable for novice students, the rules can be adapted
to target elements closer to the surface of the HTML
structure, such as a simple background color. In this
way, the property selection rule becomes an effective
educational tool for educators to adjust the complexity
of the instance according to their teaching goals.

2) Customizing the learning objectives with the blank
element selection rules: the blank element selection
rules are regarded as invaluable tools for educators
to customize specific learning objectives for the EFP
instances. These rules cover all the aspects of web-
client programming, making it possible to align the
instances with different educational objectives. Educa-
tors can choose to apply a single rule or a combination
of multiple rules, depending on the desired educational
focus. This precision ensures that students master the
specific concepts in web-client programming. Consider
a situation where the goal is to deepen understanding of
JavaScript grammar. By applying the rules specifically
related to JavaScript grammar, instances to achieve
this specific educational goal can be generated. This
strategy helps students establish clear learning objec-
tives and directs them to focus on mastering important
aspects of web-client programming.
Figure 5 exemplifies the ability of the blank element
selection rules to align learning objectives. This in-
stance focuses on JavaScript grammar. The ability to
adapt is aided by the algorithm’s ability to customize
the selection of the blank elements to align with
various concepts. As a result, each instance can be
designed to achieve the predefined learning objectives.
This approach to instance generations greatly increases
the relevance and effectiveness in learning web-client
programming. Through providing a series of learning
situations, each of which meets different educational
objectives, educators can provide students with more
engaging and productive learning experiences in the
field of web-client programming.

In summary, incorporating the flexible blank element se-
lection rules into EFP instance generations gives us the abil-
ity to design instances that are not only highly relevant to the
web-client programming learning process but also have clear
learning goals associated with each rule. This adaptability
extends to customizing instance difficulties, refining learning
objectives, and ultimately resulting in targeted and effective
learning experiences in web-client programming.

C. The Method of Blank Element Selection

Through the technologies presented in Section III. Here
we use two main methods to automatically select the blank
elements. The first method is using the regular expression
and the second is using the BeautifulSoup.

1) Selecting Blank Elements Using Regular Expression:
Among the seven rules described above, we will use regular
expression to match the corresponding string elements in the
first six rules. For example, matching the variable names. As
is well known, JavaScript define variables in the format var
a = 1;. So first, we use the re. compile() function to find
the content between var and the equal sign, and then delete
the space to get the final variable name.

2) Selecting Blank Elements Using BeautifulSoup: For
the last text information, we will use BeautifulSoup for
string matching. For example, in Figure 14 we use the
find_all(’button’) function to search for the button
element in the HTML file. Then we use the string() function
to extract the text content of the button directly.

D. Algorithm Procedure

Based on the above mentioned seven rules, we present
the algorithm procedure of automatically selecting the blank
elements from a given source code to generate a new EFP
instance for web-client programming as follows:

1) Select the rules from the seven ones for the blank
element selection to be applied if necessary. Otherwise,
all the seven rules will be applied.

2) Use BeautifulSoup and regular expression to find every
element to be blanked out by the rule from the source
code, the implementation details of each rule are
described in this Section V-G.

3) Replace each found element in the source code with
the specified notation for a blank to make the input
text file.

4) Write the replaced original elements after the source
code in the input text file as the correct answers.

E. EFP Instance Generation Procedure

Using the algorithm, a new EFP instance for web-client
programming can be created by the procedure below:

1) Choose a web client programming source code from
a website or textbook that contains the elements to be
learned.

2) Generate the web page through the operation of the
source code on a web browser to collect the necessary
screenshots.

3) Apply the blank element selection algorithm to make
the input text file.

4) Run answer interface generator with the input text file
to generate the HTML, CSS, and JavaScript files for the
answer interface on a web browser.

5) Replace the elements in the source code by the HTML
entities with their numbers and names automatically,
since the HTML tags become not visible on the browser
otherwise.

6) Complete the new EFP instance by adding the collected
screenshots to the HTML file.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

Fig. 5: Interface of ID=4 for JavaScript grammar.

1 < html>
2 < head>
3 < title>none< /title>
4 < style>
5 #myDIV {
6 _1_ : 100%;
7 padding: 50px 0;
8 text-align: center;
9 background- _2_ : lightblue;

10 margin-top: 20px;
11 }
12 < _3_ >
13 < /head>
14 < body>
15 < _4_ >
16 _5_ myFunction() {
17 _6_ _7_ = _8_ . _9_ (_10_);
18 if (invisible.style.display === "none") {
19 invisible.style.display = "block";
20 } else {
21 invisible.style.display = "none";
22 }
23 }
24 < /script>
25 < _11_ onclick="myFunction()"> _12_ < /

button>
26 < _13_ _14_ ="myDIV" style="display: block;

">
27 This is a DIV element.
28 < /div>
29 < /body>
30 < /html>
31
32 Answer:
33 width,,color,,/style,,script,,function,,var,,
34 document,,getElementById,,"myDIV",,/script,,
35 Click Me,,/button,,id,,/div,,

Fig. 6: Input text file of ID=10 for basic topics by algorithm.

F. Application Example

Here, we discuss an application example of the proposal.
Figure 6 shows the input text file that is generated by the

proposed algorithm. The original source code makes the web
page that shows the message “This is a DIV element“ with
the lightblue background and erases it with no background
when the “Click Me“ button is clicked.

Figure 3 shows the answer interface by applying the
answer interface generator to this file. This EFP instance
contains 14 blanks that cover all of the seven rules as
suggested in the figure. It intends that students understand
the usage of the display attributes in the style method.

G. Algorithm Implementation

Now, we present the algorithm implementation for each
of the seven rules using the EFP instance in Figure 4.

1) Tag Element Selection Rule: A tag in HTML is the
important element to determine the layout of the web page.
In this paper, we selected commonly used tags. To extract
the tags from the source code by string matching, the regular
expression is used. Figure 7 shows the Python code, where
1) the random module is imported, 2) the random.random()
function is used to generate a random number smaller than 1,
3) if the random number is smaller than 0.5, the starting tag,
such as <button>, is extracted, and otherwise, the ending
tag, such as </button>, extracted.

2) Property Selection Rule: A property in HTML and CSS
determines the attribute of the web page. Among a lot of
properties, only color and width are selected for the blank,
because they can be known from the screenshots. Figure 8
shows the Python code to extract the string of color using the
regular expression. The group() function is used to extract
the first color in the code and avoid every color in the source
code to be blanked.

3) JavaScript Indentifier Selection Rule: A variable or a
function is considered in the indentifier selection rule.

1) variable: A new variable is first defined after var.
Figure 9 shows the Python code to find a variable name

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

1 import random
2 randomNum = random.random()
3 if randomNum <= 0.5:
4 tag = re.compile(r’<button>’)
5 resultTag = tag.findall(html)
6 resultTagStr = ’’.join(resultTag)
7 if resultTagStr:
8 blanks.append(resultTagStr.strip(’<>’))
9 else:

10 pass
11 else:
12 tag = re.compile(r’<\Wbutton>’)
13 resultTag = tag.findall(html)
14 resultTagStr = ’’.join(resultTag)
15 if resultTagStr:
16 blanks.append(resultTagStr.strip(’<>’))
17 else:
18 pass

Fig. 7: Blank Selection Rule and Algorithm for Tag

1 cssAttr = re.compile(r’color’)
2 resultCssAttr = cssAttr.search(html)
3 if resultCssAttr:
4 blanks.append(resultCssAttr.group(0))
5 else:
6 pass

Fig. 8: Python code for color selection rule.

in the source code. The search() function is used with the
regular expression to represent a variable name pattern.

1 varName = re.compile(r’var\s(.*)\s\=’)
2 resultVarName = varName.search(html)
3 if resultVarName:
4 blanks.append(resultVarName.group(1))
5 else:
6 pass

Fig. 9: Python code for variable name in identifier selection
rule.

2) function: A function is one of the basic components in
JavaScript that encapsulates a block of statements that can be
called and executed repeatedly. A function name ends with
(...)). Figure 10 shows the Python code to find a function
name in the source code. The search() function is used with
the regular expression to represent a function name pattern.

1 funcN = re.compile(r’\s\w*[(][)]’)
2 resultFuncTwo = funcN.search(html)
3 if resultFuncTwo:
4 blanks.append(resultFuncTwo.group(0))
5 else:
6 pass

Fig. 10: Python code for function name in identifier selection
rule.

4) JavaScript Reserved Word Selection Rule: Regarding
the Javascript reserved word, only the basic one is con-
sidered, such as var, return, and function. Besides, the
commonly used word for web-client programming is also
considered, such as alert and prompt. Figure 11 shows the

Python code to find var as an example JavaScript reserved
word in the source code.

1 resultVar = re.search(’var’, html)
2 if resultVar:
3 blanks.append(resultVar.group())
4 else:
5 pass

Fig. 11: Python code for JavaScript reserved word selection
rule.

5) JavaScript Library Class/Method Selection Rule:
JavaScript offers rich libraries to write source codes easily
and simply to generate web pages for web-client program-
ming. For example, getElementById() returns the element
object that matches the specific id. Figure 12 shows the
Python code to find getElementById() using the regular
expression as an example JavaScript library class/method in
the source code.

1 get = re.compile(r’getElementById’)
2 resultGet = get.search(html)
3 if resultGet:
4 blanks.append(resultGet.group())
5 else:
6 pass

Fig. 12: Python code for JavaScript library class/method
election rule.

6) Id Name Selection Rule: The id is used to describe the
link of an object among HTML, CSS, and JavaScript, which
must be mastered by students. Figure 13 shows the Python
code to find an id name using the regular expression.

1 y = re.compile(r’[(](".*")[)]’)
2 resultIdName = y.search(html)
3 if resultIdName:
4 blanks.append(resultIdName.group(0).strip(’

()’))
5 else:
6 pass

Fig. 13: Python code for id name selection rule.

7) Text Message Selection Rule: A text message often
appears in a web page to describe the information to be
informed. Since writing a code to output a text message in
a web page is the first step of studying web-client program-
ming, it is very important. Figure 14 shows the Python code
to find the text messages in the button elements in the source
code using the BeautifulSoup library where soup represents
the BeautifulSoup object. The button elements in HTML are
extracted from soup using the find all() function. Then, the
text message in each button element is extracted using the
string function.

VI. EVALUATION BY COMPARISONS WITH MANUAL
GENERATIONS

First, we evaluate the validity of the blank element se-
lection algorithm by comparing the generated EFP instances
with the manual ones in our previous studies.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

1 for txtBtn in soup.find_all(’button’):
2 resultText = txtBtn.string
3 if resultText:
4 blanks.append(resultText)
5 else:
6 pass

Fig. 14: Python code for text message selection rule.

A. Comparison Summary

Tables I and II show the topic, the total number of lines
and the number of lines for JavaScript, and the number
of manually selected blanks for each of the EFP instances
for basic topics and for applicable topics in our previous
studies, respectively. For comparisons, the number of blanks
generated by the proposed algorithm for the same source
code is also shown there.

In the EFP instances for basic topics, the total number
of manually generated blanks was 229, whereas the total
number of automatically generated blanks was 325. In the
EFP instances for applicable topics, the total number of man-
ually generated blanks was 403, whereas the total number of
automatically generated blanks was 530. The results show
that the algorithm selected more blanks than the manual.

When the generated EFP instances from the same source
code are compared, it is observed that more HTML tags and
JavaScript library methods are selected by the algorithm,
while the others are the same except for random selections.
Thus, the correctness of the proposal was confirmed.

1 <html>
2 <head>
3 <title>ColorChange</title>
4 <script>
5 function color(str) {
6 document.body.style.backgroundColor =

str;
7 }
8 </script>
9 </head>

10 <body>
11 <input type="button" value="turn to red"

onclick="color(’red’)" />
12 <input type="button" value="turn to yellow"

onclick="color(’yellow’)" />
13 <input type="button" value="turn to blue"

onclick="color(’blue’)" />
14 <input type="button" value="turn to green"

onclick="color(’green’)" />
15 </body>
16 </html>

Fig. 15: Source code of ID=6 for basic topics.

At the algorithm selection, only one element among multi-
ple ones for the same word is selected for blank. On the other
hand, at the manual selection, two or more elements were
sometimes selected for blanks. Therefore, for four instances,
the manual selection selected more blanks than the algorithm
one. For example, in the source code of ID=6 for basic
topics in Figure 15, the same words appear several times
to make the page in Figure 16. In such an instance, the
manual selection selected more blanks than the algorithm
selection by repeatedly selecting the same words. In future
works, we will improve the algorithm to properly select

TABLE I: EFP instances for basic topics

ID topic manual blanks algorithm blanks
of lines

1 object1 5 10
2 object2 5 12
3 changing content1 6 17
4 changing content2 14 21
5 alert() function 4 13
6 changing color 16 13
7 Date() function 10 20
8 prompt() function (subtraction) 6 8
9 prompt() function (add) 8 11
10 easy counter 11 21
11 click button 11 14
12 onmouse over and out 10 10
13 setTimeout() function 7 14
14 array 10 11
15 multiplication calculation 10 13
16 change background 16 17
17 try catch 10 19
18 try catch final (number) 14 22
19 try catch final (NaN) 18 21
20 custom timer 11 18
21 fixed timer 19 20

total blanks (average) 229 (10.9) 325 (15.5)

TABLE II: EFP instances for advanced topics

ID topic manual blanks algorithm blanks
1 radio button (alert message) 10 18
2 radio button (show selected value) 16 23
3 radio button (text message) 24 18
4 checkbox (alert message) 18 18
5 checkbox (disable option) 12 19
6 checkbox (default option) 16 20
7 video 14 22
8 video (control function) 28 25
9 image function (modify image size) 9 17
10 image function (change image) 8 18
11 mouse pointer 8 11
12 select function (default option) 19 28
13 select function (disable option) 17 22
14 select function (output option) 16 26
15 select function (remove option) 13 24
16 image function (upload image) 14 22
17 first css web page 15 23
18 change page 14 23
19 change border image 18 21
20 table tr td 27 19
21 progress bar 17 20
22 canvas (simple rectangle) 13 14
23 canvas (gradient font) 12 14
24 canvas (gradient font) 14 23
25 canvas (repeat pattern) 16 19
26 camera 23 24

total blanks (average) 403 (15.5) 530 (20.4)

blank elements for the same word when they appear several
times in the source code, by considering the importance or
difficulty among them as the blank element.

B. EFP Instance Difference between Manual and Algorithm

As an illustrative example, Figures 17 and 18 show the
manually generated input text file and the algorithm gen-
erated one for the source code of ID=10 for basic topics,
respectively. When they are compared, the algorithm gener-
ated instance has more blanks for tags and library elements
than the manual one, because the algorithm will select all the
possible elements for them. On the other hand, the manual
selection may miss selecting several elements. Therefore, the
effectiveness of the proposal is confirmed.

VII. EVALUATION BY NEW INSTANCE GENERATIONS

Next, we evaluate the effectiveness of the algorithm for
web-client programming study by newly generating 10 EFP
instances using the algorithm, and assigning them to 40

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

Fig. 16: Interface of ID=6 for basic topics.

1 < html>
2 < head>
3 < title>easy< /title>
4 < /head>
5 < body>
6 < p> _1_ < /p>
7 < _2_ onclick=" _3_ "> _4_ < /button>
8 < p id="demo">0< /p>
9 < _5_ >

10 var counter = 0;
11 _6_ add() {
12 return _7_ += 1;
13 }
14 function myFunction(){
15 _8_ .getElementById(" _9_ ").innerHTML =

10 ();
16 }
17 < / _11_ >
18 < /body>
19 < /html>
20
21 Answer:
22 Global variable count,,button,,myFunction(),,
23 Count,,script,,function,,counter,,document,,
24 demo,,add,,script,,

Fig. 17: Manual Blank Generation Output file

students in Okayama University, Japan, and State Polytechnic
of Malang, Indonesia, who have not studied web-client
programming formally.

A. Generated EFP Instances

Tables III shows the topic, the total number of lines and
lines of JavaScript (JS) in the source code, and the number
of blanks for each of the 10 additional instances of EFP
generated. As different topics from the previous instances,
they cover image usages, text boxes, styles, iframes, and
event objects.

1 < html>
2 < head>
3 < title>easy< /title>
4 < /head>
5 < body>
6 < p> _1_ < _2_ >
7 < button onclick="myFunction()"> _3_ < _4_ >
8 < p _5_ = _6_ > _7_ < /p>
9 < script>

10 _8_ _9_ = 0;
11 _10_ _11_ {
12 _12_ counter += 1;
13 }
14 function myFunction() {
15 _13_ . _14_ ("demo"). _15_ = add();
16 }
17 < _16_ >
18 < /body>
19 < /html>
20
21 Answer:
22 Global variable count,,/p,,Count,,/button,,id
23 ,,"demo",,0,,var,,counter,,function,,add(),,
24 return,,document,,getElementById,,innerHTML,,
25 /script,,

Fig. 18: Automatic Blank Generation Output file

TABLE III: New EFP instances generated by automatic blank
generation system.

ID topic total # of lines # of JS lines # of blanks
1 show Id value 19 6 14
2 change image 19 10 11
3 img function(onload) 15 5 6
4 textbox function(onrest) 18 5 6
5 textbox function(onselect) 16 5 10
6 print webpage 16 5 6
7 create iFrame 19 7 10
8 captalize text 17 6 11
9 show coordinate 17 5 11
10 make element invisible 32 10 14

total (average) 188(18.8) 64(6.4) 99 (9.9)

B. Solution Results of Individual Instances
First, we separately analyzed the solution results for the 10

EFP instances. Figure 19 displays the average correct rate for

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

Fig. 19: Solution results for individual instances.

Fig. 20: Solution results for individual students.

each instance and the total number of 40 student submitted
answers. The average correct rate for an instance is 95.37%
and the average number of submissions is 131.00. The best
correct rates are 99.17% and 99.64% for instances with ID=6
and 10, correspondingly.

On the other hand, the instances at ID=2 and 7 resulted
in the worst rate 90.46% and 89.50% respectively. We will

analyze the reasons to investigate how to improve them.

In the instance at ID=2, from image =
document.getElementById(’myimage’) and
image.src.match("bulbon"), it will be difficult
for students to know that match "bulbon" in
src="/images/pic_bulboff.gif" becomes true. In
the instance at ID=7, the concept and use of iframe will be

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

Fig. 21: Solution results for individual instances.

Fig. 22: Solution results for individual students.

difficult for students. Their proper guide documents can be
helpful to understand them, which will be in future works.

C. Solution Results of Personal Students

Next, we analyze the solution results of the 20 students
individually. Figure 20 shows the average correct answer rate
and the total number of answer submissions among the 10
instances by each student.

This figure is in descending sequence by student perfor-
mances. The average correct rate is 97.36% and the average
number of submission is 75.35. There are twenty students
(50%) who obtained a perfect score of 100%. The very best
student answered all 10 instances and only submitted 17
times, meaning that only 7 were incorrect.

One student did reach the 70% rate, although he/she
submitted answers 249 times. This student did not study

programming well.
The both results suggest that the EFP instances generated

by the algorithm are not difficult for students who have
not studied web-client programming formally. By collecting
source codes and applying the algorithm, teachers can easily
generate new EFP instances. Thus, the effectiveness of the
proposed algorithm for web-client programming study is
confirmed.

VIII. EVALUATION BY GAME-BASED INSTANCE
GENERATIONS

Next, we present three new EFP instances generated using
the algorithm with source codes for simple video games on a
web browser. These game-based instances will add more fun
elements to learning experiences and enrich the evaluations
of the algorithms. This approach may introduce a novel and

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

TABLE IV: Game-based EFP instances generated by pro-
posal.

ID topic total # of lines # of JS lines # of blanks
1 Guess Number 43 18 36
2 Guess Word 60 50 53
3 Snake Game 107 86 60

total (average) 210(70.0) 154(51.3) 149(49.7)

engaging way for students to interact and learn with these
instances. By incorporating gamification elements into the
learning process, students will find the EFP instances more
interesting.

A. Generated EFP Instances

Table IV shows the topic, the total number of lines and the
number of JavaScript (JS) lines in the source code, and the
number of blanks for each of the three game-based instances.

B. Solution Results of Individual Instances

Figure 21 displays the average correct answer rate and the
total number of answer submissions for each instance by 40
students. The average rate is 86.03% and the average number
of submissions is 554. The best correct rates are 88.50% for
the instance with ID=3.

In the ”Guess the Number” game with ID=1, students need
to guess one number within 1-10. If the number is small, the
page prompts ”Try a bigger number.” If the number is larger,
the page prompts ”Try a smaller number.” Although the
source code in this instance is relatively short compared with
the others, it still contains 36 blanks. This means that students
need to fill out most of the whole code, by understanding the
game logic, processing the user inputs, and generating the
responses. Understanding and implementing the game logic
can be a significant barrier for students, especially, for novice
students of web-client programming.

In the ”Guess the Word” game with ID=2, the source code
involves more complex JavaScript codebase. In this instance,
students need to fill in 53 blanks, by understanding the rules
of the game, managing the user inputs and feedback. The
source code involves more complex logic than the previous
instance. This game requires a player to guess one letter
at a time to reveal the hidden words. The complexity is
greater because it needs to check the guessed letter and
update the displayed word, by using arrays to select words
and keep track of the guessed letters. Debugging this type of
the interactive code will be complex for students.

In the ”Snake Game” with ID=3, this EFP instance is the
most challenging one among the three. It has 60 blanks and
86 lines. Students need to understand the rules of the game,
including how the snake moves, how the snake grows when
it eats food, and how the game ends when the snake hits a
wall or itself. Understanding these game mechanics can be
challenging for learners, especially, for students new to game
developments.

C. Solution Results of Personal Students

Next, we analyze the solution results of the 20 students
individually. Figure 22 shows the average correct answer rate
and the total number of answer submissions among the three
instances by each student. It is noted that the students are

sorted in descending of their performances. The average rate
is 95.37% and the average number of submissions is 65.50.
Five students (25%) solved all of them correctly, where the
least number of submissions is 74.

Unfortunately, six students (30%) among 20 did reach the
75% correct rate. It suggests that a significant portion of the
students struggled with the game-based EFP instances that
are more complex and challenging than previous ones, and
may not reach sufficient programming levels. While com-
plexity can facilitate deeper understanding of the problems,
overly difficulty may frustrate and discourage students to
solve them. Therefore, it is necessary to provide proper hints
for these instances, which will be in future works.

D. Evaluation by Analyzing Instance Characteristics

Furthermore, we provide a comprehensive assessment of
the EFP instances generated by the algorithm, focusing on
the relationships between the number of lines in the source
code, the number of blanks, the submission times and the
correct answer rates by the students.

In our previous studies of EFP for Java programming,
longer source codes typically caused greater difficulties for
students. We found the similar results for web-client pro-
gramming. Table V shows the relationships between the
number of lines in the source code, the number of blanks, the
submission times and the correct answer rates by the students
for the 13 EFP instances generated by the algorithm.

In the first 10 EFP instances, each instance has up to 32
code lines and up to 14 blanks. The higher performances
of students suggest that they cleared basic educational goals
and understood introductory programming concepts.

In contrast, in the remaining three instances, each instance
has up to 107 lines and up to 60 blanks. This long code length
and high number of blanks lowered the student performances.
The code length and the number of blanks can be the key
determinants of the instance difficulty affecting the student
performance.

Here, we found that the correct rate is higher and the
number of submissions is lower among the last three in-
stances, although the code length and the number of blanks
are both increased. The reason will come from the fact that
source codes in the last two instances have repetitions of
certain parameters or patterns, which can make it easier for
students to recognize the missing elements. For example,
certain variables functions, or elements that have similar
names or attributes appear multiple times. This repetition
can help to identify the expected elements in the code.

Besides, the source codes in them were designed with
interactivity in mind. JavaScript, HTML, and CSS enable
dynamic and engaging user interfaces. Some patterns will
emerge in them for users to interact with interfaces by
clicking buttons, entering data, or triggering animations,
which is a part of the game logic and will influence students
in solving the problems.

IX. EVALUATION BY CORRELATION COEFFICIENTS
BETWEEN INSTANCE CHARACTERISTICS

In this section, we incorporate another evaluation method
using correlation coefficient to further enhance the depth and
accuracy of our study in this paper.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

TABLE V: Analysis of instance characteristics.

ID topic total # of lines # of blanks # of submission time # answer rate
1 show Id value 19 14 351 97.86%
2 change image 19 11 202 90.46%
3 img function (onload) 15 6 56 94.27%
4 textbox function (onrest) 18 6 63 94.17%
5 textbox function (onselect) 16 10 70 96.50%
6 print webpage 16 6 47 99.17%
7 create iFrame 19 10 229 89.50%
8 captalize text 17 11 52 97.27%
9 show coordinate 17 11 172 95.00%

10 make element invisible 32 14 68 99.64%
11 Guess Number 43 36 2042 82.50%
12 Guess Word 60 53 620 87.10%
13 Snake Game 107 60 579 88.50%

total (average) 398(30.6) 248(19.1) 3550(273.1) (93.2%)

A. Analysis Variables

Table V shows the instance characteristics as the variables
for calculating correlation coefficient using Python and its
three libraries.

B. Analysis Process

For this analysis, we utilized Python and its statistical
analysis libraries to calculate correlation coefficients, and
generated scatter plots and trend-lines. This approach allows
us to automate the computational process, ensuring the
accurate and efficient assessment of the impact of the blank
element selection algorithm.

To initiate the analysis, we adopted the pandas library
for data processing and the seaborn and matplotlib libraries
for data visualizations. The obtained scatter plot with trend-
lines can visualize the relationship between two variables,
which can add the insight of them by showing the overall
trend of data points. Correlation coefficient calculated by the
pandas library quantify the direction of the linear relationship
between the variables.

The process of calculating the correlation coefficient and
generating the scatter plot with the trend-line in a Python
program is given as follows:

1) Import libraries: We import the pandas library for
data manipulations by import pandas as pd, the
seaborn library for statistical data visualizations by
import seaborn as sns, and the pyplot mod-
ule from the matplotlib library for creating plots by
import matplotlib.pyplot as plt.

2) Load data: We read data from the Excel file containing
the variables in Table V into the pandas DataFrame
df.

3) Extract relevant columns: We extract selected two
columns as the parameters (variables) from df.

4) Create scatter plot with trend-line: We use
sns.regplot to create the scatter plot with
the regression line (trend-line) fitted to the data points.

5) Calculate correlation coefficient: We use the corr func-
tion in the pandas library to calculate the correlation
coefficient between the two parameters.

6) Display correlation coefficient: We display the calcu-
lated correlation coefficient on the plot.

7) Add labels and title: We add the labels to the x and y
axes, and the plot title.

8) Display plots: Finally, we display the generated scatter
plot with the trend-line and the correlation coefficient.

C. Correlation Analysis with Instance Characteristics

In order to provide insight into the relationship between
instance difficulty and student answer correctness, including
variables such as the number of lines of code, the number
of blanks in the instances, and the time taken by students
to submit, we conducted a comprehensive analysis using
correlation coefficients.

1) Number of Blanks and Number of Code Lines: Regard-
ing to the relationship between the number of blanks and the
number of code lines in Figure 23a, the correlation coefficient
is 0.941, which suggests the strong positive correlation. This
implies that as the number of code lines increases, the
number of blanks increases linearly.

2) Number of Submission Times and Number of Blanks:
Regarding to the relationship between the number of sub-
mission times and the number of blanks in Figure 23b, the
correlation coefficient is 0.579, which suggests the positive
correlation. Instances with more blanks require more sub-
mission attempts.

3) Number of Submission Times and Number of Code
Lines: Regarding to the relationship between the number of
submission times and the number of code lines in Figure 23c,
the correlation coefficient is 0.421, which suggests the posi-
tive correlation. Instances with more code lines require more
submission attempts.

4) Correct Answer Rate and Number of Code Lines:
Regarding to the relationship between the correct answer rate
and the number of code lines in Figure 23d, the correlation
coefficient is −0.533, which suggests the negative correla-
tion. Instances with more code lines are resulted in lower
correct answer rates.

5) Correct Answer Rate and Number of Blanks: Regard-
ing to the relationship between the correct answer rate and
the number of blanks in Figure 23e, the correlation coef-
ficient is −0.665, which suggests the negative correlation.
Instances with more code blanks are resulted in lower correct
answer rates.

6) Number of Submission Times and Correct Answer Rate:
Regarding to the relationship between the number of sub-
mission times and the correct answer rate in Figure 23f, the
correlation coefficient is −0.781, which suggests the strong
negative correlation. Instances with lower correct answer
rates usually require more submission attempts.

X. CONCLUSION

This paper presented the blank element selection algo-
rithm to generate a new EFP instance from a given source

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

(a) Correlation Coefficient between Number of Blanks and Code Lines (b) Correlation Coefficient between Submission Times and Number of
Blanks

(c) Correlation Coefficient between Submission Times and Number of Code
Lines

(d) Correlation Coefficient between Answer Rate and Number of Code Lines

(e) Correlation Coefficient between Answer Rate and Number of Blanks (f) Correlation Coefficient between Submission Times and Answer Rate

Fig. 23: Scatter Plots with Trendlines for Instance Characteristics.

code for client-side web programming. Seven rules were
defined for blank element selections from a source code,
and the algorithm procedure was implemented in Python
using BeautifulSoup and regular expressions. For evaluations,
the proposed algorithm was first applied to the 47 source
codes that were used for manual generations, where the better
instances with more blanks were obtained. Thus, the validity
of the algorithm was confirmed. Then, 10 new basic EFP
instances were generated by the algorithm and assigned to
40 students in two universities who have not studied web-
client programming formally. The solution results confirm
the effectiveness. Besides, three game-based EFP instances

were generated by the algorithm and assigned to 20 students,
to diversify the assessment by introducing complex and
interactive instances. The results demonstrate the versatility
of the algorithm. Furthermore, the relationships between the
number of code lines, the number of generated blanks, the
submission times and the correct answer rates by the students
were examined. The results indicate that EFP instances with
longer codes and more blanks tended to lead to lower correct
rates and higher submission times. In future works, we will
make guide documents for hard concepts in web-client pro-
gramming, improve the algorithm implementation to properly
select blanks for the same word that appears several times in

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

the source code by considering the importance or difficulty
as a blank, continue to use the algorithm to generate EFP
instances for other topics, and assign them to students for
validity verifications.

ACKNOWLEDGMENT

The authors would like to thank to the students in
Okayama University and State Polytechnic of Malang to an-
swer the problems and give us comments. They are inevitable
to complete this paper.

REFERENCES

[1] What is JavaScript, https://developer.mozilla.org/
en-US/docs/Learn/ JavaScript/First steps/What is JavaScript.

[2] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L.
Aung, N. K. Dim, and W. C. Kao, ”A proposal of grammar-concept
understanding problem in Java programming learning assistant system,”
J. Adv. Inform. Tech, vol. 12, no. 4, pp1-10, 2021.

[3] K. K. Zaw, N. Funabiki, and W. C. Kao, ”A proposal of value trace
problem for algorithm code reading in Java programming learning
assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp9-18, 2015.

[4] S. H. M. Shwe, N. Funabiki, Y. W. Syaifudin, E. E. Htet, H. H. S. Kyaw,
P. P. Tar, N. W. Min, T. Myint, H. A. Thant, and W. C. Kao, ”Value trace
problems with assisting references for Python programming self-study,”
Int. J. Web Inform. Syst, vol. 5, no. 2, pp100-110, 2021.

[5] X. Lu, N. Funabiki, H. H. S. Kyaw, E. E. Htet, S. L. Aung, and N. K.
Dim, ”Value trace problems for code reading study in C programming,”
Adv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 7, no. 1, pp14-26, 2022.

[6] K. H. Wai, N. Funabiki, K. T. Mon, S. H. M. Shwe, H. H. S. Kyaw,
and K. S. Lin, ”A proposal of code modification problem for web client
programming using JavaScript,” Proc. CANDAR, pp196-202, 2021.

[7] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W. C. Kao, ”A graph-
based blank element selection algorithm for fill-in-blank problems in
Java programming learning assistant system,” IAENG Int. J. Comput.
Sci., vol. 44, no. 2, pp247-260, 2017.

[8] H. H. S. Kyaw, N. Funabiki, S. L. Aung, N. K. Dim, and W. C. Kao,
”A study of element fill-in-blank problems for C programming learning
assistant system,” Int. J. Inform. Edu. Tech., vol. 11, no. 6, pp255-261,
2021.

[9] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W. C. Kao, ”A code
completion problem in Java programming learning assistant system,”
IAENG Int. J. Comput. Sci., vol.47, no. 3, pp350-359, 2020.

[10] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, ”A Java
programming learning assistant system using test-driven development
method,” IAENG Int. J. Comput. Sci., vol. 40, no.1, pp38-46, 2013.

[11] H. Qi, N. Funabiki, K. H. Wai, X. Lu, H. H. S. Kyaw, W. C. Kao, ”An
implementation of element fill-in-blank problems for code understand-
ing study of JavaScript-based web-client programming,” International
Journal of Information and Education Technology (IJIET), vol. 12, no.
11, pp1179-1184, 2022.

[12] H. Qi, N. Funabiki, K. H. Wai, M. Z. Htun, K. T. Mon, and W. C.
Kao, ”A study of element fill-in-blank problems for applicative grammar
topics in JavaScript-based web-client programming,” IPSJ SIG Tech.
Rep, vol. 2022-CE-166, no.2, 2022.

[13] H. Qi, N. Funabiki, K. H. Wai, M. Z. Htun, V. Flasma, and Y. W.
Syaifudin, ”A study of blank element selection rules for element fill-
in-blank problem in JavaScript-based web-client programming,” Proc.
ICEMSIT, 2022.

[14] BeautifulSoup in Python, https://www.crummy.com/software/
BeautifulSoup/bs4/doc/.

[15] Regular Expression in Python, https://docs.python.org/3/library/re.html.
[16] E. Lahtinen, K. Ala-Mutka, and H. M. Järvinen, ”A study of the

difficulties of novice programmers,” Proc. ITiCSE, vol. 3, no. 2, pp14-
18, 2005.

[17] A. Knutas, D. Savchenko, T. Hynninen, and N. Grönberg, ”Con-
structive alignment of web programming assignments and automated
assessment with unit testing,” Proc. Koli Calling, 2019.

[18] S. Kar, M. M. Islam, and M. Rahaman, ”State-of-the-art reformation
of web programming course curriculum in digital bangladesh,” Int. J.
Adv. Comp. Sci. Appl, vol. 11, no. 3, pp193-201, 2020.

[19] I. W. Arawjo, C. Y. Myers, A. C. Andersen, E. Guimbretière, ”Teach-
ing programming with gamified semantics,” Proc. of the 2017 CHI
conference on human factors in computing systems, pp4911-4923,
2017.

[20] C. Chapman and K. T. Stolee, ”Exploring regular expression usage and
context in Python,” Proc. International Symposium on Software Testing
and Analysis, pp282-293, 2016.

[21] E. Larson, ”Automatic checking of regular expressions,” International
Working Conference on Source Code Analysis and Manipulation,
pp225-234, 2018.

[22] I. Onyenwe, O. Ebele Gr, C. A. Nwafor, O. Agbata, ”Developing prod-
ucts update-alert system for e-commerce websites users using HTML
data and web scraping technique,” arXiv preprint arXiv:2109.00656,
2021.

[23] S. Thivaharan, G. Srivatsun, S. Sarathambekai, ”A survey on python
libraries used for social media content scraping,” Proc. International
Conference on Smart Electronics and Communication, pp361-366,
2020.

[24] I. Darmawan, M. Maulana, R. Gunawan, N. Widiyasono, ”Evaluating
web scraping performance using XPath, CSS Selector, regular expres-
sion, and HTML DOM with multiprocessing technical applications,”
JOIV, vol. 6, no. 4, pp904-910, 2022.

[25] M. Khder, ”Web scraping or web crawling: state of art, techniques,
approaches and application,” International Journal of Advances in Soft
Computing and Its Applications, vol. 13, no. 3, pp145-168, 2021.

[26] Fujita, M. S. L., Katahira, I., Tolare, J. B, ”Institutional Repository
Keyword Analysis with Web Crawler,” Central European Journal of
Educational Research, vol. 4, no. 2, pp54-59, 2022.

[27] Singrodia, Vidhi, A. Mitra, S. Paul, ”A review on web scrapping and
its applications,” ICCCI, 2019.

[28] Andersson, Pontus, ”Developing a Python based web scraper: A study
on the development of a web scraper for TimeEdit,” 2021.

[29] Oprea, S. Vasilica, A. Bâra, ”Why Is More Efficient to Combine
BeautifulSoup and Selenium in Scraping For Data Under Energy
Crisis,” Ovidius University Annals, Economic Sciences Series, vol. 22,
no. 2, pp146-152, 2022.

[30] Sahoo, K., Samal, A. K., Pramanik, J., and Pani, S. K., ”Exploratory
data analysis using Python,” International Journal of Innovative Tech-
nology and Exploring Engineering, vol. 8, no. 12, pp4727-4735, 2019.

[31] Gupta, B., Negi, M., Vishwakarma, K., Rawat, G., Badhani, P., and
Tech, B., ”Study of Twitter sentiment analysis using machine learning
algorithms on Python,” International Journal of Computer Applications,
vol. 165, no. 9, pp29-34, 2017.

[32] Sial, A. H., Rashdi, S. Y. S., and Khan, A. H., ”Comparative analysis
of data visualization libraries Matplotlib and Seaborn in Python,”
International Journal, vol. 10, no. 1, 2021.

[33] Stančin, I., and Jović, A., ”An overview and comparison of free Python
libraries for data mining and big data analysis,” IEEE, pp977-982, 2019.

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 684-700

__

