
 

 

Abstract—As the penetration of renewable energy sources 

(RES) continues to increase, more and more microgrids (MG) 

are interconnected with distribution system operators (DSO). 

To reduce system operational costs between MGs and DSOs, it is 

necessary to develop certain optimization strategies. This article 

proposes an optimized collaborative framework for modeling 

multi-entity distribution networks. In this model, DSOs are 

placed at the upper level to formulate policies, while MGs are at 

the lower level to respond in real-time to these policies. 

Furthermore, the multi-agent relationships in the model are 

described using Stackelberg game mechanisms, enhancing 

economic efficiency through dynamic gaming. Additionally, a 

data-driven multi-agent twin-delayed deep deterministic policy 

gradient (MATD3) algorithm is investigated to simulate the 

gaming process and improve the overall model's non-linear 

optimization capabilities. Considering that the simulation 

process can lead to violations of the energy storage system 

capacity constraints, a physics-based model is designed within 

the framework to ensure the safety of energy storage systems 

(ESS). Finally, compared to the MADDPG and penalty function 

methods, the proposed approach reduces the operational costs 

by 19.05%. 

 
Index Terms—Microgrids, multi-agent deep reinforcement 

learning, game theory, distribution network 

 

I. INTRODUCTION 

ICROGRIDS, by integrating various distributed energy 

sources (DERs) and connecting to distribution networks 

(DNs), form a large-scale energy system [1], [2], [3]. This 

plays a positive role in increasing the proportion of RES in the 

power system. However, multi-agent interest relationships 

exist between MGs and DSOs after connection. MGs operate 

as third-party operators, and DSOs belong to different interest 

groups [4], [5]. Both are profit-oriented, with the aim of 

maximizing their own interests [6]. Additionally, the 

uncertainty of RES supply [7], [8], the allocation of energy 
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supply and demand, and the control of charging and 

discharging of the ESS pose significant challenges to the 

non-linear optimization capacity of the system model [9]. If 

the system cannot effectively address these challenges, it will 

affect the stability of the power supply and economic 

operations [10], [11]. Therefore, an appropriate optimization 

strategy for the system is needed. 

Researchers have proposed centralized optimization and 

Stackelberg game mechanisms to address the challenges of 

energy optimization between MGs and DSOs. Yan Du and 

Zhaoyu Wang formulated DSOs and MGs as a bilevel model, 

then employed Karush-Kuhn-Tucker (KKT) conditions to 

transform the model into single-level optimization  problems 

[12], [13]. To address the uncertainty of RES and load 

profiles, Yongsheng Cao developed a distributed robust 

optimization algorithm and transformed the bilevel problem 

into a single-level problem using mathematical programming 

with equilibrium constraints. However, centralized 

optimization requires collecting a significant amount of 

information about the devices and internal details of multiple 

entities, implying that the privacy of these entities cannot be 

adequately protected. For multi-entity relationships, the 

Stackelberg game provides an appropriate mechanism to 

describe. Qiang Li established a leader-follower relationship 

between the energy trading system and MG within the 

Stackelberg game mechanism, designing the corresponding 

optimization models to encourage more active participation in 

transactions [14]. Fengzhou Sun modeled DSOs and MGs 

within the Stackelberg game as an energy optimization model 

with different priorities and developed an energy trading 

mechanism based on mathematical programming methods 

[15]. Juntao Chen used the Stackelberg game to analyze the 

trading relationships between DERs and MGs and devised a 

heuristic algorithm to achieve equilibrium [16]. In summary, 

this article proposes a collaborative optimization model based 

on multi-entity distribution networks while preserving 

privacy through a decentralized approach. Additionally, it 

applies the Stackelberg game mechanism to describe the 

relationships among different entities. In this mechanism, 

DSOs and MGs have different priorities, the DSO acts as the 

leader positioned at the upper level making decisions for MGs, 

who act as followers at the lower level and provide optimal 

real-time responses, reducing operational costs via dynamic 

games. 

From previous research, it is evident that most researchers 

within the framework and Stackelberg game mechanism have 

primarily employed optimization methods such as 

model-based mathematical programming or heuristic 

algorithms. Mathematical programming methods are typically 
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unsuitable for problems with high complexity or fuzzy 

constraints. Heuristic algorithms often cannot store 

optimization knowledge and apply it to new tasks, which 

requires significant time costs to complete search tasks. As 

power systems move toward greater intelligence, an 

increasing amount of data needs to be transmitted, processed, 

and stored. Therefore, it becomes crucial to efficiently 

harness massive data to respond to complex and variable 

power demands in real time, quickly, and accurately. 

Combining deep neural networks and reinforcement 

learning, deep reinforcement learning (DRL) has been widely 

used to solve energy optimization problems to address the 

limitations of model-based methods. Due to their complex 

network depth, deep neural networks can extract features 

from high-dimensional mappings and data. With its unique 

features of not requiring prior knowledge and 

model-independent learning, reinforcement learning allows 

agents to respond flexibly to dynamically changing 

environments[17]. Therefore, combining these two allows 

optimization strategies between MGs and DSO to have better 

adaptability and flexibility[18]. For example, to reduce MG 

operational costs, Ying Ji used Proximal Policy Optimization 

(PPO) and Deep Q Network (DQN) to optimize MG 

operations[19], [20]. Luqin Fan formulated the MG energy 

scheduling problem as a Markov decision process and then 

used DRL to optimize for the minimum operating cost of 

MG[21]. Although these researchers have achieved some 

success using DRL to tackle energy optimization problems, 

these achievements have mainly been within the content of 

single-agent environments. 

With the rapid development of the electricity market, it has 

transitioned into a multi-entity and multi-interest 

environment[17], [22], [23],. Therefore, when faced with 

such an environment, it becomes necessary to apply 

multi-agent deep reinforcement learning (MADRL) to learn 

and manage the energy scheduling of the system, thereby 

optimizing operational costs[24]. For example, in early 

attempts in multi-agent environments, Xiaohan Fang utilized 

a multi-agent DQN to optimize systems[25]. However, 

MADQN cannot handle the problem of continuous action 

space control. Subsequently, Chenyu Guo applied MADDPG 

to solve the problem, avoiding the drawbacks of 

MADQN[26]. However, MADDPG suffers from the issue of 

overestimating Q values when processing data. To cater to the 

increasingly complex power demands and address the 

problem of overestimation caused by continuous action space 

control, this article proposes the multi-agent twin-delayed 

deep-deterministic policy gradient (MATD3) algorithm for 

optimizing energy systems. This data-driven approach can 

significantly reduce the complexity of the problem. 

The main contributions of this article are as follows: 

(1) We proposed a collaborative optimization framework 

for modeling multi-entity distribution networks and 

introduced the Stackelberg game mechanism to describe the 

relationships. In this framework, DSOs act as leaders 

positioned at the upper level, while MGs act as followers at 

the lower level. Through the game between leaders and 

followers, the operational costs for both parties are reduced; 

(2) We introduced a data-driven MATD3 algorithm to 

simulate the gaming process and enhance the model's 

nonlinear optimization capabilities; 

(3) We proposed a physics-based model to ensure the 

safety of the ESS and maintain the economic and operational 

security of the system. 

II. FRAMEWORK FOR MULTI-ENTITY DISTRIBUTION 

NETWORKS 

The operation of the DN is controlled by the DSO.  DN 

comprises photovoltaic (PV), wind turbine (WT), and ESS. 

MG1 and MG2 consist of PV, MT, and ESS. MG3 includes 

WT, MT, and ESS. The specific configuration is illustrated in 

Figure 1. 

 
MGs coordinate with the DSO by exchanging information 

and energy within the energy system. The DSO acquires 

information in a decentralized manner, meaning that it obtains 

information separately from different MGs and only has 

access to the power and load information of the MGs, thus 

preserving the privacy of the MGs through limited 

information exchange. After obtaining the information, the 

pricing information is sent to the MGs by DSO. When 

received, MGs then decide whether to sell or buy electricity 

from the DSO based on their DER capacity to meet the load 

demand. If an MG's DER cannot meet its load demand, the 

MG will purchase electricity from the DSO or dispatch its 

local MT and ESS to maintain supply-demand balance. Any 

surplus electricity generated by the MG can be stored in the 

ESS or sold to the DSO. 

Due to the different objective functions and constraints of 

the DSO and MG, this paper establishes the DSO and MG as 

separate hierarchical models within the proposed 

optimization framework. In the context of the multi-entity 

relationships within the framework, different hierarchical 

models are constructed using the Stackelberg game 

mechanism, with different priorities. In the model, the DSO 

acts as the upper-level leader, while the MGs act as 

lower-level followers. Since MGs and DSO represent 

different stakeholders, the optimization objectives of the 

upper and lower levels of the models are to minimize 

operational costs. In practical operations, the DSO sends 

pricing information to MGs. When this information is 

received, the MGs decide whether to sell or purchase 

electricity from the DSO according to local supply-demand 

conditions. The collaborative optimization framework for 

Energy flow Information flow

DSO

MG1 MG3MG2

 
Fig. 1.  Proposed Energy System Framework. 
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multi-entity distribution networks is illustrated in Figure 2. 

The mathematical models for the upper and lower levels are 

shown in Sections II-B and II-A, respectively. 

 

A. Lower-level model 

The objective of the lower level is to minimize the 

operational cost of MG. This cost covers the expenses related 

to the exchange of electricity with the DSO and the operating 

cost of MTs. Whether the MG needs to purchase electricity 

from the DSO is jointly determined by renewable energy 

sources, dispatchable resources, and electricity load. The 

model's constraints include power balance at both the supply 

and demand ends, and operational constraints for the ESS and 

MT. 

1) Objective:  
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   (1) 

 

In the above, t represents a specific period within a day, 

while i represents the i-th microgrid. 
,

MG

i tF  is the total 

operating cost of MG i  within t. 
,

MGbuy

i tp   is the electricity 

purchased by MG i . ,

MGbuy

i th  is the electricity price at which 

microgrid i purchases power. 
,

MGsell

i tp  is the amount of 

electricity sold by microgrid i. 
,

MGsell

i tb  is the electricity price at 

which MGs sell power. 
,

MT

i tp  is the output power of the MT, c 

and d are the cost coefficients of the MT. 

2) Constraints:  

 

 
, , , , , , , 0MGbuy MT PV dis load cha MGsell

i t i t i t i t i t i t i tp p p p p p p         (2) 

 

 
min , max

MT MT MT

i tp p p    (3) 

 

 
min , , max,ESS cha dis ESS

i t i tp p p p    (4) 

 

  , 1 , , ,

ESS ESS cha dis

i t i t i t i tBT BT P P t       (5) 

 

 
min , max max/ESS ESS

i tSOC BT BT SOC    (6) 

 

 
, , max0 ,MGbuy MGsell MG

i t i tp p p    (7) 

 

(2) denotes the power balance constraint. (3) is the 

operational constraint for the MT. (4) are the charging and 

discharging constraints of the ESS, ESSBT  is the capacity of 

the ESS. (5) represents the relationship between the ESS 

capacity at time 1t   and time t. (6) are the SoC constraints 

of the ESS, max

ESSBT  denotes the maximum capacity of the ESS. 

(7) represents the constraint on the interaction power between 

the MGs and the DSO. 

B. Upper-level model 

The primary objective of the upper-level model is to 

minimize the operational cost of the DSO. This cost includes 

the electricity prices for interactions with the MGs and the 

energy purchases from the upper-level grid. The model's 

constraints include voltage constraints of the distribution 

network. 

1) Objective:  
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In the objective function, t represents a specific period 

within a day and i represents the i-th microgrid. 
DSO

tF  denotes 

the total operational cost within the time step t. 
uppergrid 

te  is the 

cost coefficient for the DSO to purchase electricity. 
uppergrid 

tp  

represents the electricity purchased by the DSO. The 

meanings of other variables have been elaborated in detail in 

the lower-level model. 

2) Constraints:  
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In the above formulas, G(i,j) is the element of the real part 

of the complex admittance matrix and B(i,j) is the imaginary 

part. P(i,t) and Q (i,t), respectively, denote the active power 

and reactive power injected into bus i during time step t. 

Equations (9) and (10) are the calculation equations for active 

and reactive power, respectively. 

Bus voltage limit: 

 

      min max,bus bus busV i V i t V i     (11) 

 

( , )busV i t  represents the voltage at bus i during timestep t. 

min ( , )busV i t  and max ( , )busV i t  respectively denote the upper 

and lower voltage limits for bus i. 

Objective：Min Operational Costs

Constraint：Voltage limits

Decisonal Variables：
1.Energy Interacted with upper-level 

Grid and MG.

2.Electricity prices given by the MG.

Objective：Min Operational Cost

Constraint：Operation limits

Decisonal Variables：
1.Energy Interacted with DSO.

2.GAS Turbine Output Power.

Price

Power

Upper Level

DSO

Lower Level

MGs

 
Fig. 2.  Coordinated Optimization Framework Based on Multi-Entity. 
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III. MULTI-ENTITY RELATIONSHIPS DESCRIBED BY THE 

STACKELBERG GAME 

Since MG and DSO belong to different operators and are 

independent entities. Therefore, there exists a multi-entity 

relationship between the grid-connected MG and DSO. 

Hence, this section introduces the Stackelberg game to 

analyze the multi-entity relationship between the bilevel 

energy systems. In the Stackelberg game, DSO and MG have 

different priorities, where DSO can first pass its strategic 

information to MG and MG responds upon receiving the 

information. Based on this, DSO is constructed as the 

upper-level leader, while MG acts as the follower in the 

lower-level. The following sections will elaborate on the 

construction of the game mechanism and the analysis of the 

game process between DSO and MG, covering these two 

aspects to explain the multi-entity relationship. 

A. Construction of the Optimization Framework Based on 

the Stackelberg Game Mechanism 

The proposed optimization framework in this paper is 

constructed under the mechanism of the Stackelberg game as 

a single-leader-multi-follower structure. In this structure, the 

DSO acts as the upper-level leader, while the microgrids act 

as lower-level followers. The following is a definition of the 

mechanism of the game for the model. 

 

    , ,, , , , ,
MG MG

DSO MG DSO MG DSO MG

t i t t i ti i
G C C 

 
     (12) 

 

In (12), it can be divided into three parts: the participants 

set (  ), the operational strategies ( t ), and the cost 

functions ( tC ). 

Let us explain each of these parts: 

Participant Set: DSO is represented by DSO . Multiple 

microgrids are represented by MG . 

Operational Strategies: The operational strategies for DSO 

and multiple MGs are represented respectively represented by 
DSO

t  and  ,

MG

i t . These strategies correspond to the selling 

prices of electricity that the distribution system operator 

offers to the microgrids, which are the following: 

 

  , ,, |DSO MGbuy MGsell MG

t i t i th b i     (13) 

 

The strategy of the microgrid not only involves energy 

exchange with the distribution network but also includes the 

management of internal controllable resources, which are: 

 

  , , , , , ,, , , ,MG MT dis cha MGsell MGbuy

i t i t i t i t i t i tp p p p p    (14) 

 

Cost functions: The leader's cost function is 
DSO DSO

t tC F  , 

the follower's cost function is 
, ,

MG MG

i t i tC F  . 

B. The Stackelberg game process 

The bilevel game process is described below. The leader 

formulates strategies based on the internal environment and 

subsequently transmits these strategies to lower-level 

followers. Once each follower receives the strategy 

information, they respond to the leader's strategy based on 

their internal environment. The leader in the upper layer then 

iterates the strategy information based on the feedback 

received and the internal conditions, transmitting it again to 

the followers in the lower layer. Subsequently, the followers 

respond once more to the leader's strategy. The exchange of 

strategy formulation and response between the leader and 

followers in this process is considered a game of energy 

optimization. This dynamic game between the leader and the 

followers enhances the economic performance of the energy 

system's operation. Throughout the game process, only 

strategy information is transmitted among both parties. 

IV. MADRL 

The operation of MGs and DSO is a complex problem due 

to the need to consider various energy sources, loads, and 

market conditions. These factors are often non-linear and 

dynamic, making them difficult to precisely describe using 

traditional mathematical optimization methods. Additionally, 

MGs typically incorporate many sensors and monitoring 

devices. As MGs become more intelligent, there is an 

increasing volume of data that must be transmitted, computed, 

and stored. Therefore, it becomes crucial to effectively 

harness large amounts of data to address complex and 

variable load demands. 

To address the issues and challenges mentioned above, this 

section proposes the use of a data-driven MATD3 for energy 

optimization between MGs and DSO. MATD3, characterized 

by its complex network depth and model-free learning, can 

handle intricate nonlinear dynamic systems and adaptively 

adjust strategies. Moreover, it can learn and make 

optimization decisions from massive real-time data without 

relying on predesigned rules. Furthermore, MATD3 can help 

establish game mechanisms within the model and simulate the 

game process, thereby reducing the operational costs of the 

energy system through dynamic simulation. In the game 

mechanism, the leader and followers are constructed as agents 

within the algorithm, while the mathematical model proposed 

in Section II is mapped to a partially observable Markov game 

(POMG). 

A. Mapping the Mathematical Model to a POMG 

The mathematical model presented in Section Two is 

mapped as a POMG. POMG is a modeling tool for addressing 

multi-agent decision-making problems, where the agents' 

states are partially observable. Symbolically represented as 

      ,, , , , ,global i i iPOMG M O a O P r  , where M represents 

the number of interacting agents, globalO  is the set of global 

observations that all agents observe.  ia  is the set of agent’s 

actions. 

P is the state transition probability.  ir  is the reward 

function for agents in the interactive environment.   denotes 

the discount factor. Given the presence of heterogeneous 

agents in the environment, Equation (15) expresses the 

maximum efficiency of the expected reward return for each 

agent in time T. 
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1) DSO agents: Observation space: 

 

 




max min, , , , ,

, ,

iMGDSO bus bus DSO DSOload

t t t t t t

DSO RES uppergrid uppergrid

t t t

O V V P BT P

P e p


  (16) 

 
maxbus

tV  and minbus

tV  are the maximum and minimum bus 

voltage of DN. iMG

tP  is the power interaction between DN 

and MG. DN

tBT  is the capacity of ESS. DNload

tP  and DN RES

tP   

are the local load and renewable energy generation in DN. 
uppergrid

tP  and uppergrid

te  are the power purchased by DN and the 

selling price of electricity to the DN. 

Action space: 

The DN’s action space is determined by the capacity of the 

ESS and the prices of buying and selling electricity. 

 

  , ,, ,DSO DN MGbuy MGsell

t t i t i ta BT a b   (17) 

 

Reward function: 

Considering that the DN bus voltage must remain within a 

safe range, a penalty function is added to the reward function 

of the distribution network for bus voltage violations. This is 

used to limit deviations from the desired bus voltage levels, as 

shown in Equation (18). 

 

 
33 33

1 1

bus bus

n n

n n

penalty V V  
 

 
     

 
    (18) 

 
bus

nV  is the bus voltage, in per-unit (p.u) values, where n 

represents the n-th node.   and   are the upper and lower 

bounds for the system node voltage.   is a coefficient 

determined by the system operator. 

 

  DSO DSO

t tr penalty F     (19) 

 

The reward function for the DN consists of the bus voltage 

penalty function and the operating cost of the DN. 

2) MG agents: In the optimization framework, involves 

multiple MGs. In each time step t, the observation space, the 

action space, and the reward function for each MG are defined 

as follows. 

observation space: 

 

 




max min

, , , ,

, ,

, , , , ,

, , i

MG bus bus MGload MGRES MGsell

i t i t i t i t

MGMGbuy MG

i t i t t

O V V P P a

b BT P


  (20) 

 

,

MGload

i tP  is the local load of microgrids, 
,

MGRES

i tP  representing 

the power generation from RES within the MGs. 

Action space: 

 

  , , ,,MG MG MT MG

i t i t i ta P BT   (21) 

 

,

MG MT

i tP   is the power generation of an internal microturbine in 

the MG. 
,

MG

i tBT  is the capacity state of the internal ESS in the 

MG. 

Reward function: 

 

 
, ,

MG MG

i t i tr F    (22) 

 

The reward function of the MG is the operational costs. 

B. TD3 

The Twin-Delayed Deep Deterministic Policy Gradient 

(TD3) is a model-free actor-critic algorithm that falls into the 

category of off-policy and deterministic policy gradient 

methods[27]. TD3 was introduced to address the problem of 

overestimation bias that exists in Deep Deterministic Policy 

Gradient (DDPG) algorithms. The critic network consists of 

two Q-networks q (
1

q  and 
2

q ), along with two target 

Q-networks q
(

1
q
  and 

2
q
 ). The actor network includes a 

deterministic policy network (  ）, and an target policy 

network ( 

). The existence of objective networks enhances 

the stability of neural network learning. 

For network updates, the q in the critic network is updated 

using Equation (23). Here, ts  is the state space, ta  is the 

action space, and ty  is the target value. In the actor,   is 

updated via Equation (24). 

Due to the initial differences in the network parameters, the 

calculated target values may differ. Therefore, the critic 

estimates the Q value by taking the minimum of the two target 

Q networks by Equation (25), to avoid overestimation of the 

Q values.   is the discount factor, and tr  is the reward 

function. Regarding policy updates, TD3 updates the   and 

three target networks every few updates of the Q-networks. 

This delayed update strategy significantly reduces the 

probability of misusing Q values. To enhance the robustness 

of the network, clip Gaussian noise is added to the actor's 

updates, as depicted in Equation (26), where c  represents the 

bounds for the noise. 
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,t t tL q s a y 
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  ' '

1, , 1
1,2

min
jt t t t

j
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    (25) 

 

    ' ' 2

1 1 , ( 0, , , )t ta s CN N c c         (26) 

 

C. MATD3 

However, the framework proposed in this article is a 

multi-agent environment. For the multi-agent learning 

strategy, it is not feasible to simply apply the TD3 algorithm  

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 713-726

 
______________________________________________________________________________________ 



 

 
 

independently to the network training of each agent. This is 

because in a multi-agent environment, each agent operates in 

a non-stationary environment, and the actions taken by one 

agent can interfere with the convergence of the others' 

strategies. Therefore, this article adopts the principles of 

centralized training and distributed execution to assist 

multiple agents in learning the optimal strategy within the 

environment. Centralized training refers to the critic network 

considering the observation space and action space of all 

agents during training. Distributed execution means that the 

actor network uses only local information to update during 

training. The update formula for the centralized Q-value 

network is as follows: (27)-(28). The gradient update formula 

for the policy network is as follows: (30). 
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 (30) 

 

D. Centralized training and distributed execution of 

MATD3 

The distributed execution and centralized training 

framework of the algorithm is illustrated in Figure 3. The 

algorithm training process will be explained in the following 

sections, focusing on centralized training and distributed 

execution. 

 

1) Centralized Training Stage: 

 

Algorithm 1 

1. Initialization: 
1 , 

2 ,  , 
1  and Replay buffer 

2. For episodes 1 to M, 

3.   For time slots (t) 1 to T do 

4.     According to the actor network, each agent output action  t ta O ; 

5.     Agents execute action 
ta , and return 

tr  and 
1tO 

 to the environment; 

6.     Save element matrix  1, , ,t t t tO a r O 
 to Replay buffer; 

7.     If reach pre-set element matrix amount; 

8.     Sampling from the replay buffer according to the pre-configured batch 

size; 

9.   Import 
tO  and 

1tO 
 to actor network. Next, integrate the network's 

outputs 
ta , 

1ta 
 with the observation space. Then, import 

 1, , 1, ,, , , , ,t i t t i tO O a a  and  1, 1 , 1 1, 1 , 1, , , , ,t i t t i tO O a a     to critic 

network; 

10.     Update the parameters of the critic network’s parameters via ( )L  ; 

11.     Update actor network’s parameters via g ; 

12.     Update target critic network’s parameters. 

13.     End 

14.   End 

15. End 

 

2) Distributed Execution Process: 

 
Algorithm 2 

1. For episodes 1 to M do 

2.   Obtaining the observation space for all agents  1, ,, ,t i tO O ; 

3.   For time slot(t) 1 to T do 

4.   Utilizing the trained actor network to generate action spaces for all 

agents; 

6.     All agents in the environment execute distributed actions  1, ,, ,t i ta a , 

and return 
tr , 

1tO 
 to the environment. 

7.   End 

8. End 

E. Model Based on Physical Information 

The ESS capacities in MGs and DN are elements within the 

action set of agents. To find the optimal strategy, agents 

generally aim to expand their range of exploration as much as 

possible when exploring the environment. Therefore, this 

exploration process can potentially lead the ESS to exceed its 

 
Fig. 3.  MATD3 Training and Execution Framework. 
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safety limits. To ensure that the capacity of the ESS remains 

within the safe range, this paper introduces a model based on 

physical information as an intermediate layer between agents 

and the environment. This model is designed to prevent risky 

behavior from agents. 

 

    mod maxmin , 0action initial actionBT BT BT BT BT    (31) 

 

    mod minmax , 0action initial actionBT BT BT BT BT    (32) 

 

modBT  is the value modified by formulas, actionBT  is the value 

assigned by the agents during the exploration process. maxBT  

and minBT  are the maximum and minimum values of the ESS, 

respectively. initialBT  is the initial value of the ESS. 

V. CASE STUDY 

The objective of this section is to validate the effectiveness 

of the framework, algorithm, and model proposed in this 

paper within the IEEE-33 system. 

A. Experimental Setup and Parameter Configuration 

The tests were carried out within the IEEE-33 system. In 

the test system, MGs are connected to nodes 30, 21, and 13. 

Node 4 is connected to an ESS; Nodes 32 and 18 are each 

connected to a WT, and node 16 has a photovoltaic system. 

MG1 and MG2 consist of a photovoltaic system, an ESS 

and a microturbine (MT). MG3 includes a WT, an ESS and a 

MT. The DN contains two WTs, one photovoltaic system, and 

an ESS. Figure 4 illustrates the distribution of renewable 

energy and the loads for the MGs over a 24-hour period, while 

Figure 5 shows the distribution of renewable energy in the DN, 

with the curve representing the trend of the total network load 

(in percentage). 

 

 

 
The system parameters are described in Table I. The 

capacity of ESS is 300 kW·h, with a charging and discharging 

power range of 0-100 kW. The SoC remains within 0.1 to 0.9. 

The power generation for the MT is 0-220 kW. The cost 

coefficients of MT, denoted as c and d, are 0.27 $/(kW)
2
 and 

0.14 $/kW, respectively. The voltage reference for the DN is 

12.66 kV, with an allowable voltage deviation range of 

0.90-1.10. The initial capacities of the ESS for MGs and DN 

are 40 kW·h and 200 kW·h, respectively. 

 
The hyperparameters for MATD3 and MADDPG, the 

training iterations, and the applied environment are consistent. 

The training iterations are set to 3000 episodes. The batch size 

for each time step is 128. The discount factor is 0.99, and the 

target smoothing coefficient is 0.005. The target update 

frequency is 2. The size of the experience pool is 1x10
5
. The 

learning rates for the actor and critic networks are set at 0.005. 

The simulation is carried out in MATLAB/Simulink 2022b. 

The laptop includes a Core i7-6700H, 16GB RAM, and a 

NVIDIA GeForce MTX 950m GPU. 

B. Optimization results analysis of optimization results 

based on DRL 

Figure 6 presents the scheduling results for the three MGs 

under TD3 over a 24-hour period. Each figure includes the 

 
(c) 

Fig. 4.  Distribution of the RES and load profile in the MG. 

  

TABLE I 

SYSTEM PARAMETERS 

ESS MT DN 

SOC 
Max 

Capacity 

Power 

Range 

Cost 

factor 
Vref 

Voltage. 

Deviation 

0.1~0.

9 
300 kW 

0~220 

kW 

c=0.27 

$/kW
2 

d=0.14 

$/kW
 

12.66 

kV 
0.9~1.1 

 

 
Fig. 5.  Distribution of RES and load profile in DN. 
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charging and discharging power of the ESS, RES generation, 

MT generation, power exchange with the DSO, and load 

profile. 

From the figures, it can be observed that the MT actively 

participates in the energy scheduling at every time step. 

During the 0-7 and 16-24 time periods (Figures 6. (a) and (b)), 

when PV cannot generate power or its power generation is 

insufficient to meet load demand, MT is scheduled to 

compensate for the RES shortage and maintain the internal 

supply-demand balance. In the period of maximum solar 

intensity from 8 to 15 (Figures 6.(a) and (b)), photovoltaic 

generation can provide sufficient power to the system. During 

this time, MT scheduling can be used for ESS energy storage 

or energy trading with the DSO, increasing revenue for the 

MG operator. In the 1-4 and 21-24 time periods in Figure 6. 

(c), the WT's power generation can meet the load demand, 

and the MT is scheduled to work in coordination with the WT 

for energy storage of the ESS or energy trading with the DSO. 

During the 5-20 time periods (Figure 6. (c)), the load 

gradually reaches its peak and RES cannot meet the load 

demand. At this point, the MT is scheduled to participate in 

response to internal demand, reducing supply pressure. 

ESS charging actions are performed mainly when the 

generation of RES is sufficient to meet the internal load 

demand. This is evident in time intervals such as 8-10 in 

Figure 6. (a), 11-13 in Figure 6. (b) and 2-3 in Figure 6.(c). 

When RES generation cannot meet the load demand or is not 

available, the ESS is scheduled to work in coordination with 

the MT and the RES, releasing stored energy to provide more 

electricity to the demand side. 

Regarding energy trading, it can be observed from the 

figures that when the internal load in the MGs is not at its peak, 

RES, together with the MT and ESS, can sell electricity to the 

DSO. A typical example is the time range of 8-15 in Figure 6. 

(a). If the internal supply-demand balance cannot be 

maintained, the MGs can purchase electricity from the DSO 

to alleviate the supply pressure during peak load periods. A 

typical example is the time range of 9-19 in Figure 6. (c). 

In summary, with the support of MATD3, MGs can 

effectively utilize RES, dispatchable resources, and respond 

flexibly to DSO trading signals to maintain supply-demand 

balance. The learning results based on the MADDPG are 

shown in Figure 7, and the analysis process is similar to that 

described above. 

Figures 6 and Figure 7 provide detailed results of the 

testing for both algorithms in relation to RES, dispatchable 

resources, and energy trading. Figure 8, on the other hand, 

presents the results from a cost perspective after both 

algorithms have undergone the same learning process. It is 

evident from the graph that the cost trends based on the two 

algorithms remain largely consistent over the 24-time steps. 

Table II displays the operational costs for both the DSO and 

the MGs according to the two algorithms. It can be observed 

that within the 24-hour period, the total cost of MG1 and 

MG3 according to MATD3 is higher than that according to 

MADDPG. However, from the total cost figures in the table, 

it is apparent that the total cost based on MADDPG is 

$68.667 higher than that based on MATD3. Therefore, under 

the conditions of consistent hyperparameters and learning 

iterations, the MATD3 algorithm appears to be more 

cost-effective for the current system compared to MADDPG. 

 

 

 
(a) 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.  MG’s Operation Results Based on MATD3. 
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C. Scenario comparison 

Due to the potential for random actions by agents that could 

cause the ESS to exceed its capacity limits, this paper 

introduced a model based on physical information in the 

environment to protect the ESS. However, some works (such 

as [7], [9]) constructed penalty functions in the reward 

function to penalize actions that cause capacity violations. 

However, the construction of penalty functions can limit 

agents' exploration of the environment because agents, in their 

exploration, prioritize avoiding penalties to achieve higher 

reward values. This can lead to neglect of other important 

aspects of the reward function, such as operational costs. 

To highlight the advantages of this model, this section 

compares the MATD3 learning performance in the two 

scenarios mentioned above. Assesses the timing of battery 

charging and discharge, power distribution, and operating 

costs. 

In Figure 9, a power greater than 0 indicates that the ESS is 

charging, while a power less than 0 indicates that it is 

discharging. For MG1, combined with Figure 6. (a), we can 

understand that MG1's ESS chooses the timing of charging 

and discharging based on internal supply-demand balance and 

the selling price of electricity set by the DSO. For example, in 

the time range of 11-13 in Figure 6. (a), MG1's supply power 

is significantly greater than the load demand. During this time, 

the ESS chooses to charge, thus storing energy for future use 

during periods of high demand. Consequently, in the time 

range of 20-22 in Figure 6. (a), MG1's supply power is 

notably lower than the load power, and the ESS chooses to 

discharge to alleviate the internal supply pressure. 

Additionally, from Figures 9 and Figure 6. (a), we can 

observe that the magnitude of MG1's charging and 

discharging power adjusts dynamically based on the 

difference between supply and load power. Furthermore, it is 

evident from the curves in Figure 6 that the SoC remains 

within the range of 0.1-0.9, consistent with the settings of the 

ESS parameters, thus ensuring that the ESS operates safely. 

For MG2 and MG3, a similar analysis can be performed by 

combining Figure 6. (a), (b) and Figure 9. The analysis 

process for MG2 and MG3 is analogous to that for MG1. 

 
In Figure 10, it is apparent that the charging and 

discharging actions of the ESS in the three MGs follow a 

repetitive pattern over the 24 time steps, with both the 

charging and discharging powers maintained at 100 kW. 

Although this regularity ensures the voltage constraints of the 

system, it does not allow the system to explore economically 

optimal choices. Furthermore, this pattern can increase the 

operational burden of MGs. For example, when an MG 

experiences a peak load period, the ESS chooses to charge at 

that moment. If the internal supply power is not significantly 

greater than the load power, this charging behavior forces the 

MG to purchase more electricity from the DSO to meet the 

TABLE II 

STATISTICAL RESULTS OF TOTAL COSTS FOR MATD3 AND MADDPG FOR 

24H 

 Operational costs ($) 

 MG1 MG2 MG3 DSO Total 

MATD3 
498.78

8 

643.16

2 

927.30

2
 

767.04

4 

2836.29

6 

MADDPG 
372.35

1 

664.47

5 

926.42

0 

941.71

7 

2904.96

3 

 

 
(b) 

 
(c) 

Fig. 7.  MG’s operation results based on MADDPG. 

  

 
Fig. 9. Charging and Discharging Power and SoC Trends of the Physically 

Informed Model for ESS. 

  

 
Fig. 8. Distribution of system total costs for MATD3-based and 

MADDPG-based systems over 24h. 
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ESS's charging requirements, consequently increasing the 

operational costs of the microgrid. 

 
The comparison above has been made on the basis of the 

timing of the charging and discharging choices and the 

distribution of the charging and discharging power, analyzing 

the merits and drawbacks of the two methods. Now, let us 

further compare the two methods from the perspective of 

system operational costs. Figure 11 presents the total cost of 

the system for both methods at each time step, and Table III 

provides the specific values of Figure 11. It is evident from 

the table that only at time steps 11, 13, and 15, the cost based 

on this paper's model is higher than the cost based on the 

penalty function approach. Furthermore, when considering 

the total cost, the cost of the penalty-based system is 

$1266.2789 higher than the cost of the model proposed in this 

paper in the 24-time steps. 

 

 
In summary, compared to the penalty-based approach, the 

model proposed in this paper can save costs for the system 

and reduce operational burdens. 

Figure 12 shows the voltage variation over 24 time steps in 

a bus voltage scenario based on the physical information 

model. Table IV provides the maximum and minimum values 

of each bus voltage in 24-time steps. The table reveals that 

among the 33 bus voltages, the maximum value is 1.035 and 

the minimum value is 0.945. Importantly, the fluctuation 

range of all these values falls within the set parameters for 

voltage deviation (0.90 to 1.10). This indicates that the 

physical information-based model proposed in this paper can 

ensure voltage safety during the system's operational process. 

 

TABLE III 

STATISTICAL RESULTS OF SYSTEM TOTAL COSTS OVER 24H FOR THE 

PROPOSED MODEL AND THE PENALTY FUNCTION-BASED MODEL 

 Time 
Propose

d 

Penalty 

Function-Based 

Total cost of the system at 

each timestep ($) 

1 42.929 265.481 

2 51.302 58.323 

3 59.814 98.668 

4 73.893 96.130 

5 93.296 196.745 

6 94.185 158.662 

7 115.418 189.511 

8 89.257 168.710 

9 77.923 95.004 

10 60.808 83.885 

11 76.300 52.042 

12 116.535 141.845 

13 147.960 112.286 

14 98.539 119.012 

15 123.466 104.998 

16 151.111 174.827 

17 184.205 289.461 

18 312.115 398.710 

19 282.875 347.957 

20 230.253 277.246 

21 196.513 275.719 

22 61.768 92.904 

23 46.416 170.025 

24 49.415 134.415 

Total cost ($)  2836.296 4102.566 

 

TABLE IV 

MAXIMUM AND MINIMUM VALUES OF EACH BUS VOLTAGE OVER 24 HOURS 

Bus Vmax (.pu) Vmin (.pu) 

1 1 1 

2 0.999 0.997 

3 0.997 0.994 

4 0.996 0.988 

5 0.994 0.983 

6 0.992 0.969 

7 0.992 0.967 

8 0.994 0.964 

9 0.999 0.959 

10 1.004 0.955 

11 1.005 0.954 

12 1.007 0.953 

13 1.017 0.949 

14 1.022 0.949 

15 1.028 0.948 

16 1.035 0.948 

17 1.035 0.948 

18 1.035 0.949 

19 0.999 0.996 

20 1.003 0.986 

21 1.005 0.983 

22 1.004 0.983 

23 0.995 0.991 

24 0.991 0.985 

25 0.989 0.982 

26 0.991 0.968 

27 0.990 0.965 

28 0.990 0.956 

29 0.989 0.949 

30 0.989 0.945 

31 0.993 0.945 

32 0.994 0.946 

33 0.994 0.945 

 

 
Fig. 10. Charging and Discharging Power and SoC Trends of the 

Penalty-Function-Based Model for ESS. 

  

 
Fig. 11. Distribution of total costs over 24 hours for the proposed model and 

the penal function-based model. 
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D. Comparison of Dynamic Electricity Pricing Scenarios 

This section compares two scenarios: dynamic electricity 

pricing and time-of-use pricing. Time-of-use pricing involves 

dividing the day into several periods, such as peak, off-peak, 

and valley, and setting different electricity prices for each 

period. Table V shows the selling and buying electricity 

prices for DSO in different time periods over 24 hours under 

the time-of-use pricing scenario. The buying price in the table 

is the price at which MGs purchase electricity from the DSO, 

while the selling price is the price at which the DSO sells 

electricity to MGs. The table shows that the buying prices are 

divided into six periods over 24 hours. The first period is from 

1 to 7 a.m., with a price of $0.4. The second period is from 8 

to 11 a.m., priced at $0.75. The third period is from 12 to 2 

p.m., with a price of $1.2. The fourth period is from 3 to 6 

p.m., priced at $0.75. The fifth period is from 7 to 10 p.m., 

with a price of $1.2. The sixth period is from 11 p.m. to 

midnight, priced at $0.4. The selling price is set uniformly at 

$0.2 for each period. 

 
Table VI shows the operational costs of MGs and DSO in 

24-time steps in the time-of-use pricing scenario. Analyzing 

the data in this table, we find that MG1 is profitable during the 

10 to 13 hour period but incurs losses in other time slots, 

resulting in a total operational cost of $671.449. MG2 shows 

profits from 8 to 15 hours and losses during other periods, 

leading to a total operational cost of $1076.609. MG3 is 

profitable in the 1 to 4 and 21 to 24 hour segments, while 

experiencing losses at other times, culminating in a total 

operational cost of $927.359. The DSO makes profits during 

1 to 2, 4 to 6, 13 to 14, and 23 hours, but faces losses in the 

remaining periods, bringing its total operational cost to 

$615.102. 

However, with the continuous development and 

improvement of smart grids, advanced artificial intelligence 

algorithms and communication technologies have made 

real-time interaction between electricity companies and 

consumers possible. Building on this, dynamic electricity 

pricing has been proposed to further shorten the time periods, 

dividing the electricity scheduling cycle into several intervals, 

with each interval potentially as short as 1 hour or even less, 

and establishing different electricity prices for each interval. 

Table VII presents the operational costs of the MGs and the 

DSO in 24-time steps under the dynamic electricity pricing 

scenario. The table reveals that MG1 is profitable at 10, 11, 

and 13 hours, but incurs losses during other times, resulting in 

a total operational cost of $498.851. MG2 shows profits from 

8 to 15 hours and losses in the remaining periods, leading to a 

total operational cost of $643.16. MG3 is profitable between 

1 to 2 and 21 to 24 hours, while experiencing losses at other 

times, resulting in a total operational cost of $927.539. The 

DSO makes profits during 4 to 6 and 16 to 17 hours, but faces 

losses in the other periods, bringing its total operational cost 

to $767.1. 

 

TABLE VII 

COSTS OF MGS AND DSO AT EACH TIME STEP IN THE DYNAMIC 

ELECTRICITY PRICING SCENARIO 

 Time (h) MG1 MG2 MG3 DSO 

Dynamic 

electricity 

pricing 

scenario, the 

cost at each 

time step ($). 

1 11.619 29.132 -8.974 11.161 

2 12.174 37.396 -1.694 3.425 

3 18.137 36.054 0.282 5.338 

4 41.365 35.310 7.398 -10.118 

5 50.410 80.499 58.406 -96.016 

6 26.723 133.716 33.071 -99.325 

7 11.662 15.969 5.106 82.680 

8 1.951 -14.171 4.339 97.136 

9 1.660 -29.634 25.743 80.163 

10 -8.140 -38.187 54.684 52.449 

11 -1.930 -45.936 52.393 71.771 

12 1.121 -43.137 98.667 59.881 

13 -1.671 -34.489 133.305 50.816 

14 0.712 -18.294 119.029 -2.909 

15 25.760 -1.794 84.863 14.639 

16 50.190 19.110 85.079 -3.273 

17 107.631 51.140 79.838 -54.402 

18 58.152 141.318 62.899 49.746 

19 40.845 107.394 39.787 94.848 

20 3.679 81.161 9.082 136.330 

21 2.611 54.901 -0.283 139.282 

22 10.101 38.284 -5.734 19.118 

23 17.040 3.768 -5.598 31.204 

24 16.981 3.650 -4.392 33.156 

Total Cost ($) 498.851 643.160 927.359 767.100 

 

 

TABLE VI 

COSTS OF MGS AND DSO AT EACH TIME STEP IN THE TIME-OF-USE PRICING 

SCENARIO 

 Time (h) MG1 MG2 MG3 DSO 

Time-of-use 

pricing 

scenario, the 

cost at each 

time step ($) 

1 23.273 46.562 -19.582 -15.038 

2 13.769 63.877 -17.549 -3.741 

3 25.275 32.323 -14.785 25.550 

4 49.608 42.632 -10.050 -1.143 

5 79.049 99.277 55.869 -138.251 

6 31.651 165.793 92.301 -107.255 

7 11.475 64.424 74.280 66.503 

8 0.881 -46.725 27.230 111.904 

9 0.507 -60.069 79.846 63.132 

10 -19.917 -72.603 155.848 15.461 

11 -26.259 -83.357 94.115 146.839 

12 -3.019 -86.936 159.359 92.188 

13 -0.017 -71.088 296.306 -27.708 

14 1.088 -42.076 223.518 -25.642 

15 31.177 -10.429 168.819 8.761 

16 72.585 24.090 169.528 19.418 

17 97.073 157.093 156.497 -46.841 

18 78.279 217.925 135.724 15.156 

19 73.206 185.077 67.946 78.088 

20 37.385 160.960 13.068 110.049 

21 37.265 103.412 -8.180 155.009 

22 23.720 69.370 -14.148 67.834 

23 17.483 55.572 -13.676 -3.090 

24 18.088 61.505 -13.126 7.919 

Total Cost ($) 671.449 1076.609 927.359 615.102 

 

 
Fig. 12. Bus Voltage over 24 Hrs. 
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When comparing the operational cost results from both 

tables, it is evident that the operational costs of MGs and DSO 

in the time-of-use pricing scenario are consistently higher 

than those under the dynamic electricity pricing scenario. The 

reason lies in the fact that dynamic pricing links user-side 

prices with the electricity market in real time, reflecting the 

changing costs of power supply during different periods. 

Furthermore, the data-driven dynamic pricing scenario 

effectively balances supply and demand in the electricity 

market, significantly protecting the interests of both 

electricity companies and consumers. This approach fully 

leverages the economic leverage of electricity pricing. 

Figure 13 presents the dispatch results of three MGs under 

TOU pricing scenario. From Figures 13 (a) and (b), it can be 

observed that, within the initial time steps, MG1 and MG2 

engaged in energy transactions with the DSO due to weak or 

no sunlight and a demand exceeding the MGs’ own energy 

supply capability. Consequently, MG1 and MG2 purchased 

energy from the DSO to meet their load demands. 

Subsequently, from 7-15h, the intensity of sunlight gradually 

increased, and the PV systems began generating a surplus of 

energy. At this point, MG1 and MG2 traded the excess energy 

with the DSO while charging their ESS. Later, as sunlight 

diminished and the capability of the PV systems decreased, 

the load demand sharply increased. At this juncture, MT and 

ESS were utilized to provide energy to users. During the 

periods of 1-4h and 21-24h in Figure 13 (c), the WT 

generated enough power to meet the full load demand, 

allowing the operator of MG3 to sell the surplus energy to the 

DSO, thus increasing MG3's revenue. In the period of 5-20h, 

as the load gradually reached its peak, the generation power of 

MT was insufficient to meet the demand. Hence, the operator 

of MG3 dispatched MT and engaged in energy transactions in 

the electricity market to participate in the internal demand 

response, alleviating the pressure on supply. However, the 

dispatch results for MG3 indicate that the ESS was set to 

charge during 6-10h, an action that would exacerbate the 

operational costs and reduce economic efficiency for MG3. 

The above is an analysis of the dispatch results of the three 

MGs under the TOU pricing scenario. However, compared to 

the dynamic pricing dispatch results, the degree of MT 

participation in energy supply under the TOU scenario was 

greater for the three MGs, and since the operational cost of 

MT is a component of the MGs' objective function, it 

undoubtedly increases the operational costs and reduces 

economic efficiency.  

 
(a) 

 
(b) 

 
(c) 

Fig. 13.  MG’s dispatch results under TOU pricing scenario. 

 

Figure 14 displays the charging and discharging power and 

the SoC trends of ESS under the TOU pricing scenario. The 

diagram clearly shows the 24-hour charging and discharging 

states and SoC trends of the three MGs’ ESS. For MG1, the 

ESS chose to charge during 12-14h and to discharge during 

16-18h. The ESS of MG2 selected charging times at 2, 9-11h, 

and 24h, and discharging periods at 3-6h and 18-20h. The 

ESS of MG3 opted to charge between 6-10h and discharge 

between 12-14h. Additionally, it can be observed that the SoC 

of each ESS varied within the range of 0.1 to 0.9. 

 

E. Comparison of Energy Trading 

This section compares the results of the internal energy 

trading in the system under different algorithms. Figure 15 

illustrates the distribution of energy exchange between MGs 

and DSO under the MATD3 algorithm. In the figure, the 

positions above zero represent energy purchases by MGs 

from DSO, while the positions below represent energy sales 

 
Fig. 14. ESS’s char/discharging power and SoC trends under TOU pricing 

scenario. 
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by MGs to DSO. This figure, in conjunction with Figure 16, 

indicates that MG1 produced a significant amount of energy 

from photovoltaic sources between 8 to 15 hours when the 

load was at its lowest. In contrast, during other periods, the 

intensity of sunlight decreased and the load was higher. 

Therefore, MG1 purchased energy from DSO during 1 to 7 

hours and 16 to 22 hours and sold energy to DSO during 8 to 

15 hours and 23 to 24 hours. Similarly, as shown in Figure 6, 

MG2 produced high power from photovoltaic sources 

between 8 to 15 hours when the load was low. Thus, MG2 

sold energy to DSO during 8 to 15 hours and purchased 

energy during other periods. MG3, due to the wind power 

generation capacity fully covering the load between 1 to 3 

hours and 21 to 24 hours, sold energy to DSO during these 

periods. However, at other times when it could not meet the 

demand, MG3 had to purchase energy from DSO to meet the 

load requirement. Figure 16 shows the distribution of energy 

transactions between MGs and DSO under the MADDPG 

algorithm, and the analysis process is similar to that above. 

 

 
Table VIII provides specific figures for energy transactions 

between MGs and DSO under MATD3 and MADDPG 

optimization. From these values, it is evident that under 

MATD3, the volume of energy transactions between MGs 

and DSO is higher than that under MADDPG. This indicates 

that under MATD3, there is more extensive energy trading 

within the system, which greatly helps to enhance the vitality 

of the electricity market. Furthermore, frequent transactions 

between DSO and MGs in the electricity market can increase 

the penetration of renewable energy in the grid, reduce 

reliance on fossil fuels, and positively impact energy security 

and the promotion of a low-carbon economy. 

 

VI. CONCLUSIONS 

This article, through relevant test cases, has drawn the 

following conclusions regarding the proposed framework, 

algorithms, and safety model. 

(1) The distributed bilevel optimization framework based 

on Stackelberg games can protect the privacy information of 

participants with limited information exchange. It can also 

coordinate the multi-entity relationships within the 

framework through Stackelberg game mechanisms. (2) 

Data-driven MATD3 is capable of saving costs for the system 

and produces optimized strategies by learning from the 

system's data. Compared to MADDPG, MATD3 has 

advantages in terms of cost savings for the system. The model 

based on physical information ensures that the capacity of the 

ESS and node voltage remain within safe ranges. (3) 

Compared to the penalty-based approach, the model proposed 

in this document allows agents to make optimal economic 

choices during the environmental exploration process, 

resulting in cost savings for the system. It also relieves the 

operational pressure of the MGs. 

In summary, the framework, algorithms, and models 

proposed in this paper provide a secure and stable 

environment for interconnected systems while significantly 

improving the economic efficiency of the system. Future 

research can further optimize the market mechanisms between 

MGs and DSO in grid-connected modes and consider 

interactions among multiple microgrids. 
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