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Abstract—A variable-parameter fuzzy model for the Mars
Rover is designed to account for time-varying systems and
sector nonlinearities. This model addresses the limitations of
the traditional T-S fuzzy model by increasing the number of
fuzzy rules, which allows for a more accurate representation
of the Mars Rovers dynamics. Furthermore, the model reduces
complexity through linearization, making it more practical for
control system design. Gain-scheduling controllers for the Mars
Rover is designed based on the second-order Lyapunov stability
theorem. This approach ensures that the controller provides
stable and reliable performance for the Rover under varying
operating conditions. We will demonstrate the effectiveness
of our work by simulation, showcasing the superiority over
traditional methods. This variable-parameter fuzzy model has
the potential to enhance the performance and reliability of the
Mars Rover in real-world applications.

Index Terms—FPV systems, Sector nonlinearity, Second-
order Lyapunov stability theorem, Gain-scheduling controllers.

I. INTRODUCTION

MARS landing mission[1, 2] is divided into entry phase,

descent phase and landing phase, and the realization

of each phase of the mission brings great challenges to

system engineering. Although Viking-1 and Viking-2 suc-

cessfully landed on the surface of Mars on July 20th, 1976

and September 3rd, 1976 respectively[3], they didn’t control

their trajectories when they entered the atmosphere of Mars.

However, the precise control of this stage is very important

for the subsequent spacecraft landing process, whether it is

the reentry stage of the return capsule returning to Earth or

the entry stage of the probe entering the Martian atmosphere.

When the Mars probe enters the Martian atmosphere, on

the one hand, due to the incomplete information about the

Martian atmosphere and the unstable state of the Martian

atmosphere, it is often accompanied by strong winds and

sandstorms, which brings great challenges for the Mars probe

to reach the parachute opening smoothly. On the other hand,

Mars is far away from the earth, which makes the delay
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time of information transmission between Mars and the

earth about 10 minutes, while the whole process of entering

the segment is only about 7 minutes, which brings great

difficulties for ground controllers to control the Mars probe

in real time. Therefore, it is of great significance to study an

adaptive controller that can be used in the entry section of

Mars probe to realize the dream of deep space exploration.

Fuzzy control theory offers a promising approach to ad-

dress these challenges. However, existing research on fuzzy

systems has mainly focused on systems with a limited

number of linear time-invariant subsystems, which may not

adequately capture the time-varying nature of the Martian

environment. If we consider the time-varying characteristics

of the system, it will inevitably lead to the problem of rule

explosion[4]. Additionally, the fuzzy T-S model provides

only an approximate description of the initial nonlinear

dynamics, which can be more conservative when incorpo-

rating time-varying parameters. Finding a balance between

accuracy and complexity in dynamic modeling is crucial to

ensure the success of Mars missions.

Trajectory control plays an important role in the

entry phrase. Over the years, several pseudo-spectral

methods[5], such as the Legendre pseudo-spectral method[6],

Radau pseudo-spectral method[7], and Gauss pseudo-spectral

method[8], have been developed and utilized for trajectory

control problems. However, these methods often rely heavily

on the designers experience, and there is no clear rule for

fixed node selection, which can limit their effectiveness. In

recent research, significant advancements have been made

in trajectory optimization for Mars entry. In 2011, Li et

al.[9] presented a trajectory optimisation method based on

desensitised optimal control and non-linear direct construc-

tive programming. This method integrated considerations of

uncertainties in aerodynamic parameters and trajectory track-

ing performance, reducing the difficulty of tracking guidance.

Additionally, TSMC[10] has been proposed for tracking a

reference trajectory. Subsequent studies by researchers like

J. Dai[11] and L. Long[12] have further refined this line of

study, offering new insights and improvements. In 2018, V.

Saranya[13] proposed a controller based on dynamic inverse

design to track the reference state trajectory, then an adaptive

neural network PID controller[14] is proposed in the next

year. The advancements in trajectory planning and guidance

methods demonstrate the ongoing efforts to improve the

accuracy and reliability of Mars atmospheric entry, which

is vital for the success of future Mars missions.

The proposed solution to the modeling problem in-

volves constructing a variable-parameter model using sec-

tor nonlinearity[15]. This approach is crucial in practical

applications as it reduces the fuzzy rules, simplifying the

analysis and design of the control system. Our primary work

is to incorporate time-varying parameters into traditional T-S
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TABLE I
ACCOUNT FOR MODEL 1

ρ Atmospheric Density

v Flying Speed

γ Trajectory Angle

m Quality of Aircraft

φ Bank Angle

s Reference Area

CD Drag Coefficient

CL Lift Coefficient

r Distance from the Center of Mars

fuzzy models using sector nonlinearity, which can otherwise

lead to a rapid increase of fuzzy rules and system complexity.

Our study focuses on modeling a exact dynamics of Martian

inputs and designing gain scheduling controllers for the

Mars rover. A full state feedback and a dynamic feedback

output controller will be designed according to the model

established before. By adopting this approach, the aim is

to develop more accurate and efficient control systems for

the Mars rover, addressing the specific challenges posed by

the Martian environment and ensuring that the rover can

navigate and operate effectively during entry, descent, and

landing phases. These advancements have the potential to

significantly improve the performance and reliability of Mars

missions.

The main route of this paper is to establish an accurate

kinetic model first, then analyze the stability by Quadratic

Lia’s stability theory to obtain the equivalent conditions of

system stability, then design the controller for the model,

and finally verify the scientific nature by simulation with

MATLAB.

II. MODELING

A A Kinetic Model

Hongying Xu et al. proposed a dynamic model for the

Mars’ entry section in 2015[16]. We simplified the model

and re-established a kinetic model of the entry phase taking

into account the time-varying nature.











































ṙ = v sin γ,

v̇ = −
D∗

m
− g sin γ,

γ̇ =
L∗

mv
cosφ−

(g

v
−

v

r

)

cos γ,

D∗ = CDsρv2

2

L∗ = CLsρv2

2

(1)

Considering the reality, the drag parameters and aerody-

namic parameters should be adjusted on-line in real time.

However, the distance between Mars and the Earth is so far

that there is a time error in information transmission. We set

these two parameters unchanged during the simulation.

B F-P-V-Model

Due to the low degree of human understanding of Mars

atmospheric information, and the great uncertainty of var-

ious parameters in the actual flight process, the variable

Fig. 1. Membership Functions of z1

characteristics should be taken into account in the kinetic

model of Mars probe. In 2018, Professor Ban Xiaojun’s

team[17] proposed a new nonlinear system called fuzzy

variable parameter system, which fully considered the time-

varying characteristics of the system. This provides a way

of thinking for our modeling. We try to establish a kinetic

model using the method of fuzzy division. Define model (1)

as follows :

x1 =
r

r0
, x2 =

v
√
gr0

, x3 = γ,

D =
D∗(v, ρ)

x2mg
, L =

L∗(v, ρ)

x2mg
, u = cosφ.

And the model will be as:














ẋ1 = x2 sinx3,

ẋ2 = −Dx2 − sinx3,

ẋ3 = Lu− x1−x2

2

x2

1
x2

cosx3x1,

(2)

define:

z1 = sinx3, z2 = sinx3, z3 =
x1 − x2

2

x2

1
x2

cosx3,

where x1 ∈ (r1, r2), x2 ∈ (v1, v2), x3 ∈ (−α, α), (0 ≤ α <
π
2
). Then model(2) can be written as:











ẋ1 = z1x2,

ẋ2 = −Dx2 − z2,

ẋ3 = Lu− z3x1.

(3)

Division z1 ∼ z3 using sector nonlinearity. Since max z1 =
a1 and min z1 = a2 ,























z1 =
2
∑

l=1

Ml(z1)al,

M1(z1) +M2(z1) = 1,
M1(z1) =

z1−a2

a1−a2

,

M2(z1) =
a1−z1
a1−a2

.

(4)

The membership function can be seen intuitively in Fig.1.

z2 = sinx3 and its local sector can be seen in Fig.2, and

the sector [b2, b1] is formed by the attack of two lines b1x3

and b2x3.






z2 =
2
∑

m=1

Nm(z2)bmx3,

N1(z2) +N2(z2) = 1.
(5)
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Fig. 2. z1 and its Sector

Fig. 3. Membership Functions of z2

Fig. 4. Membership Functions of z3

The membership function is:

N1(z2) =







1, z2 = 0,
z2 − b2 arcsin(z2)

(b1 − b2) arcsin(z2)
, otherwise,

N2(z2) =







0, z2 = 0,
b1arcsin(z2)− z2
(b1 − b2)arcsin(z2)

, otherwise.

Considering z3, since max z3 = c1 and min z3 = c2, we

replace z3 as before.


































z3 =
2
∑

n=1

Qn(z3)cn,

Q1(z3) +Q2(z3) = 1,

Q1(z3) =
z3 − c2
c1 − c2

Q2(z3) =
c1 − z3
c1 − c2

.

(6)

The membership function can be seen intuitively in Fig.4.

According to (4) ∼ (6), the Fuzzy-Variable-Parameter

Model (F-P-V-Model)for Mars Rover can be established.
{

ẋ =
∑

8

i=1
hi(z)(Ai(ρ)x+Bi(ρ)u),

y =
∑

8

i=1
hi(z)(Ci(ρ)x+Di(ρ)u),

(7)

The F-P-V-Model(7) has the following 8 rules:

Rule 1:

If z1 is “Positive” , z2 is “Positive” and z3 is “Positive”,

then

{

ẋ = A1(ρ)x+B1(ρ)u,

y = C1(ρ)x+D1(ρ)u.

Rule 2:

If z1 is “Positive” z2 is “Positive” and z3 is “Negative”,

then

{

ẋ = A2(ρ)x+B2(ρ)u,

y = C2(ρ)x+D2(ρ)u.

Rule 3:

If z1 is “Positive” , z2 is “Negative” and z3 is “Positive”,

then

{

ẋ = A3(ρ)x+B3(ρ)u,

y = C3(ρ)x+D3(ρ)u.

Rule 4:

If z1 is “Positive” , z2 is “Negative” and z3 is “Negative”

, then

{

ẋ = A4(ρ)x+B4(ρ)u,

y = C4(ρ)x+D4(ρ)u.

Rule 5:

If z1 is “Negative” , z2 is “Positive” and z3 is “Positive”

, then

{

ẋ = A5(ρ)x+B5(ρ)u,

y = C5(ρ)x+D5(ρ)u.

Rule 6:

If z1 is “Negative” , z2 is “Positive” and z3 is “Negative”

, then

{

ẋ = A6(ρ)x+B6(ρ)u,

y = C6(ρ)x+D6(ρ)u.

Rule 7:

If z1 is “Negative” , z2 is “Negative” and z3 is “Positive”

, then

{

ẋ = A7(ρ)x+B7(ρ)u,

y = C7(ρ)x+D7(ρ)u.
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Rule 8:

If z1 is “Negative” , z2 is “Negative” and z3 is “Negative”

, then

{

ẋ = A8(ρ)x+B8(ρ)u,

y = C8(ρ)x+D8(ρ)u.

Where, z1, z2, z3 are premise variables,

A1(ρ) = A111(ρ) =









0 a1 0

0 −D(ρ) −b1

−c1 0 0









A2(ρ) = A112(ρ) =









0 a1 0

0 −D(ρ) −b1

−c2 0 0









A3(ρ) = A121(ρ) =









0 a1 0

0 −D(ρ) −b2

−c1 0 0









A4(ρ) = A122(ρ) =









0 a1 0

0 −D(ρ) −b2

−c2 0 0









A5(ρ) = A211(ρ) =









0 a2 0

0 −D(ρ) −b1

−c1 0 0









A6(ρ) = A212(ρ) =









0 a2 0

0 −D(ρ) −b1

−c2 0 0









A7(ρ) = A221(ρ) =









0 a2 0

0 −D(ρ) −b2

−c1 0 0









A8(ρ) = A222(ρ) =









0 a2 0

0 −D(ρ) −b2

−c2 0 0









.

B1(ρ) = B2(ρ) = . . . = B8(ρ) =





0
0

L(ρ)



.

When considering the evaluation output of the system, the

universal form of F-P-V-Model (7) is as follow:















































ẋ =
8
∑

i=1

hi(z)
(

Ai(ρ)x+Bd
i (ρ)d+Bu

i (ρ)u
)

,

e =
8
∑

i=1

hi(z)
(

Ce
i (ρ)x+Ded

i (ρ)d+Deu
i (ρ)u

)

,

y =
8
∑

i=1

hi(z)
(

Cy
i (ρ)x+Dyd

i (ρ)d
)

,

(8)

Atmospheric density is selected as a time-varying parameter

in the F-P-V-Model established above, and fully considers

the real environment when the detector works, which makes

the simulation process more realistic. On the other hand,

the sector nonlinearity is used for fuzzy division, which

greatly reduces the complexity of the model and makes the

simulation process easier to realize.

III. STABILITY ANALYSIS

Martin Corless[18] proved the equivalence condition for

the systems’ stability by using quadratic Lyapunov theory.

These conditions are all given in the form of matrix multi-

plication. In this section, we will also refer to this idea and

give the equivalence condition to prove the stability of the

system.

Considering the following continuous open-loop system,

we have the theorem.

ẋ =
8
∑

i=1

hi(z)Ai(ρ)x. (9)

Theorem 1: If a positive definite matrix P could be found,

(9) is globally asymptotically stable.for each ρ ∈ Ω, the

following matrix inequalities are all true.

AT
i (ρ)P + PAi(ρ) < 0, i = 1, 2, ..., 8, (10)

that is, P satisfies every matrix inequality.

Proof: Take the quadratic Lyapunov function candidate

V (x) = xTPx and directly compute the derivative with

respect to the time along the system (9)

dV (x)

dt
= ẋTPx+ xTPẋ

=

(

8
∑

i=1

hi(z)Ai(ρ)x

)T

Px+ xTP
8
∑

i=1

hi(z)Ai(ρ)x

=

8
∑

i=1

hi(z)
(

xTAT
i (ρ)Px+ xTPAi(ρ)x

)

=
8
∑

i=1

hi(z)x
T
(

AT
i (ρ)P + PAi(ρ)

)

x.

As the membership functions are nonnegative and at least

one is greater than zero, when (10) is satisfied, we have

V̇ (x) < 0. Then (9) is globally asymptotically stable at the

origin.

Inequality (10) contains infinitely linear matrix inequali-

ties. Efficient convex optimization techniques are available

to solve linear matrix inequalities. With this idea, the system

of F-P-V with 16 linear matrix inequalities is available. This

theory offers a promising approach to effectively tackle the

complexities and uncertainties associated with the Martian

atmospheric environment, potentially enhancing the practical

application of stability analysis in this context.

IV. CONTROLLER DESIGN

A Full-State-Feedback-Controller

F-P-V-Model (8) has the following form if substitute y
into other variables.














ẋ =
8
∑

i=1

hi(z)[Ai(ρ)x+Bd
i (ρ)d+Bu

i (ρ)u],

e =
8
∑

i=1

hi(z)[C
e
i (ρ)x+Ded

i (ρ)d+Deu
i (ρ)u].

(11)

And Ai(ρ), B
d
i (ρ), B

u
i (ρ), C

e
i (ρ), D

ed
i (ρ), Deu

i (ρ) are satis-

fying

Ai(ρ) = Ai0 +Ai1ρ; Bd
i (ρ) = Bd

i0 +Bd
i1ρ;

Bu
i (ρ) = Bu

i0 +Bu
i1ρ; Ce

i (ρ) = Ce
i0 + Ce

i1ρ;
Ded

i (ρ) = Ded
i0 +Ded

i1 ρ; Deu
i (ρ) = Deu

i0 +Deu
i1 ρ.
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A controller with u =
8
∑

i=1

hiKi(ρ)x form is substituted

into (11),







ẋ = (Ahρ +Bd
hρKhρ)x+Bd

hρd,

e = (Ce
hρ +Deu

hρKhρ)x+Ded
hρd.

(12)

Full block S-procedure theorem[19] will be used twice to

the quadratic terms Bd
hρKhρ to lower the conservatism of

12). After completing the above work, we can successfully

design a Full-State-Feedback-Controller corresponding to F-

P-V-Model (8).

Theorem 2: System (12) can be controlled by the formed

controller

u =
8
∑

i=1

hi





1
∑

j=0

UijPρj



x, (13)

if

[

Π2,11 +Π1 Π2,12

ΠT
2,12 Π2,22

]

+ M̃ < 0 (14)

[

I5
Hi

⊗

I5

]T [
Π1,11 Π1,12

ΠT
1,12 Π1,22

] [

I5
Hi

⊗

I5

]

≥ 0 (15)

Π1,22 < 0 (16)
[

I40
ρ
⊗

I40

]T [
Π2,11 Π2,12

ΠT
2,12 Π2,22

] [

I40
ρ
⊗

I40

]

≥ 0 (17)

Π2,22 < 0 (18)

and

H =











h2

h3

...

h8











, H1 =











0
0
...

0











, H2 =











1
0
...

0











, · · · , H8 =











0
0
...

1











,

M̃ = He



























A10X Bd
10

0 · · · Ã81X B̃d
81

0

0 −γ
2

0 · · · 0 0 0

Ce
10
X Dd

10

−γ
2

· · · C̃e
81
X D̃d

81
0

0 0 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 0 0



























+He























Bu
10
U10 0 0 · · · Bu

10
Ũ81 0 0

0 0 0 · · · 0 0 0

Du
10
U10 0 0 · · · Du

10
Ũ81 0 0

...
...

...
...

...
...

B̃u
81
U10 0 0 · · · B̃u

81
Ũ81 0 0

0 0 0 · · · 0 0 0

D̃u
81
U10 0 0 · · · D̃u

81
Ũ81 0 0























This approach allows for the adaptation of the controllers pa-

rameters to the changing dynamics of the system, enhancing

its effectiveness in real-world applications.

B Dynamical-Output-Feedback-Controller

We must consider the actual working situation and reality

of the probe. The detector is affected by many uncertain

factors in its working process, which are often difficult

for human beings to predict in advance, so the dynamic

adjustment of the detector is of great practical significance. In

this section, we will try to apply the dynamic output feedback

controller to the model.

We consider this form of system and controller:















ẋ = Ahρx+Bd
hρd+Bu

hρu,

e = Ce
hρx+Ded

hρd+Deu
hρu,

y = Cy
hρx+Dyd

hρd,

(19)

{

ẋc = Acxc +Bcy,

u = Ccxc +Dcy.
(20)

With the help of the Bounded-Real Lemma[20], we can get

a controller that adapts to this model.

Theorem 3: System (19) can be controlled by(20) if the

following conditions can be satisfied.

[

Π2,11 +Π1 Π2,12

ΠT
2,12 Π2,22

]

+ M̂ < 0 (21)

[

I8
Hi

⊗

I8

]T [
Π1,11 Π1,12

ΠT
1,12 Π1,22

] [

I8
Hi

⊗

I8

]

≥ 0 (22)

Π1,22 < 0 (23)
[

I64
ρ
⊗

I64

]T [
Π2,11 Π2,12

ΠT
2,12 Π2,22

] [

I64
ρ
⊗

I64

]

≥ 0 (24)

Π2,22 < 0 (25)
[

X I3
I3 Y

]

> 0 (26)

and

M̂ = He































A10X A10 Bd
10

0 · · · Ã81X Ã81 B̃d
81

0

0 Y A10 Y Bd
10

0 · · · 0 Y Ã81 Y B̃d
81

0

0 0 −γ
2

0 · · · 0 0 0 0

Ce
10
X Ce

10
Ded

10

−γ
2

· · · C̃e
81
X C̃e

81
D̃ed

81
0

0 0 0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 0 0 0
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TABLE II
SIMULATION PARAMETERS

C∗ 1.34 D∗ 0.32

s 18.9m2 m 2920kg

g 3.71m/s2

+He

































Bu
10
Ĉc

10
Bu

10
D̂cCy

10
Bu

10
D̂cDyd

10
0 · · ·

Âc
1100

B̂c
10
Ĉy

10
B̂c

10
Ĉyd

10
0 · · ·

0 0 0 0 · · ·
Deu

10
Ĉc

10
Deu

10
D̂cCy

10
Deu

10
D̂cDyd

10
0 · · ·

...
...

...
...

...

B̃u
81
Ĉc

10
B̃u

81
D̂cCy

10
B̃u

81
D̂cDyd

10
0 · · ·

Âc
8110

B̂c
81
Cy

10
B̂c

81
Dyd

10
0 · · ·

0 0 0 0 · · ·
Deu

81
Ĉc

10
D̃eu

81
D̂cCy

10
D̃eu

81
D̂cDyd

10
0 · · ·

Bu
10
Ĉc

81
Bu

10
D̂cC̃y

81
Bu

10
D̂cD̃yd

81
0

Âc
1801

B̂c
10
C̃y

81
B̂c

10
D̃yd

81
0

0 0 0 0

Deu
10
Ĉc

81
Deu

10
D̂cC̃y

81
Deu

10
D̂c

81
D̃yd

81
0

...
...

...
...

B̃u
81
Ĉc

81
B̃u

81
D̂cC̃y

81
B̃u

81
D̂cD̃yd

81
0

Âc
8811

B̂c
81
C̃y

81
B̂c

81
D̃yd

81
0

0 0 0 0

D̃eu
81
Ĉc

81
D̃eu

81
D̂cC̃y

81
D̃eu

81
D̂cD̃yd

81
0

































We obtained the gain-matrix by:


































Ac = N−1[Âc − Y (Ahρ +BhρDcC
y
hρ)X −NBcC

y
hρX

− Y BhρCcM
T ]M−T ,

Bc = N−1(B̂c − Y Bu
hρDc),

Cc = (Ĉc −DcC
y
hρX)M−T ,

Dc = D̂c,

MNT = I −XY.

(27)

Compared with Full-State-Feedback-Controller, this con-

troller can be adjusted on-line in real time, which is of

practical significance in the Mars exploration task with

relative lack of information.

V. SIMULATION

The partial coefficient matrices of system (11) and the

system (19) can be found in the appendix. When combined

with the reference data provided in Fig.5 and Fig.6, and

utilizing convex optimization theory, it becomes evident that

there are two boundary values of density in Theorem 1,

namely 0kg/m3 and 0.4kg/m3, respectively. Consequently,

formula (10) contains 16 linear matrix inequalities, which is

more easier to calculated.

A Simulation of F-S-F-Controller

We use MATLAB to solve the numerical solution of

inequalities (14) ∼(18), and the results are as follows.

U10 =





0.0805
0.0344

0



 , U20 =





0
−0.0148

0



 , U30 =





0
0
0



 ,

U40 =





0.1451
0
0



 , U50 =





0
0.0005041

0



 , U60 =





0.1987
0
0



 ,

Fig. 5. Reference Trajectory

Fig. 6. Atmospheric Density

U70 =





0.2262
−0.0141

0



 , U80 =





0.1347
0.0107

0



 , U11 =





0
−0.0001103

0



 ,

U21 =





−0.0355
0
0



 , U31 =





−2.4307
−0.0004

0



 , U41 =





0.0077
−0.0037

0



 ,

U51 =





0
0.0035

0



 , U61 =





0
0
0



 , U71 =





−1.6878
0
0



 ,

U81 =





0
−0.0009045

0



 ,

P =





1.5020 −0.1100 −0.2568
−0.1100 10.9836 6.1894
−0.2568 6.1894 9.6415



 .

Substituting the solved controller (13) into system (12),

the results shown in Fig.7 and Fig.8 can be obtained. From

the figure, we can see that under the control of the F-S-

F-Controller, the detector can reach the parachute opening

height in three minutes, and at the same time reduce the

speed to about 400 meters per second. This simulation result

is reasonable and provides a good prerequisite for the next

phase of the task.

B Simulation of D-O-F-Controller

Solving the numerical solution of inequalities (21) ∼ (26)
and controller (20) will be received. Substituting the solved
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Fig. 7. r of (12) Under F-S-F-Controller

Fig. 8. v of (12) Under F-S-F-Controller

Fig. 9. Error of Altitude

controller into system (19) to track the reference trajectory

given in Fig.5.

Fig.9 and Fig.10 show the error between the actual work-

ing condition of the detector and the set target under the

dynamic output feedback controller. Although the detector

deviates from the trajectory in the first 20 seconds, it can be

adjusted within 1 minute and basically coincides with the set

trajectory after 2 minutes. It is clearly that under the control

of the dynamic output feedback controller, the detector can

be adjusted in real time and fit the set trajectory infinitely.

Fig. 10. Error of Speed

Fig. 11. A Simulation Comparison between the Two Methods-r

Fig. 12. A Simulation Comparison between the Two Methods-v

C Comparative Analysis

Local approximation is a method to deal with nonlinear

systems. In this chapter, we will compare the model advan-

tages of the two methods. This comparison will provide in-

sights into the effectiveness and performance of the different

modeling techniques, guiding future applications in similar

contexts.

From Fig.11 and Fig.12, it is evident that the model

constructed by sector nonlinearity enables smoother landing

in a shorter time, with significantly reduced speed fluctu-
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Fig. 13. Error Analysis-r

Fig. 14. Error Analysis-v

ations during the process, compared to the local approxi-

mation. Additionally, in the case of the D-O-F-Controller,

it is observed from Fig.13 and Fig.14 that the error is

smaller. These findings highlight the superior performance

and effectiveness of the controllers designed using sector

nonlinearity, demonstrating their potential to enhance the

precision and reliability of the landing process for the Mars

rover.

APPENDIX A

COEFFICIENT MATRICES OF THE SYSTEM (11) AND THE

SYSTEM (19)

A10 =





0 7.6371× 10
−2

0

0 0 −10

−1.9500× 10
−1

0 0



 ,

A11 =





0 0 0

0 −5.8445× 10
−4

0

0 0 0



 ,

A20 =





0 7.6371× 10
−2

0

0 0 −1

−9.9978× 10
−4

0 0



 ,

A21 =





0 0 0

0 −6.8965× 10
−3

0

0 0 0



 ,

A30 =





0 7.6371× 10
−2

0

0 0 −9.9903× 10
−1

−1.9500× 10
−1

0 0



 ,

A31 =





0 0 0

0 −5.8445× 10
−4

0

0 0 0



 ,

A40 =





0 7.6371× 10
−2

0

0 0 −9.9903× 10
−1

−9.9978× 10
−4

0 0



 ,

A41 =





0 0 0

0 −6.8965× 10
−3

0

0 0 0



 ,

A50 =





0 −7.6371× 10
−2

0

0 0 −1

−1.9500× 10
−1

0 0



 ,

A51 =





0 0 0

0 −5.8445× 10
−4

0

0 0 0



 ,

A60 =





0 −7.6371× 10
−2

0

0 0 −1

−9.9978× 10
−4

0 0



 ,

A61 =





0 0 0

0 −6.8965× 10
−3

0

0 0 0



 ,

A70 =





0 −7.6371× 10
−2

0

0 0 −9.9903× 10
−1

−1.9500× 10
−1

0 0



 ,

A71 =





0 0 0

0 −5.8445× 10
−4

0

0 0 0



 ,

A80 =





0 −7.6371× 10
−2

0

0 0 −9.9903× 10
−1

−9.9978× 10
−4

0 0



 ,

A81 =





0 0 0

0 −6.8965× 10
−3

0

0 0 0



 ,

B
u

10 =





0

0

0



 , B
u

11 =





0

0

1.3957× 10
−4



 , B
u

20 =





0

0

0



 ,

B
u

21 =





0

0

1.6469× 10
−3



 , B
u

30 =





0

0

0



 , B
u

31 =





0

0

1.3957× 10
−4



 ,

B
u

40 =





0

0

0



 , B
u

41 =





0

0

1.6469× 10
−3



 , B
u

50 =





0

0

0



 ,

B
u

51 =





0

0

1.3957× 10
−4



 , B
u

60





0

0

0



 , B
u

61 =





0

0

1.6469× 10
−3



 ,

B
u

70 =





0

0

0



 , B
u

71 =





0

0

1.3957× 10
−4



 , B
u

80 =





0

0

0



 ,

B
u

81 =





0

0

1.6469× 10
−3



 .
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