Energy and Spectra of Zagreb Matrix of k-half Graph

K ARATHI BHAT* and SHASHWATH S SHETTY

Abstract

A chain graph is a bipartite graph in which the neighborhood of the vertices in each partite set forms a chain with respect to set inclusion. By extending the concept of nesting from a bipartite graph to a k partite graph, a k-nested graph is defined. A half graph is a chain graph having no pairs of duplicate vertices. Similarly, a ' k-half graph' is a class of k nested graph with no pairs of duplicate vertices. The (first) Zagreb matrix or Z-matrix denoted by $Z(G)=\left(z_{i j}\right)_{n \times n}$ of a graph G, whose vertex v_{i} has degree d_{i} is defined by $z_{i j}=$ $d_{i}+d_{j}$ if the vertices v_{i} and v_{j} are adjacent and $z_{i j}=0$ otherwise. Let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ be the Zagreb eigenvalues of $Z(G)$ and the Zagreb energy is the sum of the absolute values of the Zagreb eigenvalues. We obtain the determinant, eigenvalues and inverse of a k-half graph with respect to the Z-matrix. Bounds for the Zagreb energy and spectral radius are discussed along with the main and non-main Zagreb eigenvalues of a k-half graph.

Index Terms-Chain graphs, k-partite graphs, half graphs, main eigenvalues, Kronecker product.

I. Introduction

GRaphs considered in this paper are simple, finite, undirected and connected with vertex set $V=V(G)$ and edge set $E=E(G)$. A k-partite graph is a graph whose vertex set can be partitioned into k independent sets and all the edges of the graph are between the partite sets. We denote a k-partite graph with the k-partition of $V=V_{1} \cup V_{2} \cup \ldots \cup V_{k}$ by $G\left(\bigcup_{i=1}^{k} V_{i}, E\right)$. If G contains every edge joining the vertices of V_{i} and $V_{j}, i \neq j$, then it is complete k-partite graph. A complete k-partite graph with $\left|V_{i}\right|=p_{i}, 1 \leqslant i \leqslant k$ is denoted by $K_{p_{1}, p_{2}, \ldots, p_{k}}$. We write $u \sim v$ if the vertices u and v are adjacent in G and $u \nsim v$ if they are not adjacent in G. The open neighborhood of a vertex u in G is denoted by $N(u)$ and is given by $N(u)=\{v \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of u in G is denoted by $N[u]$ and is defined as $N[u]=\{u\} \cup N(u)$. Two vertices u and v in a graph G are duplicate vertices if $N(u)=N(v)$. A vertex $v \in V_{i}(1 \leqslant i \leqslant k)$ in a k-partite graph $G\left(\bigcup_{i=1}^{k} V_{i}, E\right)$ is said to be a dominating vertex if $N(v)=\bigcup_{j=1}^{k} V_{j}, j \neq i$. In other words v is of full degree with respect to other partite set. Readers are referred to [4], [16] for all the elementary notations and definitions not described but used in this paper. A collection $S=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$ of sets is said to form a chain with respect to set inclusion, if for every $S_{i}, S_{j} \in S$ either $S_{i} \subseteq S_{j}$ or $S_{j} \subseteq S_{i}$.

[^0]Definition 1.1: A bipartite chain graph (or simply a chain graph) is a bipartite graph in which the neighborhood of the vertices in each partite set forms a chain with respect to set inclusion.
Definition 1.2: A graph is a threshold graph if it can be constructed from the empty graph by repeatedly adding either an isolated vertex or a dominating vertex.
Motivated by the nesting property of the extremal graphs (chain and threshold graphs), recently a partial chain graph [10] and a partial threshold graph [11] is defined. Spectral properties of partial chain graphs and partial threshold graphs are discussed in the article [11]. Extending the concept of nesting from bipartite graph to a k partite graph, the authors of the article [12] defined a k-nested graph as follows.

Definition 1.3: [12] A k-nested graph $(K N G)$ is a k partite graph in which the neighborhood of the vertices in each partite set forms a chain with respect to set inclusion and each partite set have at least one dominating vertex i.e., a vertex adjacent to all the vertices of the other partite sets.

In other words for every two vertices u and v in the same partite set and for their neighborhoods $N(u)$ and $N(v)$, either $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$. Due to the existence of at least one dominating vertex in each partite set, a k-nested graph is always connected.
A chain graph is a 2-nested graph which is also known as double nested graph (DNG in short). Given a chain graph $G\left(V_{1} \cup V_{2}, E\right)$, each of $V_{i}(i=1,2)$ can be partitioned into h non-empty cells $V_{11}, V_{12}, \ldots, V_{1 h}$ and $V_{21}, V_{22}, \ldots, V_{2 h}$ such that $N(u)=V_{21} \cup \ldots \cup V_{2}{ }_{h-i+1}$, for any $u \in V_{1 i}$, $1 \leq i \leq h$. If $m_{i}=\left|V_{1 i}\right|$ and $n_{i}=\left|V_{2 i}\right|$, then we write $G=\operatorname{DNG}\left(m_{1}, m_{2}, \ldots, m_{h} ; n_{1}, n_{2}, \ldots, n_{h}\right)$. In a $K N G$, each partite set $V_{i}, 1 \leqslant i \leqslant k$ can be further partitioned into h_{i} non-empty sets $V_{i 1}, V_{i 2}, \ldots, V_{i h_{i}}$ such that for any two vertices say u, v in $V_{i j}, 1 \leqslant j \leqslant h_{i}$, $N(u)=N(v)$. Suppose $\left|V_{i j}\right|=m_{i j}$, then we write $G=$ $K N G\left(m_{11}, m_{12}, \ldots, m_{1 h_{1}} ; m_{21}, m_{22}, \ldots, m_{2 h_{2}} ; \ldots ; m_{k 1}\right.$, $\left.m_{k 2}, \ldots, m_{k h_{k}}\right)$. The authors [12] noted that the graph $G=$ $K N G\left(m_{11}, m_{12}, \ldots, m_{1 h_{1}} ; m_{21}, m_{22}, \ldots, m_{2 h_{2}} ; \ldots ; m_{k 1}\right.$, $\ldots, m_{k h_{k}}$) does not represent a single graph, but a family of graphs G_{f} with the nesting property.

Note that $\operatorname{KNG}(1 ; 1 ; \ldots ; 1)$ on n vertices is K_{n} and $K N G\left(p_{1} ; p_{2} ; \ldots ; p_{k}\right)$ is $K_{p_{1}, p_{2}, \ldots, p_{k}}$.

Example 1.1: The graphs G_{1} and G_{2} (Figure 1) are the 4-nested graphs with 12 vertices in the family $G_{f}=$ $K N G(1,2,2 ; 1,2 ; 1,1,1 ; 1)$.
The graph G_{1} has 32 edges where as the graph G_{2} has 36 edges. The vertices $a \in V_{1}, f \in V_{2}, i \in V_{3}, l \in V_{4}$ are the 4 dominating vertices of the graphs G_{1} and G_{2}. The vertices $a, b, c, d, e \in V_{1}$. But, as $N_{G}(b)=N_{G}(c), b, c \in V_{12}$. Similarly $d, e \in V_{13}$ as $N_{G}(d)=N_{G}(e)$. Hence, $V_{1}=V_{11} \cup$ $V_{12} \cup V_{13}$. Similarly, $V_{2}=V_{21} \cup V_{22}, V_{3}=V_{31} \cup V_{32} \cup V_{33}$ and $V_{4}=V_{41}$. So, $\left|V_{11}\right|=1,\left|V_{12}\right|=\left|V_{13}\right|=2$.

Fig. 1. The graph $G_{1}, G_{2} \in G_{f}=K N G(1,2,2 ; 1,2 ; 1,1,1 ; 1)$

A half graph is a chain graph without any duplicate vertices. Analogous to half graph the authors of the article [12] defined a k-half graph. We redefine a k-half graph as follows.

Definition 1.4: A k-half graph on $k n$ vertices with $k \geq$ 2 is a k-nested graph $G\left(\bigcup_{i=1}^{k} V_{i}, E\right)$ with $\left|V_{i}\right|=n$ and the vertices in each partite set V_{i} are further partitioned into n non empty cells, i.e., $V_{i}=V_{i 1} \cup V_{i 2} \cup \cdots \cup V_{i n}$ in such a way that, for any vertex $u \in V_{i r}, N(u)=V_{j 1} \cup V_{j 2} \cup \cdots \cup$ $V_{j n-r+1}, 1 \leq j \neq i \leq k$ and $\forall i$ and r.

In a half graph (2-half graph) on $2 n$ vertices the degrees
of n vertices in any partite set are $n, n-1, \ldots, 1$. Similarly, in a k - half graph on $k n$ vertices the degrees of n vertices in any partite set are $(k-1) n,(k-1)(n-1), \ldots,(k-1)$. A k-half graph on $k n$ vertices has $\binom{k}{2}\left(\frac{n(n+1)}{2}\right)$
edges. Figure 2 represents a 4 -half graph $G=$ $K N G(1,1,1 ; 1,1,1 ; 1,1,1 ; 1,1,1)$ having 12 vertices and 36 edges.

Fig. 2. 4-Half Graph
Here $\left|V_{i}\right|=3,1 \leq i \leq 4$ and $v_{i 1}, 1 \leq i \leq k$ is the dominating vertex of the set V_{i}. Observe that
$N\left(v_{11}\right)=\left\{v_{21}, v_{22}, v_{23}, v_{31}, v_{32}, v_{33}, v_{41}, v_{42}, v_{43}\right\}$ and $N\left(v_{13}\right) \subseteq N\left(v_{12}\right) \subseteq N\left(v_{11}\right)$. Note that degrees of the three vertices in any partite set are $9,6,3$ respectively.
The degree based topological indices have been considered only for simple graphs and very recently for graphs with self-loops [14] and for hypergraphs [15]. With $T I$ we denote a topological index that can be represented as $T I=$ $T I(G)=\sum_{v_{i} \sim v_{j}} F\left(d_{i}, d_{j}\right)$, where F is an appropriately chosen function with the property $F(x, y)=F(y, x)$. A general extended adjacency matrix $A=\left(a_{i j}\right)$ of G is defined as $a_{i j}=F\left(d_{i}, d_{j}\right)$ if the vertices v_{i} and v_{j} are adjacent, and $a_{i j}=0$ otherwise. The first extended adjacency matrix corresponding to a degree based topological index defined was the randi'c matrix [3], and the energy of the corresponding matrix was defined in a similar way and termed as the randi ${ }^{\prime}$ c energy. Some of the most comprehensively studied degreebased topological indices are the Zagreb indices.
The first Zagreb index, $M_{1}(G)$ of a graph G is defined as the sum of the squares of the degrees over all the vertices of the graph. If $F\left(d_{i}, d_{j}\right)=d_{i}+d_{j}$, i.e., $T I=M_{1}(G)$ (the first Zagreb index), we get the (first) Zagreb matrix [8].
The (first) Zagreb matrix (Z-matrix) of a graph G is a square matrix $Z(G)=\left(z_{i j}\right)_{n \times n}$ of order n, defined as

$$
z_{i j}= \begin{cases}d_{i}+d_{j}, & \text { if } v_{i} v_{j} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

The eigenvalues of $Z(G)$, labeled as $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ are known
as the Zagreb eigenvalues or Z-eigenvalues of G and their collection is called the Zagreb spectrum or Z-spectrum of G. The Zagreb energy of a graph G is denoted by $Z E(G)$ and is defined as

$$
Z E(G)=\sum_{i=1}^{n}\left|\zeta_{i}\right|
$$

Few bounds on Zagreb energy and the spectral radius of the (first) Zagreb matrix of the graph G is obtained in [5].
In this article we obtain spectral properties of a k-half graph with respect to its Z-matrix.

The rest of the paper is organized as follows; Section II deals with the determinant, eigenvalues and inverse of a k half graph with respect to the Z-matrix. Bounds on Zagreb energy and spectral radius of a half graph are discussed in Section III and Section IV deals with the main and non-main eigenvalues of a k-half graph.

II. Determinant, Eigenvalues and Inverse

In this section we obtain the determinant, eigenvalues and the inverse of a k-half graph with respect to Z-matrix.
The Kronecker product of a matrix $A=\left(a_{i j}\right)_{p \times q}$ and $B_{r \times s}$ is defined as

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \ldots & a_{1 q} B \\
\vdots & \vdots & \vdots \\
a_{p 1} B & \ldots & a_{p q} B
\end{array}\right]
$$

The following basic properties about the Kronecker product are used to obtain determinant, eigenvalues and inverse of a k-half graph with respect to Z-Matrix.

Theorem 2.1: [7] Let A be a square matrix of order m and let B be a square matrix of order n. Then

$$
\operatorname{det}(A \otimes B)=\operatorname{det}(B \otimes A)=\operatorname{det}(A)^{n} \operatorname{det}(B)^{m}
$$

Theorem 2.2: [7] Let A be a square matrix of order m with spectrum $\sigma(A)=\left(\mu_{i}\right), 1 \leq i \leq m$ and B be a square matrix of order n with $\sigma(B)=\left(\lambda_{j}\right), 1 \leq j \leq n$. Then $\sigma(A \otimes B)=\left(\mu_{i} \lambda_{j}\right), 1 \leq i \leq m, 1 \leq j \leq n$.
Furthermore, if x_{i} and y_{j} are the eigenvectors corresponding to the eigenvalue μ_{i} and λ_{j} in A and B respectively then $x_{i} \otimes y_{j}$ is an eigenvector corresponding to the eigenvalue $\mu_{i} \lambda_{j}$ in $A \otimes B$.

Theorem 2.3: [7] If $A \in M_{m}$ and $B \in M_{n}$ are non singular then,

$$
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}
$$

By using Theorem 2.1 and Lemma 2.4 , one can obtain the determinant of a k-half graph with respect to Z-matrix.
Lemma 2.4: Let B be a matrix of order n given by
$\left[\begin{array}{cccc}2 n(k-1) & (2 n-1)(k-1) & \ldots & (n+1)(k-1) \\ (2 n-1)(k-1) & (2 n-2)(k-1) & \ldots & 0 \\ \vdots & \ldots & . \cdot & 0 \\ (n+2)(k-1) & (n+1)(k-1) & 0 & 0 \\ (n+1)(k-1) & 0 & \cdots & 0\end{array}\right]$

Then,
$\operatorname{det}(B)= \begin{cases}((n+1)(k-1))^{n}, & \text { if } \mathrm{n} \text { is of the form } 4 \mathrm{r} \\ & \text { or } 4 r+1, \text { where } \mathrm{r} \geq 0 \\ -((n+1)(k-1))^{n}, & \text { otherwise. }\end{cases}$

Theorem 2.5: Let G be a k-half graph on $k n$ vertices. Then, $\operatorname{det}(Z(G))$

$$
= \begin{cases}{\left[(k-1)^{k+1}(n+1)^{k}\right]^{n},} & \text { if } \mathrm{k} \text { and } \mathrm{n} \text { both are even } \\
& \begin{array}{l}
\text { or if } k \text { is odd and } n=4 r \\
\\
\text { or } 4 r+1, \quad r \geq 0 \\
-\left[(k-1)^{k+1}(n+1)^{k}\right]^{n}, \\
\text { otherwise. }
\end{array}\end{cases}
$$

Proof: The Zagreb matrix of G can be written as block matrix as follows;

$$
Z(G)=\left[\begin{array}{ccccc}
0_{n} & B_{n} & \ldots & B_{n} & B_{n} \\
B_{n} & 0_{n} & \ldots & B_{n} & B_{n} \\
\vdots & \ldots & \ddots & & 0_{n} \\
B_{n} & B_{n} & \ldots & 0_{n} & B_{n} \\
B_{n} & B_{n} & \ldots & B_{n} & 0_{n}
\end{array}\right]
$$

where $B_{n}=$

$$
\left[\begin{array}{cccc}
2 n(k-1) & (2 n-1)(k-1) & \ldots & (n+1)(k-1) \\
(2 n-1)(k-1) & (2 n-2)(k-1) & \ldots & 0 \\
\vdots & \ldots & . \cdot & 0 \\
(n+2)(k-1) & (n+1)(k-1) & 0 & 0 \\
(n+1)(k-1) & 0 & \ldots & 0
\end{array}\right]
$$

and 0_{n} is a zero matrix of order n.

The Z-matrix of the k-half graph, is a Kronecker product of the adjacency matrix of the complete graph of order k and the matrix B. The proof directly follows from Theorem 2.2

The following corollary follows from Theorem 2.5 .

Corollary 2.6: Let G be a half graph on $2 n$ vertices. Then,

$$
\operatorname{det}(Z(G))= \begin{cases}(n+1)^{2 n}, & \text { if } \mathrm{n} \text { is even } \\ -(n+1)^{2 n}, & \text { otherwise }\end{cases}
$$

Theorem 2.7: Let the matrix B of order n be given by
$\left[\begin{array}{cccc}2 n(k-1) & (2 n-1)(k-1) & \ldots & (n+1)(k-1) \\ (2 n-1)(k-1) & (2 n-2)(k-1) & \ldots & 0 \\ \vdots & & \ddots & 0 \\ (n+2)(k-1) & (n+1)(k-1) & \ldots & 0 \\ (n+1)(k-1) & 0 & \cdots & 0\end{array}\right]$

Let $\lambda_{i}, 1 \leq i \leq n$ be the eigenvalues of B with the corresponding eigenvectors $Y_{i}, 1 \leq i \leq n$. Suppose G is a k-half graph on $k n$ vertices, then the Z-spectrum of G is given by
$\operatorname{Spec}(Z(G))=$
$\left(\begin{array}{ccccccc}-\lambda_{1} & -\lambda_{2} & \ldots & -\lambda_{n} & (k-1) \lambda_{1} & \ldots & (k-1) \lambda_{n} \\ k-1 & k-1 & \ldots & k-1 & 1 & \ldots & 1\end{array}\right)$,
with the eigenvector $X_{i}=$
corresponding to the Z -
eigenvalue $(k-1) \lambda_{i}, 1 \leq i \leq n$, and

$$
X_{i}=\left[\begin{array}{c}
Y_{i} \\
-Y_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
Y_{i} \\
0 \\
-Y_{i} \\
0 \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
Y_{i} \\
0 \\
0 \\
0 \\
\vdots \\
-Y_{i}
\end{array}\right]
$$

corresponding to the Z-eigenvalue $-\lambda_{i}$ of $Z(G)$ whose multiplicity is $k-1$.

Proof: The proof follows from Theorem 2.2, by observing the eigenvalues and eigenvectors of the adjacency matrix of the complete graph of order k.

Corollary 2.8: If G is a half graph on $2 n$ vertices, then $\pm \lambda_{i}, 1 \leq i \leq n$ are the Z-eigenvalues of G, where $\lambda_{i}, 1 \leq$ $i \leq n$ are the eigenvalues of B as defined in Lemma 2.4 .

Theorem 2.9: Let G be a k-half graph on $k n$ vertices. Then,

$$
\left((Z(G))^{-1}=C \otimes D=\left[\begin{array}{ccc}
c_{11} D & \ldots & c_{1 k} D \\
\vdots & \vdots & \vdots \\
c_{k 1} D & \ldots & c_{k k} D
\end{array}\right]\right.
$$

where $C=\left[\begin{array}{cccc}\frac{2-k}{k-1} & \frac{1}{k-1} & \cdots & \frac{1}{k-1} \\ \frac{1}{k-1} & \frac{2-k}{k-1} & \cdots & \frac{1}{k-1} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{k-1} & \cdots & \cdots & \frac{2-k}{k-1}\end{array}\right]_{k \times k}$
and
$D=\left[\begin{array}{cccc}0 & 0 & \ldots & \frac{1}{(n+1)(k-1)} \\ 0 & \cdots & \frac{1}{(n+1)(k-1)} & \frac{-(n+2)}{(n+1)^{2}(k-1)} \\ 0 & \cdots & \frac{-(n+2)}{(n+1)^{2}(k-1)} & \frac{1}{(n+1)^{3}(k-1)} \\ 0 & \cdots & \ddots & \frac{n}{(n+1)^{4}(k-1)} \\ \vdots & \ldots & \ddots & \vdots \\ \frac{1}{(n+1)(k-1)} & \frac{-(n+2)}{(n+1)^{2}(k-1)} & \cdots & \frac{n}{(n+1)^{n}(k-1)}\end{array}\right]_{n \times n}$
Proof: The Z-matrix of the k-half graph, is a Kronecker product of the adjacency matrix of the complete graph of order k and the matrix B of order n. From Theorem 2.9 . the inverse of $Z(G)$ is the Kronecker product of inverse of $A\left(K_{k}\right)$ which is given by the matrix C and inverse of the matrix B which is given by the matrix D.
The following corollary follows from Theorem 2.9 .
Corollary 2.10: Let G be a half graph on $2 n$ vertices. Then,

$$
\left((Z(G))^{-1}=\left[\begin{array}{cc}
0_{n} & D_{n} \\
D_{n} & 0_{n}
\end{array}\right]\right.
$$

where $D=\left[\begin{array}{cccc}0 & 0 & \cdots & \frac{1}{(n+1)} \\ 0 & \cdots & \frac{1}{(n+1)} & \frac{-(n+2)}{(n+1)^{2}} \\ 0 & \cdots & \frac{-(n+2)}{(n+1)^{2}} & \frac{1}{\left.(n+1)^{3}\right)} \\ 0 & \cdots & \ddots & \frac{n}{(n+1)^{4}} \\ \vdots & \ldots & \ddots & \vdots \\ \frac{1}{(n+1)} & \frac{-(n+2)}{(n+1)^{2}} & \cdots & \frac{n^{n-3}}{(n+1)^{n}}\end{array}\right]_{n \times n}$
III. Bounds

Few bounds on Zagreb energy and spectral radius of a k-half graph are discussed in this section.

Let $a=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of positive real numbers. We define P_{k} to be the average of products of k-element subsets of a, i.e.,
$P_{1}=\frac{1}{n}\left(a_{1}+a_{2}+\ldots+a_{n}\right)$
$P_{2}=\frac{1}{\frac{1}{2} n(n-1)}\left(a_{1} a_{2}+a_{1} a_{3}+\ldots+a_{1} a_{n}+a_{2} a_{3}+\ldots+\right.$
$\left.a_{n-1} a_{n}\right)$
$:$ $P_{n}=a_{1} a_{2} \ldots a_{n}$.

Hence the arithmetic mean is P_{1} whereas the geometric mean is $P_{n}^{\frac{1}{n}}$. The following result is known as the Maclaurin symmetric mean inequality:
Lemта 3.1: [2] For positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$, $P_{1} \geq P_{2}^{\frac{1}{2}} \geq P_{3}^{\frac{1}{3}} \geq \ldots \geq P_{n}^{\frac{1}{n}}$.
Equalities hold if and only if $a_{1}=a_{2}=\ldots=a_{n}$.
We give a lower bound for $Z E(G)$ of a half graph G using the below lemma.

Lemma 3.2: Let G be a k-half graph on $k n$ vertices. Then,

$$
\operatorname{Tr}\left(Z(G)^{2}\right)=\frac{k(k-1)^{3} n(n+1)\left(11 n^{2}+11 n+2\right)}{12}
$$

Proof:

$$
\begin{aligned}
\operatorname{Tr}\left(Z(G)^{2}\right) & =k(k-1) \sum_{i=1}^{n} i(2(k-1) n-(k-1)(i-1))^{2} \\
& =k(k-1)^{3} \sum_{i=1}^{n} i(2 n+1-i)^{2} \\
& =k(k-1)^{3}\left\{(2 n+1)^{2} \sum_{i=1}^{n} i+\right. \\
& \left.\quad \sum_{i=1}^{n} i^{3}-2(2 n+1) \sum_{i=1}^{n} i^{2}\right\} \\
& =\frac{k(k-1)^{3} n(n+1)\left(11 n^{2}+11 n+2\right)}{12}
\end{aligned}
$$

Theorem 3.3: Let G be a half graph on $2 n$ vertices. Then

$$
Z E(G) \geq \sqrt{\frac{\left(23 n^{2}+11 n-10\right) n(n+1)}{3}}
$$

with equality if and only if $G \cong K_{1,1}$.
Proof: Note that $Z(G)=\left[\begin{array}{cc}0_{n} & E_{n} \\ E_{n} & 0_{n}\end{array}\right]$ where

$$
E_{n}=\left[\begin{array}{ccccc}
2 n & 2 n-1 & \ldots & n+2 & n+1 \\
2 n-1 & 2 n-2 & \ldots & n+1 & 0 \\
\vdots & \ldots & . . & . . & 0 \\
n+2 & n+1 & 0 & \ldots & 0 \\
n+1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

and 0_{n} is the zero matrix of order n.
Let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{2 n}$ be the first Zagreb eigenvalues of $Z(G)$. Since G is bipartite, $Z E(G)=2 \sum_{i=1}^{n} \zeta_{i}$, where ζ_{i} are the positive eigenvalues of $Z(G)$.
From Lemma 3.2 we have,
$\sum_{i=1}^{2 n} \zeta_{i}^{2}=\operatorname{Tr}(Z(G))^{2}=\frac{n(n+1)\left(11 n^{2}+11 n+2\right)}{6}$. Thus,

$$
\sum_{i=1}^{n} \zeta_{i}^{2}=\frac{n(n+1)\left(11 n^{2}+11 n+2\right)}{12}
$$

It is well known that

$$
\prod_{i=1}^{2 n} \zeta_{i}=\operatorname{det}(Z(G))=(-1)^{n}(n+1)^{2 n}
$$

Hence,

$$
\prod_{i=1}^{n} \zeta_{i}=(n+1)^{n}
$$

By Lemma 3.1, we obtain

$$
\frac{1}{\frac{n(n-1)}{2}} \sum_{1 \leq i<j \leq n} \zeta_{i} \zeta_{j} \geq\left(\prod_{i=1}^{n} \zeta_{i}\right)^{\frac{2}{n}}
$$

i.e., $2 \sum_{1 \leq i \leq j \leq n} \zeta_{i} \zeta_{j} \geq n(n-1)(n+1)^{2}$
with equality holding if and only if $\zeta_{1}=\zeta_{2}=\ldots=\zeta_{n}$. We have,

$$
\left(\sum_{i=1}^{n} \zeta_{i}\right)^{2}=\sum_{i=1}^{n} \zeta_{i}^{2}+2 \sum_{1 \leq i \leq j \leq n} \zeta_{i} \zeta_{j} .
$$

Hence,

$$
\begin{aligned}
Z E(G) & =2 \sqrt{\sum_{i=1}^{n} \zeta_{i}^{2}+2 \sum_{1 \leq i<j \leq n} \zeta_{i} \zeta_{j}} \\
& \geq 2 \sqrt{\frac{\left(n^{2}+n\right)\left(11 n^{2}+11 n+2\right)}{12}+\left(n^{2}-n\right)(n+1)^{2}} \\
& \geq \sqrt{\frac{\left(23 n^{2}+11 n-10\right) n(n+1)}{3}}
\end{aligned}
$$

Equality holds if $n=1$, i.e., $G \cong K_{1,1}$.

Theorem 3.4: Let G be a k-half graph on $k n$ vertices. Then

$$
Z E(G) \geq(k-1)^{2} \sqrt{\frac{\left(23 n^{2}+11 n-10\right) n(n+1)}{3}}
$$

with equality if and only if $G \cong K_{1,1}$.

Proof: From Theorem 2.7,

$$
Z E(G)=(k-1) \sum_{i=1}^{n}\left|\lambda_{i}\right|+\sum_{i=1}^{n}(k-1)\left|\lambda_{i}\right|
$$

where λ_{i} are the eigenvalues of the matrix B. Hence,

$$
Z E(G)=2(k-1) \sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

We note that $\prod_{i=1}^{n}\left|\lambda_{i}\right|=(k-1)^{n}(n+1)^{n}$
and
$\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=(k-1)^{2}\left(\frac{n(n+1)\left(11 n^{2}+11 n+2\right)}{12}\right)$.

Applying the arithmetic-geometric mean inequality, we get

$$
\begin{aligned}
2 \sum_{1 \leq i<j \leq n}\left|\lambda_{i}\right|\left|\lambda_{j}\right| & \geq n(n-1)\left(\prod_{i=1}^{n}\left|\lambda_{i}\right|\right)^{\frac{2}{n}} \\
& =n(n-1)(k-1)^{2}(n+1)^{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
Z E(G) & =2(k-1) \sum_{i=1}^{n}\left|\lambda_{i}\right| \\
& =2(k-1) \sqrt{\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2}} \\
& =2(k-1) \sqrt{\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}+2 \sum_{1 \leq i<j \leq n}\left|\lambda_{i}\right|\left|\lambda_{j}\right|} \\
& \geq 2(k-1) \sqrt{\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}+n(n-1)(k-1)^{2}(n+1)^{2}} .
\end{aligned}
$$

Substituting
$\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=\frac{(k-1)^{2} n(n+1)\left(11 n^{2}+11 n+2\right)}{12}$ plifying we get , and simplifying we get

$$
Z E(G) \geq(k-1)^{2} \sqrt{\frac{\left(23 n^{2}+11 n-10\right) n(n+1)}{3}} .
$$

Using Lemma 3.5, we give another lower bound in terms of determinant of the Z-matrix.

Lemma 3.5: [5] Let G be a graph with n vertices. Then

$$
Z E(G) \geq n \sqrt[n]{|\operatorname{det} Z(G)|}
$$

Theorem 3.6: Let G be a k-half graph on $k n$ vertices. Then,

$$
Z E(G) \geq k n(n+1)(k-1) \sqrt[k]{k-1}
$$

with equality if and only if $G \cong K_{1,1}$.
Proof: From Lemma 3.5 we have,

$$
Z E(G) \geq N \sqrt[N]{|\operatorname{det} Z(G)|}
$$

where N is order of the graph G. Therefore,

$$
\begin{aligned}
Z E(G) & \geq k n \sqrt[k n]{|\operatorname{det} Z(G)|} \\
& =k n \sqrt[k n]{\left((n+1)^{k}(k-1)^{k+1}\right)^{n}} \\
& =k n \sqrt[k n]{(n+1)^{k n}(k-1)^{(k+1) n}} \\
& =k n(n+1)(k-1) \sqrt[k]{k-1} .
\end{aligned}
$$

The following theorem gives the relation between energy of a k-half graph G with respect to the adjacency matrix and the Zagreb matrix.

Theorem 3.7: Let G be a k-half on $k n$ vertices. Let $E(G)$ denote the energy of G with respect to its adjacency matrix $A(G)$. Then,

$$
Z E(G) \leq k(n-1) E(G)
$$

with equality only if $n=1$, i.e., G is a complete graph on k vertices.

Proof: We have, $Z E(G) \leq \Delta(G) E(G)$ and the equality if and only if G is a regular graph, where $\Delta(G)$ is the maximum degree of the graph G. Hence, the proof follows directly.

Lemma 3.8: [9] Let G be a graph on n vertices, then

$$
Z E(G) \leq \sum_{i=1}^{n} \sqrt{\sum_{v_{i} v_{j} \in E}\left(d_{i}+d_{j}\right)^{2}}
$$

Theorem 3.9: Let G be a k-half on $k n$ vertices. Then

$$
Z E(G) \leq k(k-1) \sum_{j=0}^{n-1} \sqrt{(k-1) \sum_{i=j}^{n-1}(2 n-i)^{2}}
$$

Proof: For every dominating vertex v_{i} of the k-half graph G we have,
have

$$
\zeta_{1}(G)=\sup _{x} \frac{x^{\top} Z(G) x}{x^{\top} x} \geq \frac{J^{\top} Z(G) J}{J^{\top} J}
$$

where J is an all one column vector of appropriate size.

$$
J^{\top} Z(G) J=(k-1) c_{i}=(k-1)^{2} s_{i}
$$

where s_{i} and c_{i} respectively denote the $i^{t h}$ column sum of the matrix B and $Z(G)$ and also

$$
s_{i}=\frac{(k-1)}{2} \sum_{i=1}^{n}(n-i+1)(3 n-i+2)
$$

$\sum_{v_{i} v_{j} \in E}\left(d_{i}+d_{j}\right)^{2}=(k-1)\left[(2 n(k-1))^{2}+\cdots+((n+1)(k-1))^{2}\right] \quad$ Lemma 3.13: [13] Let G be a connected graph of order

$$
=(k-1)^{3} \sum_{i=0}^{n-1}(2 n-i)^{2} .
$$

Also, for every vertex v_{i} of degree $(n-1)(k-1)$ of G,

$$
\sum_{v_{i} v_{j} \in E}\left(d_{i}+d_{j}\right)^{2}=(k-1)^{3} \sum_{i=1}^{n-1}(2 n-i)^{2}
$$

Similarly, for every vertex v_{j} of degree $(n-i+1)(k-1)$ in G, we have

$$
\sum_{v_{j} v_{h} \in E}\left(d_{j}+d_{h}\right)^{2}=(k-1)^{3} \sum_{i=j}^{n-1}(2 n-i)^{2}
$$

Now by using Lemma 3.8.

$$
\begin{aligned}
Z E(G) & \leq k \sqrt{(k-1)^{3} \sum_{i=0}^{n-1}(2 n-i)^{2}} \\
& +k \sqrt{(k-1)^{3} \sum_{i=1}^{n-1}(2 n-i)^{2}} \\
& \vdots \\
& +k \sqrt{(k-1)^{3}(n+1)^{2}} \\
& =k(k-1) \sum_{j=0}^{n-1} \sqrt{\sum_{i=j}^{n-1}(2 n-i)^{2}(k-1)}
\end{aligned}
$$

Theorem 3.10: [5] Let G be a graph with n vertices. Then,

$$
\sqrt{\operatorname{Tr}\left(Z(G)^{2}\right)} \leq Z E(G) \leq \sqrt{n \operatorname{Tr}\left(Z(G)^{2}\right)}
$$

Theorem 3.11: Let G be a k-half on $k n$ vertices. Then

$$
\frac{k-1}{2} \sqrt{n k A} \leq Z E(G) \leq \frac{n k(k-1)}{2} \sqrt{A}
$$

where $A=\frac{(k-1)(n+1)\left(11 n^{2}+11 n+2\right)}{3}$.
Proof: Proof follows from Theorem 3.10 and Lemma 3.2

Theorem 3.12: Let G be a k-half graph on $k n$ vertices and $\zeta_{1}(G)$ be the spectral radius of G. Then,

$$
\zeta_{1}(G) \geq \frac{\sum_{i=1}^{n}(n-i+1)(k-1)^{3}(3 n-i+2)}{2 k n}
$$

Proof: If $\zeta_{1}(G)$ denote the spectral radius of G then we
n, maximum degree Δ and Z-spectral radius ζ_{1}. If $M_{1}(G)$ denotes the first Zagreb index of the graph G, then

$$
\frac{M_{1}(G)+\sum_{u \in V} d_{2, u}}{n} \leq \zeta_{1} \leq 2 \Delta^{2},
$$

where $d_{2, u}$ is is the sum of degrees of all the vertices which are adjacent to u in G. Equality holds in both if and only if G is regular.
Theorem 3.14: Let G be a k-half graph on $k n$ vertices and $\zeta_{1}(G)$ be the spectral radius of G. Then,

$$
\zeta_{1}(G) \leq 2 n^{2}(k-1)^{2}
$$

Equality in the above bound holds if and only if G is a complete k-partite graph.

Proof: The upper bound directly follows from Lemma 3.13 by noting that the maximum degree in a k-half graph on $k n$ vertices is $n(k-1)$.

IV. Main / NON-main Eigenvalues

An eigenvalue $\mu \in \operatorname{Spec}(A(G))$ is main if the corresponding eigenspace $E(\mu ; G)$ is not orthogonal to all-1 vector J; otherwise, it is non-main. The graph with only one main eigenvalue is necessarily regular. In threshold graph all eigenvalues except 0 and -1 are main. But there exist some chain graphs with all eigenvalues being main and also with all eigenvalues being non-main except 0 . In [1], the authors characterize the chain graphs with 2 main eigenvalues. One can refer to [6] for few interesting results on main and non main eigenvalues.

Similarly, an eigenvalue $\mu \in \operatorname{Spec}(Z(G))$ is main if the corresponding eigenspace $E(\mu ; G)$ is not orthogonal to all1 vector J; otherwise, it is non-main. In this section we obtain main and non-main eigenvalues of a k-half graph with respect to $Z(G)$. First, we show that in a k-half graph on $k n$ vertices, there is at least $k n-n$ non-main Z-eigenvalues.
Theorem 4.1: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, be the eigenvalues of B. The Z-eigenvalues $-\lambda_{i}, 1 \leq i \leq n$, repeats $k-1$ times, of a k-half graph are non-main Z-eigenvalues.

Proof: From Theorem 2.7, we know that the eigenvalue $-\lambda_{i}, 1 \leq i \leq n$, with multiplicity $k-1$ are the eigenvalues
of a k-half graph with the corresponding eigenvectors

$$
\left[\begin{array}{c}
Y_{i} \\
-Y_{i} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
Y_{i} \\
0 \\
-Y_{i} \\
0 \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
Y_{i} \\
0 \\
0 \\
0 \\
\vdots \\
-Y_{i}
\end{array}\right]
$$

All these vectors are orthogonal to J. Hence each $-\lambda_{i}, 1 \leq$ $i \leq n$ is a non-main Z-eigenvalue.
Theorem 4.2: Let G be a k-half graph and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, be the eigenvalues of B. If any $\lambda_{i}, 1 \leq i \leq n$ is a non-main (main) Z-eigenvalue of B, then $(k-1) \lambda_{i}$, the Z-eigenvalue of G is also non-main (main) Z-eigenvalue.

Proof: From Theorem 2.7, we know that $(k-1) \lambda_{i}$ is a Z-eigenvalue of G with multiplicity 1 and the corresponding eigenvector is given by

$$
X_{i}=\left[\begin{array}{c}
Y_{i} \\
Y_{i} \\
Y_{i} \\
\vdots \\
Y_{i}
\end{array}\right] .
$$

If λ_{i} is non-main (main), we have $Y_{i} J=0,\left(Y_{i} J \neq 0\right)$. Thus, $X_{i} J=0,\left(X_{i} J \neq 0\right)$.Hence the eigenvalue $(k-1) \lambda_{i}$ is also non-main (main).
From Theorems 4.1 and 4.2 , for a k-half graph on $k n$ vertices, at least $k n-n$ Zagreb-eigenvalues are non-main and at most n Zagreb-eigenvalues are main. So, when $n=2$ i.e., a k-half graph on $2 k$ vertices contains at most 2 main Z-eigenvalues. In the next theorem we show that when G is a k-half graph on $2 k$ vertices it has exactly 2 main Z eigenvalues.

Theorem 4.3: Let G be a k-half graph with $2 k$ vertices. Then, $(k-1)^{2}(2 \pm \sqrt{1} 3)$ are the main Z-eigenvalues and $(1-k)(2 \pm \sqrt{13})$ each with multiplicity $k-1$ are the nonmain Z-eigenvalues of G.

Proof: From Theorem 2.7, we have

$$
\operatorname{Spec}(G)=\left(\begin{array}{cccc}
-\lambda_{1} & -\lambda_{2} & (k-1) \lambda_{1} & (k-1) \lambda_{2} \\
k-1 & k-1 & 1 & 1
\end{array}\right)
$$

where $\lambda_{1}=(k-1)(2+\sqrt{13}), \lambda_{2}=(k-1)(2-\sqrt{13})$ are the Z-eigenvalues of

$$
B=\left(\begin{array}{cc}
4(k-1) & 3(k-1) \\
3(k-1) & 0
\end{array}\right)
$$

From Theorem 4.1. $-\lambda_{1}=(1-k)(2+\sqrt{13})$ and $-\lambda_{2}=$
 eigenvalues of G. It follows from Theorem 4.2, that $(k-1) \lambda_{1}$ and $(k-1) \lambda_{2}$ are the main Z - eigenvalues of G if and only if $\lambda_{1}=(k-1)(2+\sqrt{13})$ and $\lambda_{2}=(k-1)(2-\sqrt{13})$ are the main Z-eigenvalues of B.
It is easy to show that the eigenvectors corresponding to the Z-eigenvalues λ_{1}, λ_{2} of B are given by

$$
X_{1}=\binom{l}{\frac{3 l}{\sqrt{13}+2}} \text { and } X_{2}=\binom{l}{\frac{3 l}{2-\sqrt{13}}}
$$

where $l \neq 0$. As $X_{1}^{T} J \neq 0$ and $X_{2}^{T} J \neq 0$, the eigenvalues $(k-1)(2+\sqrt{13}),(k-1)(2-\sqrt{13})$ are the main Z-eigenvalues
of the matrix B. Hence, the main Z-eigenvalues of G are $(k-1)^{2}(2 \pm \sqrt{1} 3)$.

V. Conclusion

The determinant, Z-eigenvalues and inverse of a k-half graph with respect to the Z-matrix is obtained along with a few Zagreb energy and spectral radius bounds. The main and non-main eigenvalues of a k-half graph with respect to the Z-matrix are also discussed. One can try to obtain spectral properties of a k-half graph with respect to its adjacency matrix and second Zagreb matrix.

References

[1] A. Alazemi, M. Andelic, and A. Salim. "On Main Eigenvalues of Chain Graphs," Computational and Applied Mathematics, 40:268, 2021.
[2] P. Biler, A. Witkowski, Problems in Mathematical Analysis, Chapman and Hall, New York, 1990.
[3] S. B. Bozkurt, A. D. Güngör, I. Gutman, and A. S. Cevik, "Randic Matrix and Randic Energy," MATCH Commun. Math. Comput. Chem vol. 64, no. 1, pp.239-250, 2010.
[4] Cvetković, D., Doob, M. and Sachs, H. Spectra of Graphs, Academic Press, New York, 1980
[5] K. C. Das, "On the Zagreb Energy and Zagreb Estrada Index of Graphs," MATCH Commun. Math. Comput. Chem., vol. 82, pp529-542, 2019.
[6] Hagos EM. "Some Results on Graph Spectra," Linear Algebra Appl, vol. 356, pp103-111, 2002.
[7] R. A. Horn, and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[8] N. J. Rad, A. Jahanbani, and I. Gutman, "Zagreb energy and Zagreb estrada index of graphs," MATCH-Communications in Mathematical and in Computer Chemistry vol. 79, 2018.
[9] B. R. Rakshith, "On Zagreb energy and edge-Zagreb energy," Communications in Combinatorics and Optimization, vol. 6, no. 1, pp155-169, 2021.
[10] S. Hanif, K. A. Bhat, and G. Sudhakara, "Partial Chain Graphs," Engineering Letters, vol. 30, no.1, pp9-16, 2022.
[11] Shashwath S Shetty and K Arathi Bhat, "Spectral Properties of Partial Chain and Partial Threshold Graphs," IAENG International Journal of Applied Mathematics, vol. 53, no.4, pp1477-1485, 2023.
[12] Shashwath S Shetty and K Arathi Bhat, "Some Properties and Topological Indices of k-nested Graphs," IAENG International Journal of Computer Science vol. 50, no.3, pp921-929, 2023.
[13] S. S. Shetty, K. A. Bhat, "Energy and Spectral Radius of Zagreb Matrix of Graph with Applications," (communicated) 2024.
[14] S. S. Shetty and K. A. Bhat, "On the First Zagreb Index of Graphs With Self-loops," AKCE International Journal of Graphs and Combinatorics, vol. 20, no.3. pp326-331, 2023, doi:10.1080/ 09728600.2023.2246515.
[15] S. S. Shetty, K. A. Bhat, Sombor Index of Hypergraphs, MATCH Commun. Math. Comput. Chem, vol. 91, pp235-254, 2024, doi: 10.46793/match.91-1.235S.
[16] D. B. West, Introduction to Graph Theory, Prentice Hall Upper Saddle River, 2, 2001.

[^0]: Manuscript received October 30, 2023; revised January 29, 2024;
 K Arathi Bhat is an Assistant Professor-Selection Grade in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
 (${ }^{\text {Corresponding author to provide email: arathi.bhat@manipal.edu; Phone: }}$ 9964282648).

 Shashwath S Shetty is a research scholar in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104 (email: shashwathsshetty01334@gmail.com).

