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Abstract—A chain graph is a bipartite graph in which the
neighborhood of the vertices in each partite set forms a chain
with respect to set inclusion. By extending the concept of nesting
from a bipartite graph to a k partite graph, a k-nested graph
is defined. A half graph is a chain graph having no pairs of
duplicate vertices. Similarly, a ’k-half graph’ is a class of k-
nested graph with no pairs of duplicate vertices. The (first)
Zagreb matrix or Z-matrix denoted by Z(G) = (zij)n×n of a
graph G, whose vertex vi has degree di is defined by zij =
di + dj if the vertices vi and vj are adjacent and zij = 0
otherwise. Let ζ1, ζ2, . . . , ζn be the Zagreb eigenvalues of Z(G)
and the Zagreb energy is the sum of the absolute values of the
Zagreb eigenvalues. We obtain the determinant, eigenvalues and
inverse of a k-half graph with respect to the Z-matrix. Bounds
for the Zagreb energy and spectral radius are discussed along
with the main and non-main Zagreb eigenvalues of a k-half
graph.

Index Terms—Chain graphs, k-partite graphs, half graphs,
main eigenvalues, Kronecker product.

I. INTRODUCTION

GRaphs considered in this paper are simple, finite,
undirected and connected with vertex set V = V (G)

and edge set E = E(G). A k-partite graph is a graph whose
vertex set can be partitioned into k independent sets and all
the edges of the graph are between the partite sets. We denote
a k-partite graph with the k-partition of V = V1∪V2∪. . .∪Vk

by G(
⋃k

i=1 Vi, E). If G contains every edge joining the
vertices of Vi and Vj , i ̸= j, then it is complete k-partite
graph. A complete k-partite graph with |Vi| = pi, 1 ⩽ i ⩽ k
is denoted by Kp1,p2,...,pk

. We write u ∼ v if the vertices u
and v are adjacent in G and u ≁ v if they are not adjacent in
G. The open neighborhood of a vertex u in G is denoted by
N(u) and is given by N(u) = {v ∈ V (G)| uv ∈ E(G)} and
the closed neighborhood of u in G is denoted by N [u] and
is defined as N [u] = {u} ∪N(u). Two vertices u and v in
a graph G are duplicate vertices if N(u) = N(v). A vertex
v ∈ Vi (1 ⩽ i ⩽ k) in a k-partite graph G(

⋃k
i=1 Vi, E) is

said to be a dominating vertex if N(v) =
⋃k

j=1 Vj , j ̸= i. In
other words v is of full degree with respect to other partite
set. Readers are referred to [4], [16] for all the elementary
notations and definitions not described but used in this paper.
A collection S = {S1, S2, · · · , Sn} of sets is said to form a
chain with respect to set inclusion, if for every Si, Sj ∈ S
either Si ⊆ Sj or Sj ⊆ Si.
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Definition 1.1: A bipartite chain graph (or simply a chain
graph) is a bipartite graph in which the neighborhood of the
vertices in each partite set forms a chain with respect to set
inclusion.

Definition 1.2: A graph is a threshold graph if it can be
constructed from the empty graph by repeatedly adding either
an isolated vertex or a dominating vertex.

Motivated by the nesting property of the extremal graphs
(chain and threshold graphs), recently a partial chain graph
[10] and a partial threshold graph [11] is defined. Spectral
properties of partial chain graphs and partial threshold graphs
are discussed in the article [11]. Extending the concept of
nesting from bipartite graph to a k partite graph, the authors
of the article [12] defined a k-nested graph as follows.

Definition 1.3: [12] A k-nested graph (KNG) is a k-
partite graph in which the neighborhood of the vertices in
each partite set forms a chain with respect to set inclusion
and each partite set have at least one dominating vertex i.e.,
a vertex adjacent to all the vertices of the other partite sets.

In other words for every two vertices u and v in the same
partite set and for their neighborhoods N(u) and N(v), either
N(u) ⊆ N(v) or N(v) ⊆ N(u). Due to the existence of at
least one dominating vertex in each partite set, a k-nested
graph is always connected.
A chain graph is a 2-nested graph which is also known as
double nested graph (DNG in short). Given a chain graph
G(V1 ∪ V2, E), each of Vi (i = 1, 2) can be partitioned into
h non-empty cells V11, V12, . . . , V1h and V21, V22, . . . , V2h

such that N(u) = V21 ∪ ... ∪ V2 h−i+1, for any u ∈ V1i,
1 ≤ i ≤ h. If mi = |V1i| and ni = |V2i|, then
we write G = DNG(m1,m2, ...,mh;n1, n2, ..., nh). In a
KNG, each partite set Vi, 1 ⩽ i ⩽ k can be further
partitioned into hi non-empty sets Vi1, Vi2, . . . , Vihi

such
that for any two vertices say u, v in Vij , 1 ⩽ j ⩽ hi,
N(u) = N(v). Suppose |Vij | = mij , then we write G =
KNG(m11,m12, . . . ,m1h1 ;m21,m22, . . . ,m2h2 ; . . . ;mk1,
mk2, . . . ,mkhk

). The authors [12] noted that the graph G =
KNG(m11,m12, ...,m1h1

;m21,m22, ...,m2h2
; . . . ;mk1,

. . . ,mkhk
) does not represent a single graph, but a family

of graphs Gf with the nesting property.
Note that KNG(1; 1; . . . ; 1) on n vertices is Kn and

KNG(p1; p2; . . . ; pk) is Kp1,p2,...,pk
.

Example 1.1: The graphs G1 and G2 (Figure 1) are the
4-nested graphs with 12 vertices in the family Gf =
KNG(1, 2, 2; 1, 2; 1, 1, 1; 1).
The graph G1 has 32 edges where as the graph G2 has 36
edges. The vertices a ∈ V1, f ∈ V2, i ∈ V3, l ∈ V4 are
the 4 dominating vertices of the graphs G1 and G2. The
vertices a, b, c, d, e ∈ V1. But, as NG(b) = NG(c), b, c ∈ V12.
Similarly d, e ∈ V13 as NG(d) = NG(e). Hence, V1 = V11∪
V12 ∪ V13. Similarly, V2 = V21 ∪ V22, V3 = V31 ∪ V32 ∪ V33

and V4 = V41. So, |V11| = 1, |V12| = |V13| = 2.
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Fig. 1. The graph G1, G2 ∈ Gf = KNG(1, 2, 2; 1, 2; 1, 1, 1; 1)

A half graph is a chain graph without any duplicate
vertices. Analogous to half graph the authors of the article
[12] defined a k-half graph. We redefine a k-half graph as
follows.

Definition 1.4: A k-half graph on kn vertices with k ≥

2 is a k-nested graph G(
k⋃

i=1

Vi, E) with |Vi| = n and the

vertices in each partite set Vi are further partitioned into n
non empty cells, i.e., Vi = Vi1 ∪ Vi2 ∪ · · · ∪ Vin in such a
way that, for any vertex u ∈ Vir, N(u) = Vj1 ∪ Vj2 ∪ · · · ∪
Vj n−r+1, 1 ≤ j ̸= i ≤ k and ∀ i and r.

In a half graph (2-half graph) on 2n vertices the degrees

of n vertices in any partite set are n, n− 1, . . . , 1. Similarly,
in a k- half graph on kn vertices the degrees of n vertices
in any partite set are (k − 1)n, (k − 1)(n− 1), . . . , (k − 1).

A k-half graph on kn vertices has
(
k
2

)(n(n+ 1)

2

)
edges. Figure 2 represents a 4-half graph G =
KNG(1, 1, 1; 1, 1, 1; 1, 1, 1; 1, 1, 1) having 12 vertices and
36 edges.
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Fig. 2. 4-Half Graph

Here |Vi| = 3, 1 ≤ i ≤ 4 and vi1, 1 ≤ i ≤ k is the
dominating vertex of the set Vi. Observe that
N(v11) = {v21, v22, v23, v31, v32, v33, v41, v42, v43} and
N(v13) ⊆ N(v12) ⊆ N(v11). Note that degrees of the three
vertices in any partite set are 9,6,3 respectively.

The degree based topological indices have been consid-
ered only for simple graphs and very recently for graphs
with self-loops [14] and for hypergraphs [15]. With TI we
denote a topological index that can be represented as TI =
TI(G) =

∑
vi∼vj

F (di, dj), where F is an appropriately
chosen function with the property F (x, y) = F (y, x). A
general extended adjacency matrix A = (aij) of G is defined
as aij = F (di, dj) if the vertices vi and vj are adjacent, and
aij = 0 otherwise. The first extended adjacency matrix cor-
responding to a degree based topological index defined was
the randi´c matrix [3], and the energy of the corresponding
matrix was defined in a similar way and termed as the randi´c
energy. Some of the most comprehensively studied degree-
based topological indices are the Zagreb indices.

The first Zagreb index, M1(G) of a graph G is defined as
the sum of the squares of the degrees over all the vertices
of the graph. If F (di, dj) = di + dj , i.e., TI = M1(G) (the
first Zagreb index), we get the (first) Zagreb matrix [8].

The (first) Zagreb matrix (Z-matrix) of a graph G is a
square matrix Z(G) = (zij)n×n of order n, defined as

zij =

{
di + dj , if vivj ∈ E(G)

0, otherwise.

The eigenvalues of Z(G), labeled as ζ1, ζ2, . . . , ζn are known
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as the Zagreb eigenvalues or Z−eigenvalues of G and their
collection is called the Zagreb spectrum or Z-spectrum of G.
The Zagreb energy of a graph G is denoted by ZE(G) and
is defined as

ZE(G) =
n∑

i=1

|ζi|.

Few bounds on Zagreb energy and the spectral radius of the
(first) Zagreb matrix of the graph G is obtained in [5].

In this article we obtain spectral properties of a k-half
graph with respect to its Z-matrix.

The rest of the paper is organized as follows; Section II
deals with the determinant, eigenvalues and inverse of a k-
half graph with respect to the Z-matrix. Bounds on Zagreb
energy and spectral radius of a half graph are discussed in
Section III and Section IV deals with the main and non-main
eigenvalues of a k-half graph.

II. DETERMINANT, EIGENVALUES AND INVERSE

In this section we obtain the determinant, eigenvalues and
the inverse of a k-half graph with respect to Z-matrix.
The Kronecker product of a matrix A = (aij)p×q and Br×s

is defined as

A⊗B =

a11B . . . a1qB
...

...
...

ap1B . . . apqB

 .

The following basic properties about the Kronecker product
are used to obtain determinant, eigenvalues and inverse of a
k-half graph with respect to Z-Matrix.

Theorem 2.1: [7] Let A be a square matrix of order m
and let B be a square matrix of order n. Then

det(A⊗B) = det(B ⊗A) = det(A)ndet(B)m

Theorem 2.2: [7] Let A be a square matrix of order m
with spectrum σ(A) = (µi), 1 ≤ i ≤ m and B be a square
matrix of order n with σ(B) = (λj), 1 ≤ j ≤ n. Then
σ(A⊗B) = (µiλj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Furthermore, if xi and yj are the eigenvectors corresponding
to the eigenvalue µi and λj in A and B respectively then
xi ⊗ yj is an eigenvector corresponding to the eigenvalue
µiλj in A⊗B.

Theorem 2.3: [7] If A ∈ Mm and B ∈ Mn are non
singular then,

(A⊗B)−1 = A−1 ⊗B−1.

By using Theorem 2.1 and Lemma 2.4, one can obtain the
determinant of a k-half graph with respect to Z-matrix.

Lemma 2.4: Let B be a matrix of order n given by
2n(k − 1) (2n− 1)(k − 1) . . . (n+ 1)(k − 1)

(2n− 1)(k − 1) (2n− 2)(k − 1) . . . 0
... . . . . .

.
0

(n+ 2)(k − 1) (n+ 1)(k − 1) 0 0
(n+ 1)(k − 1) 0 . . . 0

 .

Then,

det(B) =


((n+ 1)(k − 1))n, if n is of the form 4r

or 4r + 1,where r ≥ 0

−((n+ 1)(k − 1))n, otherwise.

Theorem 2.5: Let G be a k-half graph on kn vertices.
Then, det(Z(G))

=


[(k − 1)k+1(n+ 1)k]n, if k and n both are even

or if k is odd and n = 4r

or 4r + 1, r ≥ 0

−[(k − 1)k+1(n+ 1)k]n, otherwise.

Proof: The Zagreb matrix of G can be written as block
matrix as follows;

Z(G) =


0n Bn . . . Bn Bn

Bn 0n . . . Bn Bn

... . . .
. . . 0n

Bn Bn . . . 0n Bn

Bn Bn . . . Bn 0n

 ,

where Bn =
2n(k − 1) (2n− 1)(k − 1) . . . (n+ 1)(k − 1)

(2n− 1)(k − 1) (2n− 2)(k − 1) . . . 0
... . . . . .

.
0

(n+ 2)(k − 1) (n+ 1)(k − 1) 0 0
(n+ 1)(k − 1) 0 . . . 0


and 0n is a zero matrix of order n.

The Z-matrix of the k-half graph, is a Kronecker product
of the adjacency matrix of the complete graph of order k and
the matrix B. The proof directly follows from Theorem 2.2.

The following corollary follows from Theorem 2.5.

Corollary 2.6: Let G be a half graph on 2n vertices. Then,

det(Z(G)) =

{
(n+ 1)2n, if n is even
−(n+ 1)2n, otherwise.

Theorem 2.7: Let the matrix B of order n be given by
2n(k − 1) (2n− 1)(k − 1) . . . (n+ 1)(k − 1)

(2n− 1)(k − 1) (2n− 2)(k − 1) . . . 0
... . . .

. . . 0
(n+ 2)(k − 1) (n+ 1)(k − 1) . . . 0
(n+ 1)(k − 1) 0 . . . 0


.
Let λi, 1 ≤ i ≤ n be the eigenvalues of B with the
corresponding eigenvectors Yi, 1 ≤ i ≤ n. Suppose G is a
k-half graph on kn vertices, then the Z-spectrum of G is
given by
Spec(Z(G)) =(
−λ1 −λ2 . . . −λn (k − 1)λ1 . . . (k − 1)λn

k − 1 k − 1 . . . k − 1 1 . . . 1

)
,

with the eigenvector Xi =


Yi

Yi

Yi

...
Yi

 corresponding to the Z-
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eigenvalue (k − 1)λi, 1 ≤ i ≤ n, and

Xi =



Yi

−Yi

0
0
...
0


,



Yi

0
−Yi

0
...
0


, . . . ,



Yi

0
0
0
...

−Yi


corresponding to the Z-eigenvalue −λi of Z(G) whose
multiplicity is k − 1.

Proof: The proof follows from Theorem 2.2, by observ-
ing the eigenvalues and eigenvectors of the adjacency matrix
of the complete graph of order k.

Corollary 2.8: If G is a half graph on 2n vertices, then
±λi, 1 ≤ i ≤ n are the Z-eigenvalues of G, where λi, 1 ≤
i ≤ n are the eigenvalues of B as defined in Lemma 2.4.

Theorem 2.9: Let G be a k-half graph on kn vertices.
Then,

((Z(G))−1 = C ⊗D =

c11D . . . c1kD
...

...
...

ck1D . . . ckkD

 ,

where C =


2−k
k−1

1
k−1 . . . 1

k−1
1

k−1
2−k
k−1 . . . 1

k−1
...

...
...

...
1

k−1 . . . . . . 2−k
k−1


k×k

and

D =



0 0 . . . 1
(n+1)(k−1)

0 . . . 1
(n+1)(k−1)

−(n+2)

(n+1)2(k−1)

0 . . . −(n+2)

(n+1)2(k−1)
1

(n+1)3(k−1)

0 . . .
. . . n

(n+1)4(k−1)

... . . .
. . .

...
1

(n+1)(k−1)
−(n+2)

(n+1)2(k−1)
. . . nn−3

(n+1)n(k−1)


n×n

Proof: The Z-matrix of the k-half graph, is a Kronecker
product of the adjacency matrix of the complete graph of
order k and the matrix B of order n. From Theorem 2.9,
the inverse of Z(G) is the Kronecker product of inverse of
A(Kk) which is given by the matrix C and inverse of the
matrix B which is given by the matrix D.
The following corollary follows from Theorem 2.9.

Corollary 2.10: Let G be a half graph on 2n vertices.
Then,

((Z(G))−1 =

[
0n Dn

Dn 0n

]
,

where D =



0 0 . . . 1
(n+1)

0 . . . 1
(n+1)

−(n+2)
(n+1)2

0 . . . −(n+2)
(n+1)2

1
(n+1)3)

0 . . .
. . . n

(n+1)4

... . . .
. . .

...
1

(n+1)
−(n+2)
(n+1)2 . . . nn−3

(n+1)n


n×n

.

III. BOUNDS

Few bounds on Zagreb energy and spectral radius of a
k-half graph are discussed in this section.

Let a = {a1, a2, . . . , an} be a set of positive real
numbers. We define Pk to be the average of products of
k-element subsets of a, i.e.,

P1 = 1
n (a1 + a2 + . . .+ an)

P2 = 1
1
2n(n−1)

(a1a2 + a1a3 + . . . + a1an + a2a3 + . . . +

an−1an)
...
Pn = a1a2 . . . an.

Hence the arithmetic mean is P1 whereas the geometric
mean is P

1
n
n . The following result is known as the Maclaurin

symmetric mean inequality:
Lemma 3.1: [2] For positive real numbers a1, a2, . . . , an,

P1 ≥ P
1
2
2 ≥ P

1
3
3 ≥ . . . ≥ P

1
n
n .

Equalities hold if and only if a1 = a2 = . . . = an.

We give a lower bound for ZE(G) of a half graph G using
the below lemma.

Lemma 3.2: Let G be a k-half graph on kn vertices. Then,

Tr(Z(G)2) =
k(k − 1)3n(n+ 1)(11n2 + 11n+ 2)

12
.

Proof:

Tr(Z(G)2) = k(k − 1)
n∑

i=1

i(2(k − 1)n− (k − 1)(i− 1))2

= k(k − 1)3
n∑

i=1

i(2n+ 1− i)2

= k(k − 1)3{(2n+ 1)2
n∑

i=1

i+

n∑
i=1

i3 − 2(2n+ 1)

n∑
i=1

i2}

=
k(k − 1)3n(n+ 1)(11n2 + 11n+ 2)

12
.

Theorem 3.3: Let G be a half graph on 2n vertices. Then

ZE(G) ≥
√

(23n2 + 11n− 10)n(n+ 1)

3

with equality if and only if G ∼= K1,1.

Proof: Note that Z(G) =

[
0n En

En 0n

]
where

En =


2n 2n− 1 . . . n+ 2 n+ 1

2n− 1 2n− 2 . . . n+ 1 0
... . . . . .

.
. .
.

0
n+ 2 n+ 1 0 . . . 0
n+ 1 0 0 . . . 0


and 0n is the zero matrix of order n.
Let ζ1, ζ2, . . . , ζ2n be the first Zagreb eigenvalues of Z(G).
Since G is bipartite, ZE(G) = 2

∑n
i=1 ζi, where ζi are the

positive eigenvalues of Z(G).
From Lemma 3.2 we have,∑2n

i=1 ζ
2
i = Tr(Z(G))2 =

n(n+ 1)(11n2 + 11n+ 2)

6
.

Thus,
n∑

i=1

ζ2i =
n(n+ 1)(11n2 + 11n+ 2)

12
.
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It is well known that
2n∏
i=1

ζi = det(Z(G)) = (−1)n(n+ 1)2n.

Hence,
n∏

i=1

ζi = (n+ 1)n.

By Lemma 3.1, we obtain

1
n(n−1)

2

∑
1≤i<j≤n

ζiζj ≥ (
n∏

i=1

ζi)
2
n ,

i.e., 2
∑

1≤i≤j≤n ζiζj ≥ n(n− 1)(n+ 1)2

with equality holding if and only if ζ1 = ζ2 = . . . = ζn.
We have,

(
n∑

i=1

ζi)
2 =

n∑
i=1

ζ2i + 2
∑

1≤i≤j≤n

ζiζj .

Hence,

ZE(G) = 2

√√√√ n∑
i=1

ζ2i + 2
∑

1≤i<j≤n

ζiζj

≥ 2

√
(n2 + n)(11n2 + 11n+ 2)

12
+ (n2 − n)(n+ 1)2

≥
√

(23n2 + 11n− 10)n(n+ 1)

3
.

Equality holds if n = 1, i.e., G ∼= K1,1.

Theorem 3.4: Let G be a k-half graph on kn vertices.
Then

ZE(G) ≥ (k − 1)2
√

(23n2 + 11n− 10)n(n+ 1)

3

with equality if and only if G ∼= K1,1.

Proof: From Theorem 2.7,

ZE(G) = (k − 1)
n∑

i=1

|λi|+
n∑

i=1

(k − 1)|λi|,

where λi are the eigenvalues of the matrix B. Hence,

ZE(G) = 2(k − 1)
n∑

i=1

|λi|.

We note that
∏n

i=1 |λi| = (k − 1)n(n+ 1)n

and∑n
i=1 |λi|2 = (k − 1)2

(
n(n+ 1)(11n2 + 11n+ 2)

12

)
.

Applying the arithmetic–geometric mean inequality, we
get

2
∑

1≤i<j≤n

|λi||λj | ≥ n(n− 1)(
n∏

i=1

|λi|)
2
n

= n(n− 1)(k − 1)2(n+ 1)2.

Now,

ZE(G) = 2(k − 1)
n∑

i=1

|λi|

= 2(k − 1)

√√√√( n∑
i=1

|λi|

)2

= 2(k − 1)

√√√√ n∑
i=1

|λi|2 + 2
∑

1≤i<j≤n

|λi||λj |

≥ 2(k − 1)

√√√√ n∑
i=1

|λi|2 + n(n− 1)(k − 1)2(n+ 1)2.

Substituting∑n
i=1 |λi|2 =

(k − 1)2n(n+ 1)(11n2 + 11n+ 2)

12
, and sim-

plifying we get

ZE(G) ≥ (k − 1)2
√

(23n2 + 11n− 10)n(n+ 1)

3
.

Using Lemma 3.5, we give another lower bound in terms of
determinant of the Z-matrix.

Lemma 3.5: [5] Let G be a graph with n vertices. Then

ZE(G) ≥ nn
√

|detZ(G)|.

Theorem 3.6: Let G be a k-half graph on kn vertices.
Then,

ZE(G) ≥ kn(n+ 1)(k − 1)
k
√
k − 1

with equality if and only if G ∼= K1,1.

Proof: From Lemma 3.5 we have,

ZE(G) ≥ NN
√

|detZ(G)|,

where N is order of the graph G. Therefore,

ZE(G) ≥ knkn
√
|detZ(G)|

= knkn

√
((n+ 1)k(k − 1)k+1)n

= knkn

√
(n+ 1)kn(k − 1)(k+1)n

= kn(n+ 1)(k − 1)
k
√
k − 1.

The following theorem gives the relation between energy of
a k-half graph G with respect to the adjacency matrix and
the Zagreb matrix.

Theorem 3.7: Let G be a k-half on kn vertices. Let E(G)
denote the energy of G with respect to its adjacency matrix
A(G). Then,

ZE(G) ≤ k(n− 1)E(G),

with equality only if n = 1, i.e., G is a complete graph on
k vertices.

Proof: We have, ZE(G) ≤ ∆(G)E(G) and the equality
if and only if G is a regular graph, where ∆(G) is the
maximum degree of the graph G. Hence, the proof follows
directly.
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Lemma 3.8: [9] Let G be a graph on n vertices, then

ZE(G) ≤
n∑

i=1

√ ∑
vivj∈E

(di + dj)2

Theorem 3.9: Let G be a k-half on kn vertices. Then

ZE(G) ≤ k(k − 1)
n−1∑
j=0

√√√√(k − 1)
n−1∑
i=j

(2n− i)2

Proof: For every dominating vertex vi of the k-half
graph G we have,∑
vivj∈E

(di + dj)
2 = (k − 1)[(2n(k − 1))2 + · · ·+ ((n+ 1)(k − 1))2]

= (k − 1)3
n−1∑
i=0

(2n− i)2.

Also, for every vertex vi of degree (n− 1)(k − 1) of G,∑
vivj∈E

(di + dj)
2 = (k − 1)3

n−1∑
i=1

(2n− i)2.

Similarly, for every vertex vj of degree (n − i + 1)(k − 1)
in G, we have∑

vjvh∈E

(dj + dh)
2 = (k − 1)3

n−1∑
i=j

(2n− i)2

Now by using Lemma 3.8,

ZE(G) ≤ k

√√√√(k − 1)3
n−1∑
i=0

(2n− i)2

+ k

√√√√(k − 1)3
n−1∑
i=1

(2n− i)2

...

+ k
√
(k − 1)3(n+ 1)2

= k(k − 1)
n−1∑
j=0

√√√√n−1∑
i=j

(2n− i)2(k − 1)

Theorem 3.10: [5] Let G be a graph with n vertices.
Then, √

Tr(Z(G)2) ≤ ZE(G) ≤
√
nTr(Z(G)2).

Theorem 3.11: Let G be a k-half on kn vertices. Then
k − 1

2

√
nkA ≤ ZE(G) ≤ nk(k − 1)

2

√
A,

where A =
(k − 1)(n+ 1)(11n2 + 11n+ 2)

3
.

Proof: Proof follows from Theorem 3.10 and Lemma
3.2.

Theorem 3.12: Let G be a k-half graph on kn vertices
and ζ1(G) be the spectral radius of G. Then,

ζ1(G) ≥

n∑
i=1

(n− i+ 1)(k − 1)3(3n− i+ 2)

2kn
.

Proof: If ζ1(G) denote the spectral radius of G then we

have
ζ1(G) = sup

x

x⊺Z(G)x

x⊺x
≥ J⊺Z(G)J

J⊺J
,

where J is an all one column vector of appropriate size.

J⊺Z(G)J = (k − 1)ci = (k − 1)2si,

where si and ci respectively denote the ith column sum of
the matrix B and Z(G) and also

si =
(k − 1)

2

n∑
i=1

(n− i+ 1)(3n− i+ 2).

Lemma 3.13: [13] Let G be a connected graph of order
n, maximum degree ∆ and Z-spectral radius ζ1. If M1(G)
denotes the first Zagreb index of the graph G, then

M1(G) +
∑
u∈V

d2,u

n
≤ ζ1 ≤ 2∆2,

where d2,u is is the sum of degrees of all the vertices which
are adjacent to u in G. Equality holds in both if and only if
G is regular.

Theorem 3.14: Let G be a k-half graph on kn vertices
and ζ1(G) be the spectral radius of G. Then,

ζ1(G) ≤ 2n2(k − 1)2.

Equality in the above bound holds if and only if G is a
complete k-partite graph.

Proof: The upper bound directly follows from Lemma
3.13, by noting that the maximum degree in a k-half graph
on kn vertices is n(k − 1).

IV. MAIN / NON-MAIN EIGENVALUES

An eigenvalue µ ∈ Spec(A(G)) is main if the cor-
responding eigenspace E(µ;G) is not orthogonal to all-1
vector J ; otherwise, it is non-main. The graph with only one
main eigenvalue is necessarily regular. In threshold graph all
eigenvalues except 0 and −1 are main. But there exist some
chain graphs with all eigenvalues being main and also with
all eigenvalues being non-main except 0. In [1], the authors
characterize the chain graphs with 2 main eigenvalues. One
can refer to [6] for few interesting results on main and non
main eigenvalues.

Similarly, an eigenvalue µ ∈ Spec(Z(G)) is main if the
corresponding eigenspace E(µ;G) is not orthogonal to all-
1 vector J ; otherwise, it is non-main. In this section we
obtain main and non-main eigenvalues of a k-half graph with
respect to Z(G). First, we show that in a k-half graph on kn
vertices, there is at least kn− n non-main Z-eigenvalues.

Theorem 4.1: Let λ1, λ2, . . . , λn, be the eigenvalues of B.
The Z-eigenvalues −λi, 1 ≤ i ≤ n, repeats k − 1 times, of
a k-half graph are non-main Z-eigenvalues.

Proof: From Theorem 2.7, we know that the eigenvalue
−λi, 1 ≤ i ≤ n, with multiplicity k− 1 are the eigenvalues
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of a k-half graph with the corresponding eigenvectors

Yi

−Yi

0
0
...
0


,



Yi

0
−Yi

0
...
0


, . . . ,



Yi

0
0
0
...

−Yi


.

All these vectors are orthogonal to J . Hence each −λi, 1 ≤
i ≤ n is a non-main Z-eigenvalue.

Theorem 4.2: Let G be a k-half graph and let
λ1, λ2, . . . , λn, be the eigenvalues of B. If any λi, 1 ≤ i ≤ n
is a non-main (main) Z-eigenvalue of B, then (k−1)λi, the
Z-eigenvalue of G is also non-main (main) Z-eigenvalue.

Proof: From Theorem 2.7, we know that (k− 1)λi is a
Z-eigenvalue of G with multiplicity 1 and the corresponding
eigenvector is given by

Xi =


Yi

Yi

Yi

...
Yi

 .

If λi is non-main (main), we have YiJ = 0, (YiJ ̸= 0). Thus,
XiJ = 0, (XiJ ̸= 0).Hence the eigenvalue (k− 1)λi is also
non-main (main).
From Theorems 4.1 and 4.2, for a k-half graph on kn
vertices, at least kn − n Zagreb-eigenvalues are non-main
and at most n Zagreb-eigenvalues are main. So, when n = 2
i.e., a k-half graph on 2k vertices contains at most 2 main
Z-eigenvalues. In the next theorem we show that when G
is a k-half graph on 2k vertices it has exactly 2 main Z-
eigenvalues.

Theorem 4.3: Let G be a k-half graph with 2k vertices.
Then, (k − 1)2(2 ±

√
13) are the main Z-eigenvalues and

(1− k)(2±
√
13) each with multiplicity k − 1 are the non-

main Z-eigenvalues of G.
Proof: From Theorem 2.7, we have

Spec(G) =

(
−λ1 −λ2 (k − 1)λ1 (k − 1)λ2

k − 1 k − 1 1 1

)
,

where λ1 = (k − 1)(2 +
√
13), λ2 = (k − 1)(2 −

√
13) are

the Z-eigenvalues of

B =

(
4(k − 1) 3(k − 1)
3(k − 1) 0

)
.

From Theorem 4.1, −λ1 = (1 − k)(2 +
√
13) and −λ2 =

(1−k)(2−
√
13) with multiplicity k−1 are the non-main Z-

eigenvalues of G. It follows from Theorem 4.2, that (k−1)λ1

and (k− 1)λ2 are the main Z- eigenvalues of G if and only
if λ1 = (k − 1)(2 +

√
13) and λ2 = (k − 1)(2 −

√
13) are

the main Z-eigenvalues of B.
It is easy to show that the eigenvectors corresponding to the
Z-eigenvalues λ1, λ2 of B are given by

X1 =

(
l
3l√
13+2

)
and X2 =

(
l
3l

2−
√
13

)
where l ̸= 0. As XT

1 J ̸= 0 and XT
2 J ̸= 0, the eigenvalues

(k−1)(2+
√
13), (k−1)(2−

√
13) are the main Z-eigenvalues

of the matrix B. Hence, the main Z-eigenvalues of G are
(k − 1)2(2±

√
13).

V. CONCLUSION

The determinant, Z-eigenvalues and inverse of a k-half
graph with respect to the Z-matrix is obtained along with a
few Zagreb energy and spectral radius bounds. The main and
non-main eigenvalues of a k-half graph with respect to the
Z-matrix are also discussed. One can try to obtain spectral
properties of a k-half graph with respect to its adjacency
matrix and second Zagreb matrix.
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