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Energy and Spectra of Zagreb Matrix of k-half
Graph

K ARATHI BHAT* and SHASHWATH S SHETTY

Abstract—A chain graph is a bipartite graph in which the
neighborhood of the vertices in each partite set forms a chain
with respect to set inclusion. By extending the concept of nesting
from a bipartite graph to a k partite graph, a k-nested graph
is defined. A half graph is a chain graph having no pairs of
duplicate vertices. Similarly, a ’k-half graph’ is a class of k-
nested graph with no pairs of duplicate vertices. The (first)
Zagreb matrix or Z-matrix denoted by Z(G) = (zi;j)nxn of a
graph G, whose vertex v; has degree d; is defined by z;; =
d; + d; if the vertices v; and v; are adjacent and z;; = 0
otherwise. Let (1, (2, ..., (, be the Zagreb eigenvalues of Z(G)
and the Zagreb energy is the sum of the absolute values of the
Zagreb eigenvalues. We obtain the determinant, eigenvalues and
inverse of a k-half graph with respect to the Z-matrix. Bounds
for the Zagreb energy and spectral radius are discussed along
with the main and non-main Zagreb eigenvalues of a k-half
graph.

Index Terms—Chain graphs, k-partite graphs, half graphs,
main eigenvalues, Kronecker product.

I. INTRODUCTION

Raphs considered in this paper are simple, finite,
Gundirected and connected with vertex set V = V(G)
and edge set £ = E(G). A k-partite graph is a graph whose
vertex set can be partitioned into %k independent sets and all
the edges of the graph are between the partite sets. We denote
a k-partite graph with the k-partition of V' = ViUVLU. . .UV}
by G(Uf:1 Vi, E). If G contains every edge joining the
vertices of V; and Vj;,i # j, then it is complete k-partite
graph. A complete k-partite graph with |V;| =p;, 1 <i <k
is denoted by K, p,.....p,- We write u ~ v if the vertices u
and v are adjacent in G and u ~ v if they are not adjacent in
G. The open neighborhood of a vertex « in G is denoted by
N (u) and is given by N(u) = {v € V(G)| uwv € E(G)} and
the closed neighborhood of u in G is denoted by N[u] and
is defined as N[u] = {u} U N(u). Two vertices v and v in
a graph G are duplicate vertices if N(u) = N(v). A vertex
v eV; (1 <i<k)in a k-partite graph G(Uf:1 Vi, E) is
said to be a dominating vertex if N(v) = U;”:l Vi, j#4. In
other words v is of full degree with respect to other partite
set. Readers are referred to [4], [[16]] for all the elementary
notations and definitions not described but used in this paper.
A collection S = {S1,Ss,- -+ ,S,} of sets is said to form a
chain with respect to set inclusion, if for every S5;,5; € §
either S; C S or §; C 5.
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Definition 1.1: A bipartite chain graph (or simply a chain
graph) is a bipartite graph in which the neighborhood of the
vertices in each partite set forms a chain with respect to set
inclusion.

Definition 1.2: A graph is a threshold graph if it can be
constructed from the empty graph by repeatedly adding either
an isolated vertex or a dominating vertex.

Motivated by the nesting property of the extremal graphs
(chain and threshold graphs), recently a partial chain graph
[10] and a partial threshold graph [[11]] is defined. Spectral
properties of partial chain graphs and partial threshold graphs
are discussed in the article [[11]. Extending the concept of
nesting from bipartite graph to a k partite graph, the authors
of the article [12]] defined a k-nested graph as follows.

Definition 1.3: [12]] A k-nested graph (KNGQG) is a k-
partite graph in which the neighborhood of the vertices in
each partite set forms a chain with respect to set inclusion
and each partite set have at least one dominating vertex i.e.,
a vertex adjacent to all the vertices of the other partite sets.

In other words for every two vertices u and v in the same

partite set and for their neighborhoods N (u) and N (v), either
N(u) € N(v) or N(v) C N(u). Due to the existence of at
least one dominating vertex in each partite set, a k-nested
graph is always connected.
A chain graph is a 2-nested graph which is also known as
double nested graph (DNG in short). Given a chain graph
G(V1 UV, E), each of V; (i = 1,2) can be partitioned into
h non-empty cells Vi1, Vig, ..., Vi and Voy, Voo, ... Vop
such that N(u) = Vo1 U ... UV, 41, for any u € Vi,
1 < ¢ < h If my = ‘Vlil and n; = H/Qil, then
we write G = DNG(my, ma, ..., mp; N1, N2, ..., np). In a
KNG, each partite set V;, 1 < ¢ < k can be further
partitioned into h; non-empty sets Vii, Via,..., Vip, such
that for any two vertices say w,v in V;;,1 < j < h;y,
N(u) = N(v). Suppose |V;;| = m,;, then we write G =
KNG(mH,mlz, ey MR 3 M21,1M22, - ooy T2,y -+« 3 TET,
M2, .- -, M, )- The authors [[12]] noted that the graph G =
KNG(mH, M2y ey M1k, 21,122, ooy TN2RG 5 - -
..., Mgp,) does not represent a single graph, but a family
of graphs Gy with the nesting property.

Note that KNG(1;1;...;1) on n vertices is K, and
KNG(p1ip2;---ipk) 18 Kp, po,.py-

Example 1.1: The graphs GG and G (Figure [1) are the

4-nested graphs with 12 vertices in the family Gy =
KNG(1,2,2;1,2;1,1,1;1).
The graph G has 32 edges where as the graph G2 has 36
edges. The vertices a € Vi, f € Vo0 € V3,1 € Vy are
the 4 dominating vertices of the graphs G; and G,. The
vertices a, b, ¢, d, e € V1. But, as Ng(b) = Ng(c), b, c € Via.
Similarly d, e € Vi3 as Ng(d) = Ng(e). Hence, V; = V31 U
Vig U Vis. Similarly, Vo = Vo1 U Vag, Vi = V31 U Vay U Vas
and V4 = V41. SO, ‘V11| = 1, ‘V12| = |‘/13| = 2.

-3 ME1,
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The graph G,

Fig. 1. The graph G1,G2 € Gy = KNG(1,2,2;1,2;1,1,1;1)

A half graph is a chain graph without any duplicate
vertices. Analogous to half graph the authors of the article
[12] defined a k-half graph. We redefine a k-half graph as
follows.

Definition 1.4: A k-half graph on kn vertices with k >
k
2 is a k-nested graph G(|J Vi, E) with |V;| = n and the
i=1
vertices in each partite set V; are further partitioned into n
non empty cells, i.e., V; = V;3; U Vs U--- UV, in such a
way that, for any vertex v € Vj,,, N(u) =V; UVjoU--- U
Vin-rt1,1<j#i<kand Viandr.
In a half graph (2-half graph) on 2n vertices the degrees

of n vertices in any partite set are n,n —1,..., 1. Similarly,
in a k- half graph on kn vertices the degrees of n vertices
in any partite set are (k — 1)n, (k—1)(n —1),...,(k—1).

1
A k-half graph on kn vertices has (%) n(n;—))

edges. Figure represents a 4-half graph G =
KNG(1,1,1;1,1,1;1,1,1;1,1,1) having 12 vertices and
36 edges.

Fig. 2. 4-Half Graph

Here |V;| = 3,1 < i < 4 and v;1,1 < i < k is the
dominating vertex of the set V;. Observe that
N(vii) = {va1,v22,v23, V31,032,033, Va1, Va2, V43} and
N(v13) € N(v12) € N(v11). Note that degrees of the three
vertices in any partite set are 9,6,3 respectively.

The degree based topological indices have been consid-
ered only for simple graphs and very recently for graphs
with self-loops [14] and for hypergraphs [15]. With T'I we
denote a topological index that can be represented as 1T =
TI(G) = Zviwj F(d;,d;), where F' is an appropriately
chosen function with the property F(z,y) = F(y,z). A
general extended adjacency matrix A = (a;;) of G is defined
as a;; = F'(d;, d;) if the vertices v; and v; are adjacent, and
a;; = 0 otherwise. The first extended adjacency matrix cor-
responding to a degree based topological index defined was
the randi “c matrix [3], and the energy of the corresponding
matrix was defined in a similar way and termed as the randi "c
energy. Some of the most comprehensively studied degree-
based topological indices are the Zagreb indices.

The first Zagreb index, M;(G) of a graph G is defined as
the sum of the squares of the degrees over all the vertices
of the graph. If F(di, d]) =d; + dj, ie., T1 =M, (G) (the
first Zagreb index), we get the (first) Zagreb matrix [8]].

The (first) Zagreb matrix (Z-matrix) of a graph G is a
square matrix Z(G) = (2;j)nxn Of order n, defined as

d; + dj, if ViV; € E(G)
Zii —
’ 0, otherwise.

The eigenvalues of Z(G), labeled as (3, (s, . . ., (,, are known
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as the Zagreb eigenvalues or Z —eigenvalues of G and their
collection is called the Zagreb spectrum or Z-spectrum of G.
The Zagreb energy of a graph G is denoted by ZE(G) and
is defined as

ZE(G) =Y (6.
i=1

Few bounds on Zagreb energy and the spectral radius of the
(first) Zagreb matrix of the graph G is obtained in [5].

In this article we obtain spectral properties of a k-half
graph with respect to its Z-matrix.

The rest of the paper is organized as follows; Section
deals with the determinant, eigenvalues and inverse of a k-
half graph with respect to the Z-matrix. Bounds on Zagreb
energy and spectral radius of a half graph are discussed in
Section [[II] and Section [[V]ldeals with the main and non-main
eigenvalues of a k-half graph.

II. DETERMINANT, EIGENVALUES AND INVERSE

In this section we obtain the determinant, eigenvalues and
the inverse of a k-half graph with respect to Z-matrix.
The Kronecker product of a matrix A = (a;;)pxq and Byx,
is defined as

allB
A®B =

(IplB

aqu

apeB
The following basic properties about the Kronecker product
are used to obtain determinant, eigenvalues and inverse of a
k-half graph with respect to Z-Matrix.

Theorem 2.1: [7] Let A be a square matrix of order m
and let B be a square matrix of order n. Then

det(A® B) = det(B ® A) = det(A)"det(B)™

Theorem 2.2: [7] Let A be a square matrix of order m
with spectrum o(A) = (i;), 1 <i < m and B be a square
matrix of order n with o(B) = (};), 1 < j <n. Then
0(A® B) = (kiAj),1 <i<m, 1<j<n.

Furthermore, if x; and y; are the eigenvectors corresponding
to the eigenvalue y; and A; in A and B respectively then
2; ® y; is an eigenvector corresponding to the eigenvalue
Mi)\j in A ® B.

Theorem 2.3:

singular then,

[71 If A € M,, and B € M, are non

(Ao By '=A"1® B

By using Theorem [2.1] and Lemma [2.4] one can obtain the
determinant of a k-half graph with respect to Z-matrix.
Lemma 2.4: Let B be a matrix of order n given by

2n(k —1) 2n—-1)(k—-1) (n+1)(k-1)
2n—-1)k—-1) (2n—-2)(k—-1) 0
: - 0
(n+2)(k-1) nm+1)(k-1) 0 0
(n+1)(k—-1) 0 . 0
Then,

if n is of the form 4r
or 4r + 1,where r >0
otherwise.

((n+1)(k=1)",

—((n+1)(k—1)",

Theorem 2.5: Let G be a k-half graph on kn vertices.
Then, det(Z(Q))

[(k—1)**'(n +1)*]*,  if k and n both are even
or if k£ is odd and n = 4r
or dr+1, r>0

—[(k — 1)k (n 4+ 1)*]", otherwise.

Proof: The Zagreb matrix of G can be written as block
matrix as follows;

0, B, B, B,
B, 0, B, B,
ZG@) =1 . On |
B, B, 0, B,
B, B, B, 0,
where B,, =
2n(k —1) (2n—-1)(k—-1) (n+1)(k—-1)

Cn—-1)k—-1) (2n—-2)(k—-1) 0
: . 0
n+2)(k—1) m+1(k-1) 0 0
(n+1)(k—-1) 0 0

and 0,, is a zero matrix of order n.

The Z-matrix of the k-half graph, is a Kronecker product
of the adjacency matrix of the complete graph of order k£ and
the matrix B. The proof directly follows from Theorem

|

The following corollary follows from Theorem

Corollary 2.6: Let G be a half graph on 2n vertices. Then,

(n+1)?", ifnis even

det(Z(Q)) = {_(n e

otherwise.

Theorem 2.7: Let the matrix B of order n be given by

on(k — 1) (2n —1)(k —1) (n+1)(k—1)
2n—1)(k—1) (2n—2)(k—1) 0
: 0
n+2)(k—1) (n+1)(k—-1) 0
(n+1)(k—1) 0 0

Let \;,1 < ¢ < n be the eigenvalues of B with the
corresponding eigenvectors Y;, 1 < i < n. Suppose G is a
k-half graph on kn vertices, then the Z-spectrum of G is
given by

Spec(Z(G)) =
A=A “An (B—D)N (k= 1A,
(k—l k-1 k—1 1 1 )
Yi
Yi
Yi

with the eigenvector X; = corresponding to the Z-
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eigenvalue (k — 1)\;,1 <4 <mn, and

Y; Y; Y;

-Y; 0 0

0 -Y; 0

X; = 0 1o v |0
L 0] L0 ] | —Yi ]

corresponding to the Z-eigenvalue —)\; of Z(G) whose
multiplicity is k — 1.

Proof: The proof follows from Theorem by observ-
ing the eigenvalues and eigenvectors of the adjacency matrix
of the complete graph of order k. ]

Corollary 2.8: If G is a half graph on 2n vertices, then
+X;,1 < i < n are the Z-eigenvalues of GG, where \;,1 <
1 < n are the eigenvalues of B as defined in Lemma @

Theorem 2.9: Let G be a k-half graph on kn vertices.
Then,

611D ClkD
-1 . . .
(2(G)"=CeD=| : : SR
Cle CkkD
2=k _1_ 1
k—1 k-1 k—1
1 2=k 1
k—1 k—1 k—1
where C' = . . .
1 2k
k—1 —14 kxk
and
- 1 -
O 0 (n+1)(k—1)
O 1 —(n+2)
(n+1)(k—1) (n+1)2(k—1)
0 —(n+2) 1
n+D2(h—1)  (nrD3(k—1)
D = : n
0 (n+1)%(k—1)
i — (n + 2) n "‘7 3
L(n+1)(k—1) (n+1)2(k—1) (n+1)"(k=1)d |« n

Proof: The Z-matrix of the k-half graph, is a Kronecker
product of the adjacency matrix of the complete graph of
order k£ and the matrix B of order n. From Theorem [2.9]
the inverse of Z(G) is the Kronecker product of inverse of
A(K}) which is given by the matrix C' and inverse of the
matrix B which is given by the matrix D. [ |
The following corollary follows from Theorem |2.9

Corollary 2.10: Let G be a half graph on 2n vertices.
Then,

_ 0 1 -
(n+1)
1 —(n+2)
(n+1) (n+1)2
—(n+2) 1
(n+1)*  (n+1)3)
where D = .
0 . n
(n+1)*
L —(n42) I
Nesy R cryE S =yl P

III. BOUNDS

Few bounds on Zagreb energy and spectral radius of a
k-half graph are discussed in this section.

Let a = {a1,a9,...,a,} be a set of positive real
numbers. We define P to be the average of products of
k-element subsets of a, i.e.,

P1:%(O,1+a2+...+an)
Py, = %(alag—|—a1a3—|—...—|—a1an—|—a2a3+...—|—
Qp—10n

P, =aias...ay,.
Hence the arithmetic mean is P; whereas the geometric

1
mean is P, . The following result is known as the Maclaurin
symmetric mean inequality:

Lemmla 3.1: ) [2] For posigive real numbers a1, as, . ..
PL>P >P7 >...>Pp.
Equalities hold if and only if a1 = a2 = ... = ay,.
We give a lower bound for ZE(G) of a half graph G using
the below lemma.

’an’

Lemma 3.2: Let G be a k-half graph on kn vertices. Then,

k(k—1)3n(n+ 1)(11n° + 11n + 2)

THZ(G)?) = -

Proof:

S

Tr(Z(G)*) = k(k —1)

7

i(2(k = D)n — (k= 1)(i — 1))?

i(2n 4+ 1 —i)?

Msl

=k(k—1)3

.
Il

n

=k(k—1)*{@n+1)>> i+

=1
n n
S it —20n+1)) %)
=1 =1
k(k—1)3n(n+1)(11n? + 11n + 2)

12
|
Theorem 3.3: Let G be a half graph on 2n vertices. Then

23n? + 11n — 1 1
ZE(G)E\/( 3n? + n3 0)n(n+1)
with equality if and only if G = K ;.
Proof: Note that Z(G) = {2," [3‘"} where
2n 2n—1 n+2 n+1
2n—1 2n—2 n+1 0
En = : . 0
n+2 n+1 0 0
n+1 0 0 0

and 0,, is the zero matrix of order n.

Let (1,2, ..., (o, be the first Zagreb eigenvalues of Z(G).
Since G is bipartite, ZE(G) = 2., (;, where (; are the
positive eigenvalues of Z(G).

From Lemma [3.2] we have,

S = Tr(Z(6))?
Thus,

n(n+1)(11n? + 11n + 2)
G .

n

Z 2= n(n+1)(11n? + 11n + 2)
C 12 ‘

i=1
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It is well known that

2n
[1¢ =det(z(@)) =
=1

(=D)™(n+1)*"
Hence,

HCif (n+1)"

By Lemma [3.1] we obtain

n(n 5o, GGz

2 1<i<j<n

Hz),

i=1

with equality holding if and only if (; = (o = ... = (.
‘We have,

O o6 242 +2 ) GG

i=1 1<i<j<n
Hence,

) =2 Z<2+2 > G

1<i<j<n
2 1102 + 11n + 2
zgwn ) ?2+ "2 s 1)
- \/(23112 +11n — 10)n(n+1)
puiy 3 .
Equality holds if n =1, i.e,, G = Ky 1. [ |

Theorem 3.4: Let G be a k-half graph on kn vertices.
Then

ZE(G) > (k — 1)2\/(
with equality if and only if G = K ;.

23n2 + 11n — 10)n(n + 1)
3

Proof: From Theorem

=)D N+ (k=D)AL
i=1 i=1

where \; are the eigenvalues of the matrix B. Hence,

k=1 Al
i=1

We note that [, [\;| = (k —1)"(n+ 1)"
and

S = - 17

ZE(G) = (k

ZE(G) =2

n(n+1)(11n? 4+ 11n + 2))
12 '

Applying the arithmetic—geometric mean inequality, we
get
2 > il e =[x
1<i<j<n i=1

=n(n—1)(k—1)>2(n+1)%

Now,
ZE(G)=2(k—1))_ |\
=1
n 2
=2(k—1) (Z |)\i|>
=1
=2(k—1) Z\A 2+2 > Nl
1<i<j<n
>2(k = 1), [ Y NP2 +nn—1)(k—1)%(n+1)2.
1=1
Substituting ) )
S A = (k—1)*n(n+ 1)1(21171 +11n+2) and sim-
plifying we get
23n2 +11n — 1 1
ZE(G) > (k_l)Q\/( 3n? + n3 0)n(n + )

Using Lemma [3.5] we give another lower bound in terms of

determinant of the Z-matrix.
Lemma 3.5: [3]] Let G be a graph with n vertices. Then

ZE(G) > ny/|detZ(G)|.
Theorem 3.6: Let G be a k-half graph on kn vertices.

Then,

ZE(G) > kn(n+ 1) (k- 1)VE -1
with equality if and only if G = K ;.
Proof: From Lemma @] we have,

G) > N\/|detZ(G)],

where N is order of the graph G. Therefore,
ZE(G) > kny/|detZ (G)|
= krt/ (n + DF(k — 1)i1)n
= kn’“{/(n + 1)kn(k — 1)(k+Dn
=kn(n+1)(k— 1)k — 1.

The following theorem gives the relation between energy of
a k-half graph G with respect to the adjacency matrix and
the Zagreb matrix.

Theorem 3.7: Let G be a k-half on kn vertices. Let E(G)
denote the energy of G with respect to its adjacency matrix
A(G). Then,

ZE(G) < k(n — 1)E(G),

with equality only if n = 1, i.e.,, G is a complete graph on
k vertices.

Proof: We have, ZE(G) < A(G)E(G) and the equality
if and only if G is a regular graph, where A(G) is the
maximum degree of the graph G. Hence, the proof follows
directly. ]
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Lemma 3.8: [9]] Let G be a graph on n vertices, then

ZE(G)éznj | > (di+dj)?

Theorem 3.9: Let G be a k-half on kn vertices. Then

ZE(G) < k(k —1) 3 (k—1) i(Qn — )2
=0 i=j

Proof: For every dominating vertex v; of the k-half
graph G' we have,

Y (ditdj)* = (k=1)[2n(k = 1)+ + ((n+1)(k — 1))

’Ui’UjGE
n—1
=(k—1°> (2n—1i).
i=0

Also, for every vertex v; of degree (n —1)(k — 1) of G,

(2n —4)2.

n

> (di+dy)?=(k-1)°

ViV ) 7

I
—

Similarly, for every vertex v; of degree (n —i+ 1)(k — 1)
in G, we have

n—1
S (dj+dn)? = (k-1 (2n—i)?
vjv,ER =7
Now by using Lemma [3.8]
ZE(G) <k,|(k—1)3 ni:(Qn —1)?
i=0
+ k| (B—1)3 ¥ (2n —14)?
+ kv (k—1)3(n+1)2
=k(k—1)) | > @n—i)2(k—1)
j=0 \ i=j

|
Theorem 3.10: [5] Let G be a graph with n vertices.

Then,
Tr(Z(G)?) < ZE(G) < /nTr(Z(G)?).
Theorem 3.11: Let G be a k-half on kn vertices. Then
k—1 nk(k —1)
—5—VnkA < ZE(G) < #\/Z,

— 2
where A = (k—1D(n+1)(11n* 4 11n + 2).

Proof: Proof follows fr%m Theorem [3.10] and Lemma

B2l |

Theorem 3.12: Let G be a k-half graph on kn vertices
and (1 (G) be the spectral radius of G. Then,

(n—i+1)(k—1)33n—i+2)

&
I

G) >
(@) 2kn
Proof: If (1(G) denote the spectral radius of G then we

have

27Z(G)x - JTZ(G)J
- JTJ )
where J is an all one column vector of appropriate size.

JTZ(G) = (k- 1)e; = (k — 1)%s;,

Cl (G) - Sl;p xTx

where s; and c¢; respectively denote the i*" column sum of
the matrix B and Z(G) and also

_ (k=1
S; = B

i(n—i+1)(3n—i+2).

Lemma 3.13: [13]] Let G be a connected graph of order
n, maximum degree A and Z-spectral radius ;. If M;(G)
denotes the first Zagreb index of the graph G, then

Mi(G)+ > day
ueV
n

S Cl S 2A27

where dy ,, is is the sum of degrees of all the vertices which
are adjacent to v in G. Equality holds in both if and only if
G is regular.

Theorem 3.14: Let G be a k-half graph on kn vertices
and (1 (G) be the spectral radius of G. Then,

G(G) < 2n?(k —1)2.

Equality in the above bound holds if and only if G is a
complete k-partite graph.

Proof: The upper bound directly follows from Lemma
3.13] by noting that the maximum degree in a k-half graph
on kn vertices is n(k — 1). [ |

IV. MAIN / NON-MAIN EIGENVALUES

An eigenvalue p € Spec(A(G)) is main if the cor-
responding eigenspace E(u;G) is not orthogonal to all-1
vector J; otherwise, it is non-main. The graph with only one
main eigenvalue is necessarily regular. In threshold graph all
eigenvalues except 0 and —1 are main. But there exist some
chain graphs with all eigenvalues being main and also with
all eigenvalues being non-main except 0. In [1f], the authors
characterize the chain graphs with 2 main eigenvalues. One
can refer to [[6] for few interesting results on main and non
main eigenvalues.

Similarly, an eigenvalue p € Spec(Z(G)) is main if the
corresponding eigenspace E(u; G) is not orthogonal to all-
1 vector J; otherwise, it is non-main. In this section we
obtain main and non-main eigenvalues of a k-half graph with
respect to Z(G). First, we show that in a k-half graph on kn
vertices, there is at least kn — n non-main Z-eigenvalues.

Theorem 4.1: Let A1, g, ..., Ay, be the eigenvalues of B.
The Z-eigenvalues —)\;, 1 <14 < n, repeats kK — 1 times, of
a k-half graph are non-main Z-eigenvalues.

Proof: From Theorem we know that the eigenvalue
—Xi, 1 <4 < n, with multiplicity £ — 1 are the eigenvalues
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of a k-half graph with the corresponding eigenvectors

Y; Y; Y;
-Y; 0 0

0 -Y; 0

O [s] 0 |- | 0
L 0] [ 0] | —Y; ]

All these vectors are orthogonal to J. Hence each —\;,1 <
1 < n is a non-main Z-eigenvalue. [ |
Theorem 4.2: Let G be a k-half graph and let
A1, A2, ..., A, be the eigenvalues of B. If any \;, 1 <i<mn
is a non-main (main) Z-eigenvalue of B, then (k— 1)\, the
Z-eigenvalue of GG is also non-main (main) Z-eigenvalue.
Proof: From Theorem we know that (k—1))\; is a
Z-eigenvalue of G with multiplicity 1 and the corresponding
eigenvector is given by

Yi

If \; is non-main (main), we have Y;J = 0, (Y;J # 0). Thus,
X;J =0, (X;J # 0).Hence the eigenvalue (k — 1)}, is also
non-main (main). [ |
From Theorems and for a k-half graph on kn
vertices, at least kn — n Zagreb-eigenvalues are non-main
and at most n Zagreb-eigenvalues are main. So, when n = 2
i.e., a k-half graph on 2k vertices contains at most 2 main
Z-eigenvalues. In the next theorem we show that when G
is a k-half graph on 2k vertices it has exactly 2 main Z-
eigenvalues.

Theorem 4.3: Let G be a k-half graph with 2k vertices.
Then, (k — 1)2(2 £ /13) are the main Z-eigenvalues and
(1 — k)(2 4 v/13) each with multiplicity k — 1 are the non-
main Z-eigenvalues of G.

Proof: From Theorem we have

A e (k—DA (k1A
Spec(G):(k—l1 Eo1 ( 1)1 ( 1)2 )

where \; = (k — 1)(2 4+ v13), Ay = (k — 1)(2 — V/13) are
the Z-eigenvalues of

3(k—1)
3(k—1) 0 )

From Theorem “M = (1—-k)(2+V13) and )y =
(1—k)(2—+/13) with multiplicity k£ — 1 are the non-main Z-
eigenvalues of G. It follows from Theorem 4.2] that (k—1) A
and (k — 1))z are the main Z- eigenvalues of G if and only
if \y = (k—1)(2++13) and Ay = (k — 1)(2 — V/13) are
the main Z-eigenvalues of B.

It is easy to show that the eigenvectors corresponding to the
Z-eigenvalues A1, Ay of B are given by

l l
X1=( 31 )andXQ:( 31 >
V1342 2—/13

where | # 0. As X{J # 0 and XZ'J # 0, the eigenvalues
(k—1)(2++/13), (k—1)(2—+/13) are the main Z-eigenvalues

of the matrix B. Hence, the main Z-eigenvalues of G are
(k—1)%(2 £+/13). |

V. CONCLUSION

The determinant, Z-eigenvalues and inverse of a k-half
graph with respect to the Z-matrix is obtained along with a
few Zagreb energy and spectral radius bounds. The main and
non-main eigenvalues of a k-half graph with respect to the
Z-matrix are also discussed. One can try to obtain spectral
properties of a k-half graph with respect to its adjacency
matrix and second Zagreb matrix.
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