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Abstract—A finite-time prescribed performance output-
feedback adaptive control method based on event triggering
is proposed for uncertain nonlinear systems with unmodeled
dynamics. Firstly, dynamic signals are introduced to handle
uncertain dynamic disturbances in the system, and a novel
finite-time performance function is used to constrain tracking
errors. In order to estimate unmeasurable states, a state
observer is designed. In addition, fuzzy logic systems are
introduced to approach unknown nonlinear functions in the
system, greatly reducing computational complexity. Then, the
event-triggered scheme is improved, which can switch between
fixed threshold strategy and relative threshold strategy. On this
basis, a fuzzy adaptive event-triggered controller is designed,
which can guarantee that all signals of the control system are
semi-globally consistent and ultimately bounded, without Zeno
behavior occurring. Finally, the effectiveness of the proposed
method was proven and validated.

Index Terms—nonlinear systems, prescribed performance
control (PPC), event-triggered, unmodeled dynamics, fuzzy
logic system (FLS).

I. INTRODUCTION

RECENTLY, the research on nonlinear system control
has received increasing attention from scholars. Due to

the fact that almost all practical control systems are nonlinear
systems, such as aerospace, ships and vehicles, biochemistry,
and other fields, the study of nonlinear systems is of great
significance. Adaptive control, as an important method for
nonlinear system control, is often combined with neural
networks (NNs) or FLS to design controllers. In [1], [2], NNs
or FLS adaptive control approaches have been proposed for
time-delay nonlinear systems. For stochastic systems, FLS or
NNs adaptive controllers were designed in [3], [4], [5], [6],
[7]. In [8], [9], the adaptive control of the non-strict feedback
systems, switching systems, and interconnected systems have
also been studied respectively.

Another issue that cannot be ignored is that there are
always unmodeled dynamics in actual control systems, such
as ignored high-order differential terms, sensors, etc. These
unmodeled dynamics can seriously affect the performance
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of the control system. Therefore, how to handle unmodeled
dynamics is a worthwhile issue to consider. In [10], con-
sidering the unmodeled dynamics, dynamic signal was first
introduced to deal with dynamic disturbances. In [11], the
small gain theorem was used to prove that control systems
are input-to-state stable (ISS). Based on [10], prescribed per-
formance control scheme for time-delay nonlinear switched
systems was proposed in [12], [13]. A decentralized control
mechanism for a class of interconnected nonlinear systems
was presented in [14]. Literature [15] proposed an output-
feedback control algorithm for uncertain systems, which
estimated the immeasurable states by using state observer. In
addition, some system state variables cannot be fully mea-
sured, so it is also necessary to design state observer. In [16],
an output-feedback tracking control method was proposed
for switched stochastic pure-feedback systems, with this
as a basis, literature [17] designed prescribed performance
constraint. In [18], a prescribed performance output-feedback
control algorithm was presented for switched nonlinear sys-
tems with nonstrict-feedback, and addressed the problem of
"differential explosion".

In order to improve the performance of the control system,
the prescribed performance was first proposed by Greek
scholars in [19]. Since then, the PPC has been researched
by a large number of scholars. In [20], a fully prescribed
performance constraint scheme was proposed to constrain
all errors in the control system within a bounded range. In
[21], Zhao et al. proposed a prescribed performance adaptive
control scheme for nonlinear systems with unknown initial
conditions. However, the traditional PPC cannot satisfy the
control requirements of some systems. Therefore, to further
improve control accuracy, Liu et al. first presented the finite-
time performance function (FTPF) in [22], where the tracking
error can be converged to a bounded range within the settling
time. In [23], an improved FTPF has been designed, which
consists of multiple piecewise functions and allows for faster
convergence of tracking errors. Literature [24] applied a
tangent form of error transform, and combined the finite-time
prescribed performance and command filtering to design the
controller. In addition, some PPC methods have been applied
to discrete-time systems [25], multi-input and multi-output
(MIMO) nonlinear systems [26], practical control systems
(such as robotic manipulator [27], quadrotor UAV [28]), etc.

With the increasing complexity of networked control sys-
tems, a large amount of data transmission often leads to prob-
lems such as network congestion, transmission delay, and
data loss. In order to overcome the system communication
overload caused by time-triggered, event-triggered scheme
was proposed in [29]. Different from time-triggered, event-
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triggered is determined by predetermined event-triggered
conditions rather than time. If the triggering condition can
not be satisfied, the signal will remain unchanged. Therefore,
communication resources can be greatly economized by
event-triggered method. In the past decade, event-triggered
control (ETC) has been researched by a large of scholars,
e.g. [30], [31]. So far, there have been many event-triggered
methods, e.g. fixed threshold strategy, relative threshold
strategy, etc. In [32], [33], event-triggered controllers with
fixed threshold strategy were designed. In [34], [35], [36],
the relative threshold strategy was applied to design con-
trollers. To overcome the shortcomings of fixed and relative
thresholds, the switched threshold scheme was proposed in
[37], and the condition of ISS was not required. The dynamic
event-triggered method was first developed in [38]. In [39],
static and dynamic event-triggered controllers have been
designed to ensure that the control system can be adjusted
more accurately. After the static event-triggered transition,
an additional term can be added to the adaptive law. In [40],
the intermittent event-triggered control scheme for system
states was first proposed, the triggered state was replaced
with continuous state, then the controller was designed. The
relative threshold strategy is flexible and has been adopted by
many literatures. Although the relative threshold strategy can
adjust the threshold of the trigger according to the magnitude
of the control signal, the measurement error of the control
signal is necessarily very large when the magnitude of the
control signal is too large. In this case, whenever the trigger
controller works, the control signal will change abruptly,
causing a large impulse to the system, it has a significant
effect on the tracking control.

Inspired by the above literatures, an improved finite-
time prescribed performance fuzzy adaptive output-feedback
event-triggered control scheme is proposed for nonlinear
systems containing unmodeled dynamics. Compared with
existing results, the main contributions of this article are as
follows:

(1) To deal with dynamic disturbances, a dynamic signal is
introduced, the unknown continuous nonlinear functions can
be approached by FLS, and the state observer is designed to
estimate immeasurable states.

(2) Different from literatures [22], [23], [24], the novel
finite-time performance function is designed to accelerate the
convergence of tracking error to a bounded range, and the
performance of the system is further improved.

(3) An improved event-triggered scheme is proposed,
which can switch between relative threshold and fixed thresh-
old strategies compared to [34], [35], [36], thus preventing
system performance from being affected by excessive control
signals.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a strict-feedback nonlinear system containing
unmodeled dynamics as follows

ξ̇ = p(ξ, x, t)
ẋ1 = f1(x̄1) + x2 +∆1(x, ξ, t)
ẋi = fi(x̄i) + xi+1 +∆i(x, ξ, t)
ẋn = fn(x̄n) + u+∆n(x, ξ, t)
y = x1

(1)

where x̄i = [x1, x2, · · · , xi]
T ∈ Rl, (l = 1, 2, · · · , n) is the

system state; u ∈ R and y ∈ R denote the control input
and system output; ξ ∈ Ri0 is the unmodeled dynamics.
For i = 1, 2, · · · , n, fi (·) are unknown continuous nonlinear
functions, ∆i (·) represent the dynamic disturbances, ∆i (·)
and p (·) satisfy local Lipschitz condition.

Assumption 1 [1]: The desired signal yr is a known
smooth bounded function.

Assumption 2 [2]: For the dynamic disturbances
δi, (i = 1, 2, · · · , n), there exist unknown non-negative
smooth functions φi1 and φi2 satisfy

|∆i(x, ξ, t)| ≤ φi1 (|x̄i|) + φi1 (|ξ|) (2)

Assumption 3 [10]: The unmodeled dynamics ξ are expo-
nentially input-to-out practically stable (Exp-ISpS), consider
an Exp-ISpS Lyapunov function that satisfies

ν1 (|ξ|) ≤ V (ξ) ≤ ν2 (|ξ|) (3)

∂V (ξ)

∂ξ
(ξ) p(ξ, x) ≤ −c0V (ξ) + η (|x1|) + d0 (4)

where ν1, ν2, η are known K∞-functions, c0 and d0 are
non-negative constants.

Lemma 1 [10]: Consider the system (1), if there is a
Lyapunov function V satisfying Exp-ISpS, then, when 0 <
c̄0 < c0, any initial time t0 ≥ 0, any initial value ξ0 = ξ0 (0)
and r > 0, and function η̄(x1) ≥ η(|x1|), there exists a
finite T0(c̄, r0, ξ0) ≥ 0, the non-negative function D(t0, t)
for ∀t > t0 and a signal expressed as follows

ṙ = −c̄+ η̄ (|x1|) + d0, r(t0) = r0 (5)

such that D(t0, t) = 0 for all t ≥ T0 + t0 and

V [ξ(t)] ≤ r(t) +D(t0, t) (6)

for ∀t ≥ t0, the solutions are defined. Generally, η is a
smooth function and is selected as η (s) = s2η0

(
s2
)
. Then,

(5) can be rewritten as

ṙ = −c̄+ x2
1η0
(
x2
1

)
+ d0 (7)

where η0 is non-negative smooth function.
Lemma 2 [41]: Consider the set Ωz1 =

{z1||z1| < 0.8814ℓ} and ℓ > 0 is constant, when z1 /∈ Ωz1 ,
the inequality [1− 2tanh2(z1)] ≤ 0 holds.

Lemma 3 [37]: For any constant ℓ > 0 and κ̄ ∈ R, the
following inequalities hold:

0 ≤ κ̄− κ̄ tanh (κ̄/ℓ) ≤ ϑℓ, ϑ ≤ 0.2785 (8)

Lemma 4 [15]: If F (Z) is continuous function defined in
the compact set Ξ, for any postive constants δ, the following
inequality holds:

sup
z∈Ω

∣∣F (Z)−WTS(Z)
∣∣ ≤ δ (9)

where W = [W1,W2, · · · ,WN ]
T is the ideal constant

weight vector, S(Z) = [S1(z), S2(z), · · · , SN (z)]
T , N is

the number of fuzzy rules, for i = 1, 2, · · · , N , the basis
functions Si(Z) are selected as follows

Si(Z) =

n∏
l=1

µF i
l (Zl)

N∑
i=1

n∏
l=1

µF i
l (Zl)

(10)
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Then, the fuzzy logic system F (Z) can be rewritten as
follows:

F (Z) = WTS(Z) + δ (Z) , δ (Z) ≤ δ̄ (11)

where δ̄ is positive constant. And W can be defined as
follows

W := arg min
W∈RN

{
sup
z∈Ω

∣∣F (Z)−WTS(Z)
∣∣} (12)

III. CONTROLLER DESIGN

In order to proceed the subsequent controller design, define

θi =
{
∥Wi∥2 : i = 0, 1, · · · , n

}
(13)

where θi is unknown constant, the estimation error of θi is
expressed as θ̃i = θi − θ̂i.

A. State Observer Design

For the purpose of output-feedback, the state observer is
designed as follows

˙̂x1 =x̂2 + L1(y − x̂1)

˙̂xi =x̂i+1 + Li(y − x̂1)

...
˙̂xn =u+ Ln(y − x̂1)

(14)

where x̂i is the estimated value of xi; Li represents the gain
of the observer, and the matrix

A =

 −L1

... In−1

−Ln · · · 0

 (15)

is a strict Hurwitz matrix. Therefore, for given matrix Q =
QT > 0, there exists a matrix P = PT that holds

ATP + PA = −Q (16)

Define the error of the observer as ei = xi − x̄i, (i =
1, 2, · · · , n). Based on (1) and (14), it yields

ė1 =e2 − L1e1 + f1 (x̄1)

ė2 =e3 − L2e1 + f2 (x̄2)

...
ėn =− Lne1 + fn (x̄n)

(17)

Equations above can be written in the compact form

e = Ae+ F +∆ (18)

where e = [e1, e2, · · · , en]T ; ∆ = [∆1,∆2, · · · ,∆n]
T ; F =

[f1 (x̄1) , f2 (x̄2) , · · · , fn (x̄n)]
T .

Due to fi (x̄i) (i = 1, 2, · · · , n) is unknown nonlinear
functions, fi (x̄i) can be approximated by FLS WT

i0Si0(Z)
as follows

fi (x̄i) = WT
i0Si0(Z) + δi0 (Z) , |δi0 (Z)| ≤ δ̄i0 (19)

Hence, there has

F (Z0) = WT
0 S0(Z) + δ0 (Z) , |δ0 (Z)| ≤ δ̄0 (20)

where W0 = [W10, · · · ,Wn0], δ0 (Z) =
[δ10 (Z) , · · · , δn0 (Z)].

For the system (1), select Lyapunov function V0 as follows

V0 = eTPe (21)

Taking the time-derivative of V0 yields

V̇0 = eT (ATP + PA)e+ 2eTP (F +∆) (22)

By using the Young’s inequality and Assumption 2, we
can get

2eTPF ≤ ∥e∥2 + ∥P∥2W 2
0 + ∥P∥2δ20 (23)

2eTP∆ ≤2∥e∥2 + ∥P∥2
(

n∑
i=1

φi1 (|ξ|)

)2

+ ∥P∥2
(

n∑
i=1

φi2 (∥x∥)

)2
(24)

By combining (22)-(24), it can be concluded that

V̇0 ≤ − [λmin(Q)− 3] ∥e∥2 +B0 (25)

whereB0 = ∥P∥2W 2
0 + ∥P∥2

(
n∑

i=1

φi1 (|ξ|)
)2

+ ∥P∥2δ20 +

∥P∥2
(

n∑
i=1

φi2 (|x|)
)2

.

B. Prescribed Performance

The definition of error is as follows{
ζ = x1 − yr
zi = x̂i − αi−1

(26)

where αi(i = 1, 2, · · · , n) are the virtual control laws.
Design a finite-time performance function as follows

ρ (t) =

{ (
ρ0 − t

tp

)
e

(
lt

tp−t

)
+ ρ∞ 0 ≤ t < tp

ρ∞ t ≥ tp
(27)

where the initial of ρ(t) is ρ0 + ρ∞, and ρ0, ρ∞, tp are
positive constants and l is smooth continuous function.

The tangent error transformation is introduced as follows

z1 = tan

(
πζ

2ρ

)
(28)

Then, the derivation of z1 is

ż1 =h

(
f1 + x2 +∆1 − ẏr −

2

π
ρ̇ arctan z1

)
(29)

where h = π
(
1 + z21

)
/2ρ.

C. Virtual Controls Design

The design of the n-step backstepping controller is shown
below.

Step 1 : Select a Lyapunov function as follows

V1 = V0 +
1

2
z21 +

1

λ0
r +

1

2µ1
θ̃21 (30)

where λ0, µ1 are positive parameters.
The time-derivative of V1 is

V̇1 ≤− [λmin(Q)− 3] ∥e∥2 +B0 + z1h (α1 + e2)

+ z1h

[
f1 + z2 +∆1 − ẏr −

2

π
ρ̇1 arctan z1

]
+

x2
1η0
(
x2
1

)
λ0

+
d0
λ0

− c̄

λ0
r +

1

µ1
θ̃1

˙̂
θ1

(31)
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Applying the Young’s inequality yields

z1h∆1 ≤ |z1h|φ11 (|x1|) + |z1h|φ12 (|ξ|) (32)

z1he2 ≤e22 +
1

4
(z1h)

2 (33)

Then, let’s deal with |z1h|φ11 (|x1|) and |z1h|φ12 (|ξ|),
respectively.

|z1h|φ11 (|x1|) ≤ z1hφ̄11 + τ̄11 (34)

where φ̄11 = φ11 (|x1|) tanh
(

z1hφ11(|x1|)
τ11

)
, τ̄11 =

0.2785τ11.

|z1h|φ12(|ξ|) ≤ z1hφ̄12 + τ̄12 +
1

4
(z1h)

2
+ d(t0, t) (35)

where φ̄12 = φ12 ◦ ν−1
1 (2r) tanh

(
z1hφ12◦ν−1

1 (2r)
τ12

)
,

d(t0, t) =
[
φ12 ◦ ν−1

1 (2D (t0, t))
]2

, τ̄12 = 0.2785τ12.
By using (31) - (35), it can be obtained

V̇1 ≤− [λmin(Q)− 4] ∥e∥2 +B0 + z1hz2 −
z21
2

+ z1 (hα1 + F1) + τ̄11 + τ̄12 + d(t0, t) +
1

µ1
θ̃1

˙̂
θ1

+
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0
(36)

where F1(Z) = hf1−hẏr−h 2
π ρ̇ arctan z1+hφ̄11+hφ̄12+

1
2z1 +

1
2z1h

2 + 2
z1
tanh2

(
z1
ℓ

) x2
1η0(x

2
1)

λ0
.

Remark 1: When z1 = 0, x2
1η0(x

2
1)

z1λ0
is discontinuous and

can not be approximated by FLS, hence, a hyperbolic tangent
function tanh

(
z1
ℓ

)
is introduced.

Based on Lemma 4, unknown nonlinear function F1 can
be approximated by FLS W1S1(Z1) as follows

F1 = WT
1 S1 (Z1) + δ1 (Z1) , |δ1 (Z1)| ≤ δ̄1 (37)

where δ̄1 is a positive constant.
According to the Young’s inequality, it is clear that

z1F1 =z1
(
WT

1 S1 (Z1) + δ1 (Z1)
)

≤ 1

2a21
z21∥W1∥2ST

1 S1 +
a21
2

+
z21
2

+
δ̄21
2

≤ 1

2a21
z21θ1S

T
1 S1 +

a21
2

+
z21
2

+
δ̄21
2

(38)

The virtual control law is set as

α1 = −z1
h

(
k1 +

1

2a21
θ̂1S

T
1 S1

)
(39)

where k1 is positive parameter, the adaptive law is set as
follows

˙̂
θ1 =

1

2a21
z21S

T
1 S1 − γ1θ̂1 (40)

where γ1 > 0 is constant.
Combining (36)-(40), it yields

V̇1 ≤− [λmin(Q)− 4] ∥e∥2 +
1∑

l=0

Bl − k1z
2
1

+ z1hz2 +
γ1
µ1

θ̃1θ̂1 +
d0
λ0

− c̄

λ0
r

+
(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(41)

where B1 =
a2
1

2 +
δ̄21
2 + τ̄11 + τ̄12 + d(t0, t).

Step 2 : Based on z2 = x̂2 − α1, the time-derivative of
z2 is expressed by

ż2 = ˙̂x2 − α̇1

= x̂3 + L2 (y − x̂1)−
∂α1

∂x1
(∆1 + e2)− Γ1

(42)

where Γ1 = ∂α1

∂x1
(f1 + x̂2) +

∂α1

∂yr
ẏr +

∂α1

∂ρ ρ̇+ ∂α1

∂θ̂

˙̂
θ+ ∂α1

∂r ṙ.
Consider a Lyapunov function as follow

V2 = V1 +
1

2
z22 +

1

2µ2
θ̃22 (43)

Taking the time-derivative of V2 yields

V̇2 ≤− [λmin(Q)− 4] ∥e∥2 − k1z
2
1 +

γ1
µ1

θ̃1θ̂1

+
1∑

l=0

Bl + z2 (x̂3 + L2 (y − x̂1) + Γ1 + z1h)

+

∣∣∣∣z2 ∂α1

∂x1

∣∣∣∣ (|e2|+ |∆1|) +
d0
λ0

− 1

µ2
θ̃2

˙̂
θ2

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(44)

By applying Yang’s inequality, it can be obtained that∣∣∣∣z2 ∂α1

∂x1

∣∣∣∣ |e2| ≤ ∥e∥2 + z22
4

(
∂α1

∂x1

)2

(45)∣∣∣∣z2 ∂α1

∂x1

∣∣∣∣ |∆1| ≤
∣∣∣∣z2 ∂α1

∂x1

∣∣∣∣ [φ11 (|x1|) + φ12 (|ξ|)] (46)

Then, based on Lemma 3, it can get∣∣∣∣z2 ∂α1

∂x1

∣∣∣∣φ11 (|x1|) ≤ z2φ̄21 + τ̄21 (47)

where φ̄21 = ∂α1

∂x1
φ11 (|x1|) tanh

(
z2(∂α1/∂x1)φ11(|x1|)

τ21

)
,

τ̄21 = 0.2785τ21.

∣∣∣∣z2 ∂α1

∂x1

∣∣∣∣φ12 (|ξ|) ≤ z2φ̄22+τ̄22+
z22
4

∣∣∣∣∂α1

∂x1

∣∣∣∣2+d(t0, t) (48)

where φ̄22 = ∂α1

∂x1
φ12 (|ξ|) tanh

(
z2(∂α1/∂x1)φ12(|ξ|)

τ22

)
, τ̄22 =

0.2785τ22.
Combining (45)-(48) yields

V̇2 ≤− [λmin(Q)− 5] ∥e∥2 − k1z
2
1 +

1∑
l=0

Bl

+
γ1
µ1

θ̃1θ̂1 + z2 (z3 + α2 + F2)−
z22
2

+ τ̄21

+ τ̄22 + d(t0, t) +
d0
λ0

− c̄

λ0
r − 1

µ2
θ̃2

˙̂
θ2

+
(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(49)

where F2 = L2 (y − x̂1)+Γ1+z1h+φ̄11+φ̄12+
z2
2

∣∣∣∂α1

∂x1

∣∣∣2+
z2
2 .

Then, FLS WT
2 S2 (Z2) can be used to approximate un-

known nonlinear function F2 as follows

F2 = WT
2 S2 (Z2) + δ2 (Z2) , |δ2 (Z2)| ≤ δ̄2 (50)

where δ̄2 is psoitive constant.
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According to the Young’s inequality, it can get

z2F2 =z2
(
WT

2 S2 (Z2) + δ2 (Z2)
)

≤ 1

2a22
z22∥W2∥2ST

2 S2 +
a22
2

+
z22
2

+
δ̄22
2

≤ 1

2a22
z22θ2S

T
2 S2 +

a22
2

+
z22
2

+
δ̄22
2

(51)

The virtual control law is set as follows

α2 = −k2z2 −
1

2a22
z2θ̂2S

T
2 S2 (52)

where k2 is a positive constant, and the adaptive law is set
as

˙̂
θ2 =

1

2a22
z22S

T
2 S2 − γ2θ̂2 (53)

where a2, γ2 are positive constants.
Substituting (51)-(53) into (49) yields

V̇2 ≤− [λmin(Q)− 5] ∥e∥2 −
2∑

l=1

klz
2
l +

2∑
l=0

Bl

+
2∑

l=1

γl
µl

θ̃lθ̂l + z2z3 +
d0
λ0

− c̄

λ0
r

+
(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(54)

where B2 =
a2
2

2 +
δ̄22
2 + τ̄21 + τ̄22 + d(t0, t).

Step i (3 < i < n− 1): For zi = x̂i −αi−1, it can obtain

żi = ˙̂xi − α̇i−1

= x̂i+1 + Li (y − x̂1)−
∂αi−1

∂x1
(e2 +∆1)− Γi−1

(55)

where Γi−1 =
i−1∑
l=1

∂αi−1

∂xl
(x̂l+1 + Ll (y − x̂1)) +

i−1∑
l=0

∂α1

∂ρ(l) ρ
(l+1) + ∂αi−1

∂x1
(x̂2 + f1) +

i−1∑
l=0

∂α1

∂y
(l)
r

y
(l+1)
r +

∂αi−1

∂θ̂

˙̂
θ + ∂αi−1

∂r ṙ.
Select a Lyapunov function as follows

Vi = Vi−1 +
1

2
z2i +

1

2µi
θ̃2i (56)

Taking the time-derivative of Vi yields

V̇i ≤− [λmin(Q)− (i+ 2)] ∥e∥2 −
i−1∑
l=1

klz
2
l +

i−1∑
l=1

Bl

+
i−1∑
l=1

γl
µl

θ̃lθ̂l −
1

µi
θ̃i
˙̂
θi +

∣∣∣∣zi ∂αi−1

∂x1

∣∣∣∣ (|∆1|+ |e2|)

+ zi (x̂i+1 + Li (y − x̂1) + Γi−1 + zi−1) +
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

–λ0
(57)

According to the Young’s inequality, there has∣∣∣∣zi ∂αi−1

∂x1

∣∣∣∣ |e2| ≤ |e|2 + z2i
4

(
∂αi−1

∂x1

)2

(58)∣∣∣∣zi ∂αi−1

∂x1

∣∣∣∣ |∆1| ≤
∣∣∣∣zi ∂αi−1

∂x1

∣∣∣∣ [φ11 (|x1|) + φ12 (|ξ|)] (59)

Based on Lemma 4, for
∣∣∣zi ∂αi−1

∂x1

∣∣∣φ11 (|x1|), it yields∣∣∣∣zi ∂αi−1

∂x1

∣∣∣∣φ11 (|x1|) ≤ ziφ̄i1 + τ̄i1 (60)

where φ̄i1 = ∂αi−1

∂x1
φ11 (|x1|) tanh

(
zi(∂αi−1/∂x1)φ11(|x1|)

τi1

)
,

τ̄i1 = 0.2785τi1.
Similarly, for

∣∣∣zi ∂αi−1

∂x1

∣∣∣φ12(|ξ|), one has∣∣∣∣zi ∂αi−1

∂x1

∣∣∣∣φ12 (|ξ|) ≤ ziφ̄i2 + τ̄i2 +
z2i
4

∣∣∣∣∂αi−1

∂x1

∣∣∣∣2 + d(t0, t)

(61)
where φ̄i2 = ∂αi−1

∂x1
φ12 (|ξ|) tanh

(
zi(∂αi−1/∂x1)φ12(|ξ|)

τi2

)
,

τ̄i2 = 0.2785τi2.
Substituting (58)-(61) into (57) gets

V̇i ≤− [λmin(Q)− (i+ 3)] ∥e∥2 −
i−1∑
l=1

klz
2
l

+
i−1∑
l=1

γl
µl

θ̃lθ̂l +
i−1∑
l=1

Bl + zi (zi+1 + αi + Fi)

− z2i
2

+ τ̄i1 + τ̄i2 + d(t0, t)−
1

µi
θ̃i
˙̂
θi +

d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(62)

where Fi = Li (y − x̂1) + Γi−1 + zi−1 + φ̄i1 + φ̄i2 +
zi
2

∣∣∣∂αi−1

∂x1

∣∣∣2 + zi
2 .

The unknown nonlinear function Fi can be approximated
by FLS WT

i Si (Zi) as

Fi = WT
i Si (Zi) + δi (Zi) , |δi (Zi)| ≤ δ̄i (63)

where δ̄i is positive constant.
By applying the Young’s inequality, it can obtain

ziFi =zi
(
WT

i Si (Zi) + δi (Zi)
)

≤ 1

2a2i
z2i ∥Wi∥2ST

i Si +
a2i
2

+
z2i
2

+
δ̄2i
2

≤ 1

2a2i
z2i θS

T
i Si +

a2i
2

+
z2i
2

+
δ̄2i
2

(64)

The virtual control law is set as follows

αi = −kizi −
1

2a2i
ziθ̂S

T
i Si (65)

where ki is positive parameter, the adaptive law is set as

˙̂
θi =

1

2a2i
z2i S

T
i Si − γiθ̂i (66)

where ai, γi are positive constants.
Combining (62)-(66) can get

V̇i ≤− [λmin(Q)− (i+ 3)] ∥e∥2 −
i∑

l=1

klz
2
l

+
i∑

l=0

Bl +
i−1∑
l=1

γl
µl

θ̃lθ̂l+zizi+1 +
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(67)

where Bi =
a2
i

2 +
δ̄2i
2 + τ̄i1 + τ̄i2 + d(t0, t).
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Step n: From the error zn = x̂n − αn−1, one has

żn = ˙̂xn − α̇n−1

=u+ Ln (y − x̂1)−
∂αn−1

∂x1
(e2 +∆1)− Γn−1

(68)

where Γn−1 =
n−1∑
l=1

∂αn−1

∂xl
(x̂l+1 + Ll (y − x̂1)) +

n−1∑
l=0

∂α1

∂ρ(l) ρ
(l+1) + ∂αn−1

∂x1
(x̂2 + f1) +

n−1∑
l=0

∂α1

∂y
(l)
r

y
(l+1)
r +

∂α1

∂θ̂

˙̂
θ + ∂α1

∂r ṙ.
Consider a Lyapunov function Vn as follows

Vn = Vn−1 +
1

2
z2n +

1

2µn
θ̃2n (69)

where µn > 0 is constant.
Taking the time-derivative of the above equation yields

V̇n ≤− [λmin(Q)− (n+ 2)] ∥e∥2 −
n−1∑
l=1

klz
2
l +

n−1∑
l=0

Bl

+
n−1∑
l=1

γl
µl

θ̃lθ̂l +

∣∣∣∣zn ∂αn−1

∂x1

∣∣∣∣ (|∆1|+ |e2|)

+ zn (u+ Ln (y − x̂1) + Γn−1 + zn−1)−
1

µn
θ̃n

˙̂
θn

+
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0
(70)

Applying the Young’s inequality gets∣∣∣∣zn ∂αn−1

∂x1

∣∣∣∣ |e2| ≤ ∥e∥2 + z2n
4

(
∂αn−1

∂x1

)2

(71)∣∣∣∣zn ∂αn−1

∂x1

∣∣∣∣ |∆1| ≤
∣∣∣∣zn ∂αn−1

∂x1

∣∣∣∣ [φ11 (|x1|) + φ12(|ξ|)]

(72)

Then, based on Lemma 4, it yields∣∣∣∣zn ∂αn−1

∂x1

∣∣∣∣φ11 (|x1|) ≤ znφ̄n1 + τ̄n1 (73)

where φ̄n1 = ∂αn−1

∂x1
φ11 (|x1|) tanh

(
zn(∂αn−1/∂x1)φ11(|x1|)

τn1

)
,

τ̄n1 = 0.2785τn1.
Similarly, for

∣∣∣zn ∂αn−1

∂x1

∣∣∣φ12 (|ξ|), one obtains∣∣∣∣zn ∂αn−1

∂x1

∣∣∣∣φ12 (|ξ|) ≤ znφ̄n2+τ̄n2+
z2n
4

∣∣∣∣∂αn−1

∂x1

∣∣∣∣2+d(t0, t)

(74)
where φ̄n2 = ∂αn−1

∂x1
φ12 (|ξ|) tanh

(
zn(∂αn−1/∂x1)φ12(|ξ|)

τn2

)
,

τ̄n2 = 0.2785τn2.
Substituting (71)-(74) into (70) gets

V̇n ≤− [λmin(Q)− (n+ 3)] ∥e∥2 −
n−1∑
l=1

klz
2
l +

n−1∑
l=0

Bl

+
n−1∑
l=1

γl
µl

θ̃lθ̂l + zn (u− αn + αn + Fn)−
z2n
2

+ τ̄n1 + τ̄n2 + d(t0, t)−
1

µn
θ̃n

˙̂
θn +

d0
λ0

− c̄

λ0
r

+
(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0
(75)

where Fn = Ln (y − x̂1)+Γn−1+zn−1+ φ̄n1+ φ̄n2+
zn
2 +

zn
2

∣∣∣∂αn−1

∂x1

∣∣∣2.
The unknown nonlinear function Fn can be approximated

by FLS WT
n Sn (Zn) as follows

Fn = WT
n Sn (Zn) + δn (Zn) , |δn (Zn)| ≤ δ̄n (76)

where δ̄n is positive constant.
According to the Young’s inequality, it yields

znFn =zn
(
WT

n Sn (Zn) + δn (Zn)
)

≤ 1

2a2n
z2n∥Wn∥2ST

n Sn +
a2n
2

+
z2n
2

+
δ̄2n
2

≤ 1

2a2n
z2nθS

T
n Sn +

a2n
2

+
z2n
2

+
δ̄2n
2

(77)

The virtual control law is set as follows

αn = −knzn − 1

2a2n
znθ̂S

T
n Sn (78)

where kn is positive parameter. Then, the adaptive law is set
as

˙̂
θn =

1

2a2n
z2nS

T
n Sn − γnθ̂n (79)

where an, γn are positive constants.
Combining (75)-(79), we can get

V̇n ≤− [λmin(Q)− (n+ 3)] ∥e∥2 −
n∑

l=1

klz
2
l

+

n∑
l=0

Bl +

n∑
l=1

γl
µl

θ̃lθ̂l + zn (u− αn) +
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(80)

where Bn =
a2
n

2 +
δ̄2n
2 + τ̄n2 + τ̄n2 + d(t0, t).

D. Adaptive Event-Triggered Controller Design

In order to reduce the waste of resources, an improved
event-triggered scheme is proposed in this paper. The new
event-triggered controller is designed as follows ω (t) = −(1 + κ)

[
αn tanh

(
znαn

ε

)
− m̄ tanh

(
znm̄
ε

)]
u(t) = ω(tk), ∀t ∈ [tk, tk+1)
tk+1 = inf{t ∈ R| |E(t)| ≥ κ tanh(|u(t)|) +m}

(81)
where ε, m̄, m, κ are positive parameters, tk, k ∈ Z+

is controller update time, E(t) = ω(t) − ω(tk) is the
measurement error. m̄ > m/ (1 + κ). For ∀t ∈ [tk, tk+1),
|ω(t)− ω(tk)| ≤ κ tanh(|u(t)|) +m is always true, and
when t ∈ [tk, tk+1), u(t) = ω(tk) is always true.

From (81), it can be seen that |E(t)| ≥ κ tanh(|u(t)|) +
m, therefore From (81), it can be seen that |E(t)| ≥
κ tanh(|u(t)|)+m. There exist the time-varying parameters
|ς1,2,3 (t)| ≤ 1 that satisfy the following

ω (t) = u(t) + ς1(t)κ tanh(u(t)) + ς2(t)m

= u(t) + ς3(t)κu(t) + ς2(t)m
(82)

Remark 2: If we directly deal with the equation contain-
ing the hyperbolic tangent function, the proof would be
complicated. Here, we use the time-varying functions ς1(t)
and ς3(t) to transform tanh(u(t)) into u(t), so that the proof
can be done more simply.
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As a reason, it follows that

u (t) = ω (t) / (1 + ς3 (t)κ)− ς2 (t)m/ (1 + ς3 (t)κ) (83)

Then, it yields

zn (u− αn) =zn

(
ω − ς2(t)m

1 + ς3(t)κ
− αn

)
≤ znω

1 + κ
−
∣∣∣∣ znm1− κ

∣∣∣∣− znαn

≤ |znαn| − znαn tanh
(znαn

ε

)
+ |znm̄| − |znm̄| tanh

(
|znm̄|
ε

)
≤0.557ε

(84)

Finally, the time-derivative of Vn is rewritten as follows

V̇n ≤− [λmin(Q)− (n+ 3)] ∥e∥2 −
n∑

l=1

klz
2
l

+
n∑

l=0

Bl +
n∑

l=1

γl
µl

θ̃lθ̂l + 0.557ε+
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(85)

IV. STABILITY ANALYSIS
Theorem 1: Consider an uncertain nonlinear system (1)

satisfying Assumption 1-3. The designed event-triggered
controller (81) and virtual control laws (39), (52), (65), (78)
with the adaptive laws (40), (53), (66), (79) can guarantee:
(1) All signals in the closed-loop system are semi-globally
uniformly ultimately bounded; (2) The tracking error can
converge to a bounded range; (3) Zeno-behavior can be
successfully avoided.

Proof:
(1) Due to

θ̃iθ̂i = θ̃i

(
θi − θ̃i

)
≤ −1

2
θ̃2i +

1

2
θ2i (86)

Substituting (86) into (85) yields

V̇n ≤− [λmin(Q)− (n+ 3)] ∥e∥2 −
n∑

l=1

klz
2
l

−
n∑

l=1

γl
2µl

θ̃2l +

n∑
l=0

Bl +

n∑
l=1

γl
2µl

θ2l + 0.557ε

+
d0
λ0

− c̄

λ0
r +

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0

(87)

Let

c = min

{
λmin(Q)− (n+ 3)

λmax(P )
, 2ki, c̄, γi; i = 1, 2 · · ·n

}
(88)

b =
n∑

l=1

Bl +
n∑

l=1

γl
2µl

θ2l + 0.557ε+
d0
λ0

(89)

Then, (87) can be rewritten as

V̇n ≤ −cV + b+
(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0
(90)

where the sign of
(
1− 2tanh2

(
z1
ℓ

)) x2
1η0(x

2
1)

λ0
is unknown,

hence, the unknown function should be analysis in different
cases.

Case 1 : For z1 ∈ Ωz1 , according to Assumption 1,
it can be seen that yr is bounded and x1 is bounded
by construction, hence, ζ is bounded in (26), z1 is
also bounded. Due to η0(z

2
1) is non-negative function, so(

1− 2tanh2
(
z1
ℓ

)) x2
1η0(x

2
1)

λ0
is also bounded function. Let g

is the bound of function. Then, (90) can be rewritten as
follows

V̇n ≤ −cV + b+ g ≤ −cV + h (91)

where h = b+ g.
Then, integrating (91) over [0, t], it produces

0 ≤ Vn(t) ≤
(
V (0)− h

c

)
e−ct +

h

c
(92)

Case 2 : When z1 /∈ Ωz1 , based on Lemma 2 and
x2
1η0(x

2
1)

λ0
> 0, it has

(
1− 2tanh2

(z1
ℓ

)) x2
1η0(x

2
1)

λ0
≤ 0 (93)

Then, (90) can be rewritten as follows

V̇n ≤ −cV + b (94)

Next, it can yield

0 ≤ Vn(t) ≤
(
V (0)− b

c

)
e−ct +

b

c
(95)

Thus, all signals in the closed-loop control system are
semi-globally uniformly ultimately bounded.

(2) According to V1 and (92), the following equation
holds:

1

2
z21 =

1

2
tan2

(
πζ

2ρ

)
≤ V (0) e−ct +

h

c
(96)

Transforming (96) yields

|ζ| ≤ 2ρ

π
arctan

√
2

(
V (0) e−ct +

h

c

)
< ρ (97)

Therefore, the tracking error ζ can converge to a bounded
range.

(3) In order to guarantee that for ∀k ∈ Z+, the time T
can satisfy tk+1 − tk > T , it has

d

dt
|E| = d

dt
|E ∗ E|

1
2 = sign(E)Ė ≤ |ω̇| (98)

According to (81), we can get

ω̇ = α̇n − m̄żn

cosh2
(
m̄zn
ε

) (99)

Form (99), it can be concluded that ω̇ is bounded. Thus,
there is a constant s > 0 satisfying |ω̇| < s. According to
E(tk) = 0 and lim

t→tk
E (t) = −κ tanh(|u(t)|) + m, it can

obtain that the lower bound of intervals time T must satisfy
T > (−κ tanh(|u(t)|) +m) /s, so the Zeno-behavior can be
successfully avoided.
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V. SIMULATION RESULTS

Consider a nonlinear system with unmodeled dynamics as
follows 

ξ̇ = −ξ + x2
1

ẋ1 = x2
1e

x1 + x2 + ξx1x2

ẋ2 = sin(x1x2) + u+ ξ sin(x1x2)

y = x1

(100)

where f1(x̄1) = x2
1e

x1 , f2(x̄2) = sin (x1x2), ∆1(x, ξ, t) =
ξx1x2, ∆2(x, ξ, t) = ξ sin(x1x2).

In order to satisfy Assumption 3 for p-subsystem in (100),
consider a Lyapunov function V (ξ) = ξ2, then, it yields

V̇ (ξ) ≤ −1.2ξ2 + 2.5x4
1 + 0.625 (101)

Let ν1 (|ξ|) = 0.5ξ2, ν2 (|ξ|) = 2ξ2, c̄ = 1.2, d0 = 0.625
and η0 (|x1|) = 2.5x4

1, Assumption 3 holds.
Then, define c̄ = 1 ∈ (0, c̄0) and the dynamics signal r is

r = −ξ2 + 2.5x4
1 + 0.625 (102)

Select initial conditions
[ξ(0), x1(0), x2(0), x̂1(0), x̂2(0), θ̂1(0), θ̂2(0), r(0)] =
[0.5, 0.6,−0.1, 0.5, 1, 0.1, 0.1, 0]. The design parameters
k1 = 12, k2 = 12, a1 = a2 = µ1 = µ2 = 1, γ1 = γ2 =
50, L1 = 5, L2 = 25, m̄ = 2,m = 0.2, κ = 0.5, ε = 10.
Prescribed performance function is selected as follows

ρ (t) =

{ (
1− t

5

)
e

t(1+t)
5−t + 0.04 0 ≤ t < 5

0.04 t ≥ 5
(103)
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Fig. 1. Uncertain dynamic disturbances arising from unmodeled dynamics.

The dynamic disturbances is shown in Figure 1. The
tracking error is shown by Figure 2, it can be seen that the
proposed method (PM) can converge to a bounded range
more accurately and quickly than traditional method (TM).
From Figure 3, it can be seen that the system’s output y(t)
can effectively track the reference signal yr(t). From Figure
4 and Figure 5, it can be seen that the estimation effect
of the state observer can satisfy the desired requirements.
The adaptive law is demonstrated by Figure 6. The event-
triggered signal u(t) and adaptive signal ω(t) are shown by
Figure 7. Figure 8 represents the triggering instant of the
three methods, in which the fixed threshold strategy triggers
328 times, the relative threshold strategy triggers 228 times,
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Fig. 2. Tracking errors in proposed method (PM) and traditional method
(TM).
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Fig. 3. System output y(t) and reference signalyr(t).
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Fig. 4. The trajectories of x1 and x̂1.
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Fig. 5. The trajectories of x2 and x̂2.
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Fig. 6. Adaptive Law θ̂1 and θ̂2.
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and the proposed method triggers 274 times. Under the same
conditions, the proposed method can save communication
resources better than the fixed threshold strategy, compared
with the relative threshold strategy, it will not producing a
big error due to excessive control signal, so as to ensure the
system performance.

VI. CONSIDERATION

In this paper, the problem of finite-time prescribed per-
formance fuzzy adaptive event-triggered control for uncer-
tain nonlinear systems with unmodeled dynamics has been
solved. A prescribed performance fuzzy adaptive event-
triggered control scheme has been designed, where pre-
scribed performance is very important to improve the per-
formance of system. The novel event-triggered control has
accomplished the desired goal, which was to save communi-
cation resources and reduce the impact of control signal on
system performance. The designed adaptive control law and
event-triggered mechanism can ensure that the convergence
of tracking error and all signals of the close-loop control
system are bounded. This will provide better support for us
to consider more complex system control in the future.
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