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Abstract—The analysis of MHD UCM fluid flow between a
pair of rectangular plates with the top plate moving either
towards or apart from the stationary bottom porous plate is
presented in this work. By employing similarity transforma-
tions, the governing equations of momentum are transformed
into non-linear ordinary differential equations. An approximate
analytical solution is achieved by adopting the homotopy
perturbation technique. The aim of this work is to determine the
velocity profile and coefficients of skin friction for various values
of different physical parameters. It has been found that as the
magnetic parameter enhances, the squeezing flow retards in
injection and suction cases. It is also observed that the velocity
field declines in the core region with a rise in the porosity
parameter. This theoretical study is helpful in the processing
of visco-elastic polymers in industry.

Index Terms—Upper convected Maxwell fluid, MHD flow,
Squeezing flow, Homotopy Perturbation Method.

I. INTRODUCTION

LUID mechanics is one of the oldest disciplines of
physics and a basis for comprehending numerous other
branches of the applied sciences and engineering. It is
the study of motion and equilibrium of fluids. Almost all
engineering disciplines, as well as astrophysics, physical
chemistry, plasma chemistry, geophysics, meteorology, bi-
ology, and biomedicine, are interested in the topic [1]. Fluid
mechanics has become a crucial foundational subject in
engineering science as a result of the progress made in me-
chanical, aeronautical, and chemical engineering during the
past several decades, on the one hand, and the exploration of
space, on the other. Franz Durst [2] explained the significance
of fluid flows to science and engineering, as well as to heat
and mass movement in nature during a brief survey of the
history of fluid mechanics. It is stated that the fundamental
equations were known by the end of the 18th century and that
the early theoretical breakthroughs were explained. However,
it took until the latter half of the 20th century for methods to
be developed to solve these equations for engineering flows.
Studying the fluid flow between two plates is crucial
due to their expanding industrial applications and significant
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influence on several fields of technology. The study of non-
Newtonian fluid in such a medium presents challenging
problems to the analyser due to the lengthy computational
investigation necessary and the greater practical relevance of
such types of models. The extension of these non-Newtonian
fluids from viscous fluids is not straightforward because of
the diverse nature present in the constitutive equation and the
concurrent impacts of elasticity and viscosity. These visco-
elastic effects add complexity to the ensuing differential
equations.

Based on Newton’s rule of viscosity, fluids can be
roughly classified as Newtonian or non-Newtonian. With
non-Newtonian fluids being the subject of this study, they
can be roughly divided into three classes, namely rate,
differential and integral. This work prioritises the rate fluid
subclass, known as the Maxwell model [3]. The relaxation
time effect can be clearly elucidated with the help this fluid
model. K.R. Rajagopal et al. [4] expanded on Maxwell’s
methods, creating a surplus of rate type models. In addition to
the typical equations of continuity and momentum in two di-
mensions, F. Olsson [5] studied the constitutive equation for
a visco-elastic fluid for an upper-convected Maxwell (UCM)
fluid, allowing for a insignificant degree of compressibility
that is regarded as artificial compressibility. The UCM fluid
flow above a rigid plate moving slowly in an otherwise
passive fluid was theoretically examined by K. Sadeghy et
al. [6]. Further, A.N. Kashif et al. [7] examined the Maxwell
fluid boundary layer flow on a flat plate in the presence
of pressure gradient and obtained an approximate analytical
solution by employing HPM.

The Maxwell fluids gain importance because of its nu-
merous application in the field of engineering. These fluids
are ideal for hydraulic systems which require high precision
control and accuracy, as a consequence of its unique proper-
ties. Hence, one of the most common use is in designing and
constructing hydraulic systems. Further it has its applications
in designing shock absorbers and lubrication development.
As a result of its ability to flow and deform under stress,
it has become one of the best choices for reducing damping
and frictional vibrations. Altogether, due to its reliability and
versatility, the Maxwell fluids are an essential component in
various engineering applications.

The flow through porous channel/tubes draws particu-
lar interest because of their widespread use in industrial,
technological and biological fields. The appearance of such
flows can be observed in flow in capillaries, design of crude
oil extraction, filters and underground disposal of nuclear
waste material. In a uniformly porous channel, J.F. Brady
[8] investigated how the inlet velocity profile developed
spatially. S.M. Cox [9] considered the steady and uniform
suction flow of a incompressible viscous fluid in a parallel-
walled tube that is being driven through its porous walls.
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The similarity solution to the two-dimensional Navier-Stokes
equation that showed the flow of a viscous incompressible
fluid in a channel with a single porous wall, was further
examined by S.M. Cox [10]. Furthermore, S. W. Yuan [11]
incorporated the situation of moderate to high injection or
suction velocity at the walls into a steady-state laminar flow
problem in channels with porous walls in two-dimensions.
In order to account for visco-elasticity and inertial effects,
H. Tahira et al. [12] conducted a theoretical examination
of an incompressible Maxwell fluid flow in a channel with
uniform porous walls. The steady and incompressible UCM
fluid suction flow on the surface of a porous channel in two-
dimensions was analysed by Choi et al. [13]. Later, S. Zeb et
al. [14] analysed visco-elastic UCM fluid flow in a permeable
medium.

The science that dealing with the motion of an electrically
conducting fluid in the presence of magnetic field is called
magneto-hydrodynamics (MHD). Electric currents produced
by the conducting fluid moving through the magnetic field
causes the magnetic field to change, and the influence of
magnetic field on these currents results in mechanical forces
that alter the fluid’s movement [15]. Theoretical research
on flow through the MHD channel has sparked a lot of
scope due to its extensive applications in MHD seawater
thrusters, pumps, accelerators and flow meters. Further, in
the presence of a magnetic field, an investigation on the
flow of an electrically conducting fluid through the porous
medium encompasses a wide domain for scientific and
technological disciplines, such as metallurgy in particular
polymer processing sector, and earth science [16], [17]. A.M.
Siddiqui et al. [18] examined the two-dimensional unsteady
flow of a viscous MHD fluid between a pair of parallel
plates. Further, the impact of various physical parameters on
a MHD boundary layer flow of an UCM fluid in a channel
with porous walls in two-dimensions has been investigated
by Z. Abbas et al. [19]. In a rectangular porous channel
with steady, incompressible fluid flow and immiscible fluids
in all regions, S. Deo et al. [20] investigated the effects of
a uniform magnetic field applied orthogonal to the direction
of fluid motion on a Newtonian fluid suppressed between
a pair of micro-polar fluid layers. Several other researchers
have investigated the MHD flow for different geometry [21]
- [22].

Homotopy perturbation method (HPM), which Ji-Huan He
[23], [24] first suggested in 1998, combines homotopy in
topology with conventional perturbation technique. The non-
linearity in the equations makes it impossible to solve all
the problems analytically using currently available methods.
Nonetheless, using the assumptions, numerical techniques
can produce approximations of the solution. As a result,
semi-analytical approaches were created to deal with these
sorts of problems [25]. Several researchers have also em-
ployed HPM to resolve various differential, integral and
wave-like equations [26] - [27].

Since MHD flow and Maxwell fluids individually have a
very wide scope in the technological field, the combination
of the two results in one of the best options for numerous
areas. Hence, the analysis of the MHD flow of UCM fluid has
motivated the researchers to advance further in the regimes
of the Maxwell model. Thus, the intent of this study is to
analyse the steady flow of an MHD UCM fluid between a

moving upper plate and a stationary lower porous plate. The
problem under consideration is then solved using HPM, as
it produces a rapid convergence of the series solution only
after a relatively small number of iterations. This technique
ensures an added advantage over solely numerical techniques
for simple domains. A single computer program provides
the solution for a wide range of expansion quantities. The
convergence of the HPM solution is established to resolve the
ensuing non-linear problem. The variations of the emerging
physical parameters are emphasized on the velocity curve.

II. MATHEMATICAL FORMULATION

Let the two-dimensional flow of an MHD UCM fluid
between two rectangular parallel plates that are placed at
a distance of d apart be considered. The flow occupies the
region between the plates located at y = 0 and y = d, with
the plate at the top moving uniformly with velocity V,, away
(or towards) from the fixed bottom porous plate, as displayed
in Fig. 1.

Souree

Fig. 1. Schematic diagram of the problem

The equations governing flow and momentum are
V.V =0, (1)

pa=V.T, 2)

in which T, V, p, and a are the Cauchy stress tensor, velocity
vector, density of the fluid, and the acceleration vector given
by

LV
i
=—+ (V.V)W.
5 T(V'V)
The Cauchy stress tensor for a Maxwell fluid is given by
T=-pl+ S, 4)

where I and p are the identity tensor and pressure. The extra
stress tensor, S is given by the relation

D
(L+A5)S = pAs, )

where A and p represent the relaxation time and the dynamic
viscosity. Aj, the kinematical tensor is expressed as

Ay =L+ L7, (6)

where L is the gradient of V. The equations of continuity and
momentum for a MHD UCM fluid flow in two-dimensions

d t
reduces to du dv . o
de  dy
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The x and y components of velocity are given by w and v
respectively. By is the uniform magnetic field along y— axis,
k,o and ¢ are the permeability of porous medium, electrical
conductivity, and porosity, respectively.

The relevant boundary conditions are as follows

wz,y) =0, v(x,y) =4V, a y=0, (9
u(@,y) =0, wv(z,y) =V,  at y=d. (10)
The similarity transformations are
X z N Yy N gl A N
= g=g u=—VKifi(), v=Vf0). dh
The resulting equation from (8) is
I = MIRJ" + De(f [+ f1")
(12)

. Kf/l +R[f/f” _ ff///]
+ Del2f (f")* +2(f)2f" — f2f*] =0.

Equations (9) and (10) reduce to

f:Aa f’:O at y=y, (13)
f=1 f'=0 at  y=1, (14)
in which
AV 2 B2 2
De— 2 gy Bod g A0 dVy
v pVp k v

are called the Deborah number, magnetic number, porosity
parameter, and Reynolds number, respectively. Here, A > 0
denotes suction and A < 0 denotes injection, whereas R > 0
and R < 0 denote the movement of the upper plate apart and
towards the bottom plate.

III. METHOD OF SOLUTION

The problem considered here is solved using homotopy
perturbation method. The combination of homotopy in topol-
ogy with conventional perturbation technique is called Ho-
motopy Perturbation Method. As HPM does not require
any small parameters in the equations, it can overcome the
drawbacks of conventional perturbation techniques. It is up
to the researcher to decide on the initial approximation using
potential unknown constants. The estimates produced by this
approach are accurate for both large and small parameters.
The homotopy perturbation approach is conveniently imple-
mented, and it accelerates the convergence of series solutions.
The first few terms of the series solutions of the flow are

fo=A+3y* —3Ay% — 2y° + 243 (15)

fi= — 5 (A= 1)y — 122 (3K (T
—14y) + R(—32 4+ TM — 10y — 14My
+12y% — 8y + 2A(—19 + 5y — 6y
+493))) + 2De(—48 — 4y + 40y?
+84y% — 250y* + 100y + 3M (—10
—11y — 12y% + 8y3) + 2A42(39 — 86y
+104y? + 42y3 — 125y* + 509°)
—A(BM (25 — 11y — 12y
+8y% + 2(15 — 88y + 12492
+84y3 — 250y* + 100y°))))).
fo=" grosame (1 + A) (=1 +y)**(De*((13M?
(—5279 — 3240y — 1201y + 193193
+10885y* + 11956y° — 250880
—T7168y") + 8M (70560 + 74190y
+77820y% + 129498y°% — 213218y*
+42807y° — 97993y° + 48836217
—393750y® + 87500y°) + 16(24387
+24576y + 24765y> + 24954y°
—191073y* + 228678y° + 69279y°
+74330y" — 298997y° + 266250y°
—12100y'° — 22000y't) + 16 4%
(—148149 + 500324z — 8181682
+2657402% + 9392382 — 13190502° +
6633272% + 735427 — 2822532°
+2662502° — 121000210)...))).

— 51550553005 (— 1 + A)y* (96 A5 De?
(155156376900 — 244107689280y
+12608317240y2 + 258538079916y>
—586153351980y* + 503520953200y°
—150277297170y° — 80918341140y
+130236797054y° — 183839106360y°
+237846040350y0 — 161403707240y
—8453999205y'2 + 9357045478213
—79849549150y* + 33695917500y *°
—7541803500y + 718267000y'7)
+6Dey(323M? (4083534 — 8079344y
+3117192y% — 14864850y> + 30180150y*
—189629441° 4 25272702y — 49619115¢7
+41636280y° — 15133440y° + 201779230
+646M2(—9932160 — 10047751y
+52458246y% — 57845580y
+148383300y* — 2831889063°...)s)...)).

(16)

A7)

fs =

(18)

IV. RESULTS AND DISCUSSION

In the present study, the problem of an electrically con-
ducting UCM fluid flowing between a pair of rectangular
plates of which the top plate moves either towards (R < 0)
or apart (R > 0) from the fixed bottom porous plate through
which fluid is sucked (A > 0) or injected (A < 0) is
examined. The preliminary goal of this work is to study
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the squeezing flow of MHD UCM fluid, considering the
effects of suction and injection on the velocity field and the
coefficient of skin friction. Fig. 2 — Fig. 19 and Table I -
Table III demonstrate how the physical parameters (viz. R,
De, M, and K) for injection and suction affect the velocity
profile and skin frictions of a squeezing flow. Using HPM,
a novel kind of series solution is proposed.

The velocity function of the fluid, f’(y), is depicted in
Fig. 2 - Fig. 19, which is found to be parabolic in nature.
Fig. 2 and Fig. 3 show the velocity profiles in both injection
(A < 0) and suction (A > 0) for various values of the
Reynolds number. Fig. 2 shows that the velocity profile, in
case of injection, increases in the range 0 < y < 0.5 and
drops in the domain 0.5 < y < 1 as R rises when the top
plate moves towards the fixed bottom plate whereas declines
in the region 0 < y < 0.5 and elevates in 0.5 <y <1las R
increases when R > 0. The same trend is seen in Fig. 3 for
A > 0, i.e., as the top plate moves towards the fixed bottom
plate, the velocity field of the MHD UCM fluid intensifies in
the range of 0 < ¢y < 0.5 and falls in the domain 0.5 < y <1
as R increases whereas when R > 0, f’(y) decreases in the
range of 0 < y < 0.5 and is found to be rising in domain
0.5 <y<1.

When the plates move away from each other, as the
strength of the applied magnetic field increases, there de-
velops a drag force known as Lorentz force causes the
momentum boundary layer to thicken. As a result, the flow
is impeded, leading to a reduction in the magnitude of the
velocity profile. Thus, as the plates move away from each
other, the magnitude of the velocity profile decreases with
an increase in magnetic parameter.

The velocity profiles for variation in various physical
parameters in case of injection are displayed in Fig. 4 —
Fig. 9. In squeezing condition (R < 0), f'(y) increases
as M rises across the plane with R = —2, K — 0.1 and
De = 0.1 is observed in Fig. 4. The velocity profile is found
to be increasing as the magnetic parameter rises, peaking
at y = 0.5. As the plates move apart from the stationary
bottom plate (R > 0), Fig. 5 shows the opposite behaviour,
where the velocity profile is found to be decreasing as the
magnetic parameter rises as the top plate moves apart from
the stationary bottom plate, maximum at y = 0.55, when
R=-2, K—0.1 and De = 0.1.

The velocity profile decreases in the region of 0 < y < 0.5
and increases in 0.5 < y < 1, with an increment in the
Deborah number as the top plate moves towards the lower
one as shown in Fig. 6. This is because the lower Deborah
number implies the fluid is more viscous, and the relaxation
time is much longer than the characteristic time scale of the
flow. Hence, the velocity decreases in the first half because
the fluid resists the deformation caused by the flow. However,
as De increases, the fluid becomes less viscous, and the
relaxation time becomes comparable with the characteristic
time scale of the flow. Thus, the velocity increases in the
second half as the fluid flows more easily. The same trend is
found when the top plate moves apart from the fixed bottom
porous plate shown in Fig. 7. As the K value rises, the
velocity field increases in the region 0 < y < (.25, after
which it begins to retard until y = 0.7 further, it increases
in the region 0.7 < y < 1 as the plates move towards as
depicted in Fig. 8. It is evident from Fig. 9 that as the top

plate moves apart from the bottom plate, the velocity profile
retards in the region 0.3 < y < 0.75 as the value of K
increases.

The impact of various physical parameters on the velocity
profile in the case of suction (A > 0) is depicted in Fig.
10 - Fig. 15. Under the squeezing condition (R < 0), f'(y)
increases as M rises throughout the plane, as observed in
Fig. 10. As the magnetic parameter rises, it is demonstrated
that the velocity profile increases as well, culminating at
y = 0.4. Fig. 11, which depicts the opposite behaviour when
the top plate moves apart from the bottom plate (R > 0),
demonstrates that the velocity field profile is increasing as
the magnetic parameter increases, reaching a maximum at
y = 0.6.

The velocity profile increases in the region 0 < y < 0.5
and decreases in 0.5 < y < 1, with an increase in the
Deborah number when the top plate moves towards the
lower one as displayed in Fig. 12. When the top plate moves
apart from the stationary bottom porous plate, shown in Fig.
13, the trend is seen to be opposite. As observed in Fig. 14,
as the K value rises, the velocity field profile increases in
the region 0 < y < 0.2, after which it starts to retard until
y = 0.65. It then rises again when the plates move towards,
in the region 0.65 < y < 1. It is evident from Fig. 15 that,
when the top plate moves apart from the bottom plate, the
velocity profile retards in the region 0.3 < y < 0.8 as the
value of K increases.

The impact of suction and injection on the velocity profile
are displayed in Fig. 16 - Fig. 19. Fig. 16 and Fig. 18 rep-
resent the velocity profile graphically in the case of suction
for plates moving away and towards, respectively, whereas
Fig. 17 and Fig. 19 demonstrate the case of injection. It is
evident from Fig. 16 and Fig. 18 that as suction increases, the
velocity profile declines with an increase in suction parameter
for both plates moving apart and towards. In the case of
injection, it is evident from Fig. 17 and Fig. 19 that an
increase in injection results in the increase of velocity profile
in both cases.

Table 1T - Table III represent the impact of pertinent
parameters on the numerical values of the skin friction
coefficient. Table I and Table II illustrate how the coefficients
of skin friction f”(0) and f”(1) vary with the magnetic
number M, Reynolds number R, and Deborah number De
for the conditions A = —0.5 and A = 0.5 with the porosity
parameter ' = 0.1. As R rises, skin friction intensity
decreases for A = —0.5 and A = 0.5. It has been noted that
skin friction rises when the plates are moving towards one
another as opposed to when the top plate moves apart from
the bottom stationary plate. This is true for both injection
and suction cases.

Table III represents the numerical values of the skin
friction coefficient for different values of the parameter A. It
is evident from Table III that the magnitude of skin friction
coefficient increases with increased injection at both lower
and upper plates as the plates move towards each other. A
similar behaviour is observed in the case of plates moving
apart. It can be inferred from the table that the magnitude
of skin friction coefficient decreases with increased suction
at both upper and lower plates in the case of plates moving
apart. A similar trend is observed in the case of plates moving
towards each other.
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Fig. 2. Effect of variation of R on f’(y) for A = —0.5,M = 0.2, K =  Fig. 6. Effect of variation of De on f’(y) for A= —0.5,R = -2, K =
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Fig. 3. Effect of variation of R on f’(y) for A = 0.5,M = 0.2, K = Fig. 7. Effect of variation of De on f’(y) for A= —0.5,R = 2, K =
0.2, De =0.2 0.1, M =0.1
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Fig. 10. Effect of variation of M on f/(y) for A=0.5,R= -2, K = Fig. 14. Effect of variation of K on f’(y) for A = 0.5, R = —2, De =
0.1, De = 0.1 0.2, M =0.2

Fig. 11.  Effect of variation of M on f'(y) for A = 0.5,R = 2, K = Fig. 15. Effect of variation of K on f’(y) for A = 0.5, R = 2, De =
0.1, De = 0.1 0.2,M = 0.2
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Fig. 13. Effect of variation of De on f’(y) for A = 0.5,R = 2, K = Fig. 17. Effect of injection on f/(y) for R = 5, De = 0.2, K = 0.2, M =
0.1,M =0.1 0.2
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Fig. 19.  Effect of injection on f’(y) for R = —5,De = 0.2, K
0.2,M =0.2
TABLE I
INJECTION: SKIN FRICTION COEFFICIENTS FOR A = —0.5, K =0.1
R De M =0.1 M =0.3
40O | A ) [ A6
-10 0.1 10.69020 -6.63060 10.48820 -6.50273
-5 9.99593 -7.45883 9.89528 -7.33844
-1 9.25132 -8.67588 9.22571 -8.66051
1 8.70444 -9.73008 8.72977 -9.78353
5 7.00152 -13.65460 7.27806 -13.77930
10 4.55102 -18.93240 5.13253 -19.32050
-10 0.5 10.70890 -6.76840 10.27660 -7.55429
-5 10.04230 -7.774117 9.94976 -7.63663
-1 9.19635 -9.39134 9.17308 -9.46220
1 8.54346 -10.99190 8.58099 -11.20710
5 6.37442 -17.85880 6.74141 -17.72180
10 4.06584 -21.02010 4.66251 -21.67830
TABLE 11

SUCTION: SKIN FRICTION COEFFICIENTS FOR A = 0.5, K = 0.1

R De M =0.1 M =0.3
PO | I O I I AU O N I 6Y)
-10 0.1 7.98767 -1.70023 7.46117 -0.84397
-5 5.21908 -1.80407 5.20448 -1.75374
-1 3.37469 -2.65646 3.35853 -2.65227
1 2.62497 -3.50643 2.63086 -3.52693
5 1.64018 -6.33950 1.69830 -6.33205
10 1.36324 -11.81070 1.30286 -11.11270
-10 0.5 7.66400 -0.30219 7.66213 -0.36881
-5 5.61369 -1.71582 5.56621 -1.66084
-1 3.39719 -2.69670 3.29002 -2.73229
1 241134 -4.02481 2.39028 -4.13546
5 1.33455 -9.39148 1.40736 -9.48284
10 0.286024 -12.48760 0.54215 -12.65720

TABLE III
SKIN FRICTION COEFFICIENTS FOR De = 0.5, K = 0.1

A R M =0.1 M =0.3
ORI O O M6

-0.5 -5 10.04230 -7.74117 9.94976 -7.63663
-0.3 9.30965 -6.28520 9.22407 -6.18976
-0.1 8.53284 -4.95065 8.45541 -4.86508
0.1 7.68571 -3.74315 7.61847 -3.66983
0.3 6.73223 -2.67239 6.67886 -2.61354
0.5 5.61369 -1.71582 5.56621 -1.66084
-0.5 5 6.37442 -17.85880 6.74141 -17.72180
-0.3 4.83638 -16.63320 5.07661 -17.01730
-0.1 3.65269 -15.48780 3.84098 -15.79500
0.1 2.72662 -13.8559 2.87233 -14.09040
0.3 1.97743 -11.74110 2.08546 -11.90700
0.5 1.33455 -9.39148 1.40736 -9.48284

V. CONCLUSION

This article focuses on the upper convected Maxwell fluid

flow

between two plates, one of which is stationary, and the

other is moving with injection and suction. Here, the effect
of the magnetic field on the UCM fluid flow is analysed with
the help of HPM, leading to the following conclusions:

1y

2)

3)

4)

5)

0)

7

The velocity field profile rises with an increase in
Reynolds number, attaining a maximum value, after
which the velocity profile falls as the top plate moves
towards and away from the stationary lower plate.

As the magnetic field increases, the velocity profile
increases in case of the top plate moving towards the
stationary lower, whereas the velocity profile decreases
as the top plate moves away.

The velocity profile retards in the core region with an
increase in porosity parameter as the top plate moves
towards and away from the lower.

The velocity field retards with an increase in the Deb-
orah number reaching the peak and further increases
in both cases, the top plate moving towards and away
from the stationary lower plate in case of injection.
In the case of suction, the velocity field enhances
with an increase in Deborah number reaching the peak
and further decreases as the top plate moves towards
the stationary lower plate, whereas the velocity profile
retards with an increase in Deborah number reaching
the peak and further increases as the top plate moves
away from the lower.

The velocity profile decreases with an increase in suc-
tion, whereas it increases with an increase in injection
for both plates moving towards and apart from each
other.

An increase in injection increases the magnitude of
skin friction coefficient at upper and lower plates in
both cases, that is, plates moving towards and away
from each other. In contrast, the magnitude of the
skin friction coefficient decreases with an increase in
suction.
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