Fault Diameter of Strong Product Graph of an Arbitrary Connected Graph and a Complete Graph

Yuxiang Yue, Feng Li

Abstract

Fault diameter is an important parameter to measure the reliability and effectiveness of interconnection networks. Strong product is an efficient method to construct large graphs from small graphs. In this paper, we study the fault diameter of strong product graph of an arbitrary connected graph and a complete graph. According to the classification of an arbitrary connected graph, we first determine the fault diameter of strong product graph of two complete graphs. Then we give the fault diameter of strong product graph of an incompletely connected graph and a complete graph, which can be denoted by the fault diameter of its incompletely factor graph. In addition, we also give a more general result about fault diameter.

Index Terms-fault diameter, complete graph, incompletely connected graph, strong product graph.

I. Introduction

IN this paper, all graphs considered are simple and undirected graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The cardinality of vertex set is denoted by $|V(G)|$. Let R be a path in G, the length of R is $|V(R)|-1$ and is denoted by $L(R)$. Let x and y be any two vertices in G, the length of a shortest path between x and y in G is called the distance between x and y, which is denoted by $d(G ; x, y)$. Then the diameter of G is the maximum length of all distances between any two vertices in G, denoted by $d(G)$. If there are two or more paths connecting x and y, and the internal vertices of these paths are not the same except for x and y, then these paths are called internally vertex disjoint paths. The maximum number of internally vertex disjoint paths between x and y in G, denoted as $\zeta(G ; x, y)$.
If any vertex subset in G is deleted, this is equivalent to remove all vertices of the vertex subset and all edges incident with the vertex subset. The connectivity of G is the minimum cardinality of all vertex subsets in G, which are deleted from G to obtain an unconnected or a trivial graph, denoted by $\kappa(G)$. If G is a complete graph K_{n}, we can directly get $\kappa\left(K_{n}\right)=n-1$. Especially, if $\kappa(G) \geq w$, the graph G is called w-connected graph. We use $\delta(G)$ denote the minimum degree of G. A graph G is called maximally connected graph, if $\kappa(G)=\delta(G)$. The set of neighbors of a vertex x in G

[^0]is denoted by $N_{G}(x)$. In addition, the definitions of strong product and fault diameter are given below.

Definition 1. ([21]) Let G be a w-connected graph, the fault vertex set of G is denoted by F with $|F|<w$. The $(w-1)$ fault diameter of a graph G is defined as

$$
D_{w}(G)=\max \{d(G-F): F \subset V(G),|F|<w\}
$$

Remark 1. In the worst case of failure, we can get that $|F|=w-1$. For any w-connected graph G, the relationship between diameter and fault diameter holds

$$
d(G)=D_{1}(G) \leq D_{2}(G) \leq \cdots \leq D_{w-1}(G) \leq D_{w}(G)
$$

Definition 2. ([22]) Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right), G_{2}=$ $\left(V\left(G_{2}\right), E\left(G_{2}\right)\right)$, the strong product of G_{1} and G_{2} is the graph denoted as $G_{1} \otimes G_{2}$ with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$. Any two distinct vertices $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in $G_{1} \otimes G_{2}$ are adjacent, if and only if $x_{1}=x_{2},\left(y_{1}, y_{2}\right) \in E\left(G_{2}\right)$, or $y_{1}=y_{2},\left(x_{1}, x_{2}\right) \in E\left(G_{1}\right)$, or $\left(x_{1}, x_{2}\right) \in E\left(G_{1}\right)$, $\left(y_{1}, y_{2}\right) \in E\left(G_{2}\right)$.

Remark 2. From the above definition, the strong product has the following results.
(a) $G_{1} \otimes G_{2} \cong G_{2} \otimes G_{1}$.
(b) $\left(G_{1} \otimes G_{2}\right) \otimes G_{3} \cong G_{1} \otimes\left(G_{2} \otimes G_{3}\right)$.
(c) $\{x\} \otimes G \cong G \otimes\{x\} \cong G$.
(d) $\left|V\left(G_{1} \otimes G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|$.

For the strong product $\{x\} \otimes G$, it is usually denoted by a symbol $x G$. Similarly, the strong product $G \otimes\{x\}$ can also be denoted by a symbol $G x$. In addition, for brevity, the vertices $\left(x_{1}, x_{2}\right)$ are written as $x_{1} x_{2}$.

Since an arbitrary connected graph can be divided into complete graph and incompletely connected graph, we use $K_{m} \otimes K_{n}$ to denote the strong product graph of two complete graphs with orders $m, n \geq 1$. The example $K_{2} \otimes K_{4}$ is shown on Fig. 1, where $V\left(K_{2}\right)=\left\{x_{1}, x_{2}\right\}$ and $V\left(K_{4}\right)=$ $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

Fig. 1. The strong product graph $K_{2} \otimes K_{4}$
In addition, we use $H \otimes K_{n}$ to denote the strong product graph of an incompletely connected graph with order $m \geq$

2 and a complete graph with order $n \geq 1$. The example $P_{3} \otimes K_{3}$ is shown on Fig. 2, where $V\left(\bar{P}_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $V\left(K_{3}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$. In this paper, we mainly discuss the above two kinds of strong product graphs. For undefined symbols and terms, readers can refer to the literature [9].

Fig. 2. The strong product graph $P_{3} \otimes K_{3}$
The topological structure of any interconnection network is a graph, the vertex represents processor, the edge represents link, and the diameter represents the transmission delay of network. However, the processors are prone to failure if they work for a long time, this will affect the effectiveness of network information transmission. Krishnamoorthy and Krishnamurthy [10] proposed the concept of fault diameter for the first time to quantify this influence. They also determined the fault diameter of hypercube and gave an upper bound of the fault diameter of Cartesian product graph in the paper. For the general results, the upper bounds of the fault diameter of an arbitrary connected graph are given in [5,6], and the relationship between fault diameter and edge fault diameter is given in [4]. For the specific results, the fault diameters of many well-known networks are determined $[7,11,16]$. The latest results are about the fault diameters of deformed hypercube networks, see the literatures $[14,15,19]$.
The product graph is an important method to construct large graphs from small graphs. Recently, the researches on the product graph have attracted more and more attention $[1,12,13,20]$. According to the definition of fault diameter, the connectivity must be given before determining the fault diameter of any graph. Especially, it is easy to determine the connectivity of Cartesian product graphs. So most researches on the fault diameter of product graphs focus on the fault diameter of Cartesian product graphs. In [21], the upper bound of fault diameter of Cartesian product graph of two graphs is given which is the correction of the result of [10]. Subsequently, the upper bound of fault diameter of Cartesian product graph of n graphs is given in [2]. There are also some results about Cartesian graph bundles in $[3,8]$. But for other product graphs, such as the fault diameter of strong product graphs, there are no relevant results.
The strong product was first proposed by Sabidussi [17]. It is the union of Cartesian product and direct product [9]. However, it took a long time to determine the connectivity of strong product graphs. Yang and Xu [22] first gave the connectivity of the strong product graph of an incompletely connected graph and a complete graph. Through this result, they also gave the connectivity of the strong product graph of two maximally connected graphs. Then Spacapan [18] determined the connectivity of strong product graphs. The work on the fault diameter of strong product graphs can be carried out. In this paper, we study the fault diameter of strong product graph of an arbitrary connected graph and a complete graph. According to the classification of
an arbitrary connected graph, we first determine the fault diameter of strong product graph of two complete graphs. Then we give the fault diameter of the strong product graph of an incompletely connected graph and a complete graph by constructing the worst case paths. Moreover, we also give a more general result about fault diameter through Menger Theorem.

II. Main results

Before determining the fault diameter, we first obtain the connectivity of the two kinds of strong product graphs. It is easy to know that the connectivity of a complete graph is $\kappa\left(K_{n}\right)=n-1$. But for the connectivity of strong product graph of two complete graphs, we need the following lemma to provide a solution.

Lemma 1. Let K_{m} and K_{n} be two complete graphs with orders $m, n \geq 1$. Then

$$
K_{m} \otimes K_{n}=K_{m n}
$$

Proof. Let $G=K_{m} \otimes K_{n}, x_{h} y_{g}$ and $x_{p} y_{q}$ be any two vertices in G, where $x_{h}, x_{p} \in V\left(K_{m}\right)$ and $y_{g}, y_{q} \in V\left(K_{n}\right)$. By the definition of strong product, there are three cases can be discussed.

Case 1. $x_{h}=x_{p}$.
Since $x_{h}=x_{p}$ and $\left(y_{g}, y_{q}\right) \in E\left(K_{n}\right)$, the two vertices $x_{h} y_{g}$ and $x_{h} y_{q}$ are adjacent in G, we can get $\left(x_{h} y_{g}, x_{h} y_{q}\right) \in$ $E(G)$.

Case 2. $y_{g}=y_{q}$.
Since $\left(x_{h}, x_{p}\right) \in E\left(K_{m}\right)$ and $y_{g}=y_{q}$, the two vertices $x_{h} y_{g}$ and $x_{p} y_{g}$ are adjacent in G, we can get $\left(x_{h} y_{g}, x_{p} y_{g}\right) \in$ $E(G)$.

Case 3. $x_{h} \neq x_{p}, y_{g} \neq y_{q}$.
Since $\left(x_{h}, x_{p}\right) \in E\left(K_{m}\right)$ and $\left(y_{g}, y_{q}\right) \in E\left(K_{n}\right)$, the two vertices $x_{h} y_{g}$ and $x_{p} y_{q}$ are adjacent in G, we can get $\left(x_{h} y_{g}, x_{p} y_{q}\right) \in E(G)$.
So any two vertices $x_{h} y_{g}$ and $x_{p} y_{q}$ are adjacent in G. By the (d) of Remark 2, we have

$$
|V(G)|=\left|V\left(K_{m}\right)\right|\left|V\left(K_{n}\right)\right|=m n .
$$

From this, G is the complete graph $K_{m n}$.
Through (a) and (b) of Remark 2, the strong product is commutative and associative, we can still extend Lemma 1 to t-dimension.

Corollary 1. Let $K_{v_{1}}, K_{v_{2}}, \cdots, K_{v_{t}}$ be t complete graphs with number $t \geq 2$ and orders $v_{1}, v_{2}, \cdots, v_{t} \geq 1$. Then

$$
K_{v_{1}} \otimes K_{v_{2}} \otimes \cdots \otimes K_{v_{t}}=K_{\prod_{i=1}^{t} v_{i}}
$$

Lemma 2. Let K_{n} be a complete graph with order $n \geq 1$, and F be the fault vertex set in K_{n} with $|F|=d$. Then

$$
K_{n}-F=K_{n-d}
$$

Proof. Before removing the fault vertex set F, there is always an edge between any two vertices in the complete graph K_{n}. Since the removed edges are all incident with the vertices in F, then any two vertices are still adjacent in $K_{n}-F$. For $|F|=d$, then

$$
\left|V\left(K_{n}-F\right)\right|=n-d
$$

From this, $K_{n}-F$ is the complete graph K_{n-d}.
Through the previous two lemmas, the strong product graph of two complete graphs is still a complete graph. The complete graph is still a complete graph if any vertex subset is deleted.

Theorem 3. Let K_{m} and K_{n} be two complete graphs with orders $m, n \geq 1$. For any $1 \leq w \leq m n-1$. Then

$$
D_{w}\left(K_{m} \otimes K_{n}\right)=1
$$

Proof. Let F be the fault vertex set with $|F|=w-1$. By Lemma 1, we can get $K_{m} \otimes K_{n}=K_{m n}$, then $\kappa\left(K_{m} \otimes K_{n}\right)=$ $m n-1$. For any $1 \leq w \leq m n-1, K_{m} \otimes K_{n}-F$ is connected. By Lemma 2, for any fault vertex set F, the diameter of $K_{m} \otimes K_{n}-F$ is

$$
d\left(K_{m} \otimes K_{n}-F\right)=d\left(K_{m n}-F\right)=d\left(K_{m n-w+1}\right)=1
$$

From this, we have $D_{w}\left(K_{m} \otimes K_{n}\right)=1$.
The Theorem 3 determines the fault diameter of $K_{m} \otimes K_{n}$. By Corollary 1, we can directly extend the theorem to t dimension.

Corollary 2. Let $K_{v_{1}}, K_{v_{2}}, \cdots, K_{v_{t}}$ be t complete graphs with number $t \geq 2$ and orders $v_{1}, v_{2}, \cdots, v_{t} \geq 1$. For $1 \leq$ $w \leq \prod_{i=1}^{t} v_{i}-1$. Then

$$
D_{w}\left(K_{v_{1}} \otimes K_{v_{2}} \otimes \cdots \otimes K_{v_{t}}\right)=1
$$

Before determining the fault diameter of $H \otimes K_{n}$, we first obtain its connectivity. The following lemma provides a solution.

Lemma 4. ([22]) Let H be an incompletely connected graph with the connectivity $k \geq 1$, and K_{n} be a complete graph with order $n \geq 1$. Then

$$
\kappa\left(H \otimes K_{n}\right)=n k
$$

Under the determined connectivity, we prove the following theorem by constructing isomorphic subgraphs and the worst case paths.

Theorem 5. Let H be an incompletely connected graph with the connectivity $k \geq 1$, and K_{n} be a complete graph with order $n \geq 1$. For any $1 \leq w \leq n k$. Then

$$
D_{w}\left(H \otimes K_{n}\right)=D_{\left\lceil\frac{w}{n}\right\rceil}(H)
$$

Proof. Let $G=H \otimes K_{n}$ with $V(H)=\left\{x_{1}, \cdots, x_{m}\right\}$ and $V\left(K_{n}\right)=\left\{y_{1}, \cdots, y_{n}\right\}$. Since H is an incompletely connected graph, we have $m \geq 3$. Let $x_{h} y_{g}$ and $x_{p} y_{q}$ be any two vertices in G, where $x_{h}, x_{p} \in V(H)$ and $y_{g}, y_{q} \in$ $V\left(K_{n}\right)$. Let F be the fault vertex set in G with $|F|=w-1$. By Lemma 4 , we can get $\kappa\left(H \otimes K_{n}\right)=n k$. So for any $1 \leq w \leq n k, G-F$ is connected. We first discuss the upper bound of the fault diameter of G. According to the positional relationship between the two vertices $x_{h} y_{g}$ and $x_{p} y_{q}$, it can be divided into three cases.

Case 1. $x_{h}=x_{p}$.
Without loss of generality, we discuss the distance between any two vertices $x_{h} y_{g}$ and $x_{h} y_{q}$ in $x_{h} K_{n}$ after failure. By the (c) of Remark 2, $x_{h} K_{n} \cong K_{n}$, then $x_{h} K_{n}$ is a complete graph and any two vertices are adjacent in $x_{h} K_{n}$. By Lemma

2, $x_{h} K_{n}-F \cap V\left(x_{h} K_{n}\right)$ is still a complete graph, then any two vertices $x_{h} y_{g}$ and $x_{h} y_{q}$ are still adjacent in $G-F$. Since $m \geq 3$, then $d(H) \geq 1$, we have $d\left(G-F ; x_{h} y_{g}, x_{h} y_{q}\right)=$ $1 \leq d(H)$.

Case 2. $y_{g}=y_{q}$.

Consider n disjoint subgraphs $H y_{j}$ in G for $j=$ $1,2, \cdots, n$. Since the vertex sets of n disjoint subgraphs $H y_{j}$ is a partition of the vertex set of G, we have

$$
V(G)=V\left(H y_{1}\right) \cup V\left(H y_{2}\right) \cup \cdots \cup V\left(H y_{n}\right) .
$$

The cardinality of any fault vertex set F holds $1 \leq|F|=$ $w-1 \leq n k-1$. Since there are n disjoint subgraphs, even in the worst case, there is at least one subgraph with no more than $\left\lceil\frac{w}{n}\right\rceil-1$ fault vertices. Without loss of generality, we assume that there is a subgraph $H y_{j}$ satisfies

$$
1 \leq\left|F \cap V\left(H y_{j}\right)\right|=\left\lceil\frac{w}{n}\right\rceil-1 \leq k-1
$$

According to whether the two vertices $x_{h} y_{j}$ and $x_{p} y_{j}$ in $H y_{j}$ are fault vertices, we can discuss three subcases.

Subcase 2.1. $x_{h} y_{j}, x_{p} y_{j} \notin F$.
Since the connectivity of H is k, without loss of generality, we let

$$
\begin{aligned}
N_{H}\left(x_{h}\right) & =\left\{a_{1}, a_{2}, \cdots, a_{k}\right\} . \\
N_{H}\left(x_{p}\right) & =\left\{b_{1}, b_{2}, \cdots, b_{k}\right\} .
\end{aligned}
$$

By Lemma 1, we can get $K_{2} \otimes K_{n}=K_{2 n}$. Each vertex in $V\left(x_{h} K_{n}\right)$ is adjacent to all vertices in $V\left(a_{1} K_{n}\right) \cup V\left(a_{2} K_{n}\right) \cup$ $\cdots \cup V\left(a_{k} K_{n}\right)$, then each vertex in $V\left(x_{p} K_{n}\right)$ is adjacent to all vertices in $V\left(b_{1} K_{n}\right) \cup V\left(b_{2} K_{n}\right) \cup \cdots \cup V\left(b_{k} K_{n}\right)$. Consider in the subgraph $H y_{j}-F \cap V\left(H y_{j}\right)$, there is at least a path between $x_{h} y_{j}$ and $x_{p} y_{j}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil}(H)$. Without loss of generality, we assume that R_{1} is the path of length $D_{\left\lceil\frac{w}{n}\right\rceil}(H)$ between $x_{h} y_{j}$ and $x_{p} y_{j}$ in $H y_{j}-F \cap V\left(H y_{j}\right)$ by the neighbors $a_{1} y_{j}$ and $b_{1} y_{j}$.

$$
R_{1}: x_{h} y_{j} \rightarrow a_{1} y_{j} \rightarrow \cdots \rightarrow b_{1} y_{j} \rightarrow x_{p} y_{j}
$$

Since the two vertices $x_{h} y_{g}$ and $a_{1} y_{j}$ are adjacent, the two vertices $x_{p} y_{g}$ and $b_{1} y_{j}$ are adjacent, we can construct a path R_{2} between $x_{h} y_{g}$ and $x_{p} y_{g}$ in $G-F$.

$$
R_{2}: x_{h} y_{g} \rightarrow a_{1} y_{j} \xrightarrow{R_{1}-\left\{x_{h} y_{j}, x_{p} y_{j}\right\}} b_{1} y_{j} \rightarrow x_{p} y_{g}
$$

with $L\left(R_{2}\right)=L\left(R_{1}\right)=D_{\left\lceil\frac{w}{n}\right\rceil}(H)$. From this, there is at least a path between $x_{h} y_{g}$ and $x_{p} y_{g}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil}(H)$ in $G-F$, we have $d\left(G-F ; x_{h} y_{g}, x_{p} y_{g}\right) \leq$ $D_{\left\lceil\frac{w}{n}\right\rceil}(H)$.
Subcase 2.2. $x_{h} y_{j} \notin F, x_{p} y_{j} \in F$ or $x_{h} y_{j} \in F, x_{p} y_{j} \notin$ F.

Without loss of generality, we assume that $x_{h} y_{j} \in F$ and $x_{p} y_{j} \notin F$. The neighbors of $x_{h} y_{j}$ in $H y_{j}$ are

$$
N_{H y_{j}}\left(x_{h} y_{j}\right)=\left\{a_{1} y_{j}, a_{2} y_{j}, \cdots, a_{k} y_{j}\right\}
$$

Since $x_{h} y_{g}$ is adjacent to the vertices of $V\left(N_{H y_{j}}\left(x_{h} y_{j}\right)\right)$ and not adjacent to the vertices of $V\left(H y_{j}\right) \backslash V\left(N_{H y_{j}}\left(x_{h} y_{j}\right)\right)$. Remove the vertex $x_{h} y_{j}$ and the edges incident with $x_{h} y_{j}$ in $H y_{j}$, then consider the edge set

$$
E_{1}=\left\{\left(x_{h} y_{g}, a_{i} y_{j}\right): i=1,2, \cdots, k\right\} .
$$

Combine the vertex $x_{h} y_{g}$, the edges of E_{1} and the subgraph $H y_{j}-\left\{x_{h} y_{j}\right\}$ into a new subgraph H^{\prime}. The new subgraph H^{\prime} has the same number of vertices and edges as subgraph
$H y_{j}$, and retains the adjacency of the subgraph $H y_{j}$. From this, the two subgraphs H^{\prime} and $H y_{j}$ are isomorphic. For the subgraph H^{\prime}, we have

$$
\left|F \cap V\left(H^{\prime}\right)\right|=\left\lceil\frac{w}{n}\right\rceil-2 \leq k-2
$$

In the subgraph $H^{\prime}-F \cap V\left(H^{\prime}\right)$, even in the worst case, there is at least a path between $x_{h} y_{g}$ and $x_{p} y_{j}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$. Without loss of generality, we assume that R_{3} is the path of length $D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$ between $x_{h} y_{g}$ and $x_{p} y_{j}$ in $H^{\prime}-F \cap V\left(H^{\prime}\right)$ by the neighbor $b_{1} y_{j}$.

$$
R_{3}: x_{h} y_{g} \rightarrow \cdots \rightarrow b_{1} y_{j} \rightarrow x_{p} y_{j}
$$

Since the two vertices $x_{p} y_{g}$ and $b_{1} y_{j}$ are adjacent, we can construct a path R_{4} between $x_{h} y_{g}$ and $x_{p} y_{g}$ in $G-F$.

$$
R_{4}: x_{h} y_{g} \xrightarrow{R_{3}-x_{p} y_{j}} b_{1} y_{j} \rightarrow x_{p} y_{g}
$$

with $L\left(R_{4}\right)=L\left(R_{3}\right)=D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$. From this, there is at least a path between $x_{h} y_{g}$ and $x_{p} y_{g}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$ in $G-F$, we have $d\left(G-F ; x_{h} y_{g}, x_{p} y_{g}\right) \leq$ $D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$.

Subcase 2.3. $x_{h} y_{j}, x_{p} y_{j} \in F$.
Consider the neighbors of $x_{p} y_{j}$ in $H y_{j}$ are

$$
N_{H y_{j}}\left(x_{p} y_{j}\right)=\left\{b_{1} y_{j}, b_{2} y_{j}, \cdots, b_{k} y_{j}\right\} .
$$

Since $x_{p} y_{g}$ is adjacent to the vertices of $V\left(N_{H y_{j}}\left(x_{p} y_{j}\right)\right)$ and not adjacent to the vertices of $V\left(H y_{j}\right) \backslash V\left(N_{H y_{j}}\left(x_{p} y_{j}\right)\right)$. Remove $x_{h} y_{j}, x_{p} y_{j}$ and the edges incident with $x_{h} y_{j}$ or $x_{p} y_{j}$ in $H y_{j}$, then consider the edge set

$$
E_{2}=\left\{\left(x_{p} y_{g}, b_{i} y_{j}\right): i=1,2, \cdots, k\right\}
$$

With the adjacency of $x_{h} y_{g}$ in the Subcase 2.2, we combine the vertex $x_{h} y_{g}$, the vertex $x_{p} y_{g}$, the edges of E_{1}, the edges of E_{2} and the sugraph $H y_{j}-\left\{x_{h} y_{j}, x_{p} y_{j}\right\}$ into a new subgraph $H^{\prime \prime}$. The new subgraph $H^{\prime \prime}$ has the same number of vertices and edges as subgraph $H y_{j}$, and retains the adjacency of the subgraph $H y_{j}$. From this, the two subgraphs $H^{\prime \prime}$ and $H y_{j}$ are isomorphic. For the subgraph $H^{\prime \prime}$, we have

$$
\left|F \cap V\left(H^{\prime \prime}\right)\right|=\left\lceil\frac{w}{n}\right\rceil-3 \leq k-3
$$

In the subgraph $H^{\prime \prime}-F \cap V\left(H^{\prime \prime}\right)$, even in the worst case, there is at least a path between $x_{h} y_{g}$ and $x_{p} y_{g}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil-2}(H)$. From this, there is also at least a path between $x_{h} y_{g}$ and $x_{p} y_{g}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil-2}(H)$ in $G-F$, we have $d\left(G-F ; x_{h} y_{g}, x_{p} y_{g}\right) \leq D_{\left\lceil\frac{w}{n}\right\rceil-2}(H)$.

Case 3. $x_{h} \neq x_{p}, y_{g} \neq y_{q}$.
As in the Case 2, there is also at least one subgraph $H y_{j}(j=1,2, \cdots, n)$ with no more than $\left\lceil\frac{w}{n}\right\rceil-1$ fault vertices, we assume that there is also a subgraph $H y_{j}$ satisfies $1 \leq\left|F \cap V\left(H y_{j}\right)\right|=\left\lceil\frac{w}{n}\right\rceil-1 \leq k-1$. The following three subcases can be discussed.

Subcase 3.1. $x_{h} y_{j}, x_{p} y_{j} \notin F$.
Since the two vertices $x_{h} y_{g}$ and $a_{1} y_{j}$ are adjacent, the two vertices $x_{p} y_{q}$ and $b_{1} y_{j}$ are adjacent, we can construct a path R_{5} between $x_{h} y_{g}$ and $x_{p} y_{q}$ in $G-F$ on the basis of R_{1}.

$$
R_{5}: x_{h} y_{g} \rightarrow a_{1} y_{j} \xrightarrow{R_{1}-\left\{x_{h} y_{j}, x_{p} y_{j}\right\}} b_{1} y_{j} \rightarrow x_{p} y_{q}
$$

with $L\left(R_{5}\right)=L\left(R_{1}\right)=D_{\left\lceil\frac{w}{n}\right\rceil}(H)$. Similarly, we have $d\left(G-F ; x_{h} y_{g}, x_{p} y_{q}\right) \leq D_{\left\lceil\frac{w}{n}\right\rceil}(H)$.

Subcase 3.2. $x_{h} y_{j} \notin F, x_{p} y_{j} \in F$ or $x_{h} y_{j} \in F, x_{p} y_{j} \notin$ F.
Without loss of generality, we assume that $x_{h} y_{j} \in F$ and $x_{p} y_{j} \notin F$. As in the Subcase 2.2, we can also construct the subgraph H^{\prime}, then $\left|F \cap V\left(H^{\prime}\right)\right|=\left\lceil\frac{w}{n}\right\rceil-2 \leq k-2$. Since the two vertices $x_{p} y_{q}$ and $b_{1} y_{j}$ are adjacent, we can construct a path R_{6} between $x_{h} y_{g}$ and $x_{p} y_{q}$ in $G-F$ on the basis of R_{3}.

$$
R_{6}: x_{h} y_{g} \xrightarrow{R_{3}-x_{p} y_{j}} b_{1} y_{j} \rightarrow x_{p} y_{q}
$$

with $L\left(R_{6}\right)=L\left(R_{3}\right)=D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$. Similarly, we have $d\left(G-F ; x_{h} y_{g}, x_{p} y_{q}\right) \leq D_{\left\lceil\frac{w}{n}\right\rceil-1}(H)$.

Subcase 3.3. $x_{h} y_{j}, x_{p} y_{j} \in F$.
Since $x_{p} y_{q}$ is adjacent to the vertices of $V\left(N_{H y_{j}}\left(x_{p} y_{j}\right)\right)$ and not adjacent to the vertices of $V\left(H y_{j}\right) \backslash V\left(N_{H y_{j}}\left(x_{p} y_{j}\right)\right)$. Remove $x_{h} y_{j}, x_{p} y_{j}$ and the edges incident with $x_{h} y_{j}$ or $x_{p} y_{j}$ in $H y_{j}$, then consider the edge set

$$
E_{3}=\left\{\left(x_{p} y_{q}, b_{i} y_{j}\right): i=1,2, \cdots, k\right\}
$$

With the adjacency of $x_{h} y_{g}$ in the Subcase 2.2, we combine the vertex $x_{h} y_{g}$, the vertex $x_{p} y_{q}$, the edges of E_{1}, the edges of E_{3} and the sugraph $H y_{j}-\left\{x_{h} y_{j}, x_{p} y_{j}\right\}$ into a new subgraph $H^{\prime \prime \prime}$. The new subgraph $H^{\prime \prime \prime}$ has the same number of vertices and edges as subgraph $H y_{j}$, and retains the adjacency of the subgraph $H y_{j}$. From this, the two subgraphs $H^{\prime \prime \prime}$ and $H y_{j}$ are isomorphic. For the subgraph $H^{\prime \prime \prime}$, we have

$$
\left|F \cap V\left(H^{\prime \prime \prime}\right)\right|=\left\lceil\frac{w}{n}\right\rceil-3 \leq k-3
$$

Similarly, even in the worst case, there is at least a path between $x_{h} y_{g}$ and $x_{p} y_{q}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil-2}(H)$ in the subgraph $H^{\prime \prime \prime}-F \cap V\left(H^{\prime \prime \prime}\right)$. From this, there is also at least a path between $x_{h} y_{g}$ and $x_{p} y_{q}$ of length no more than $D_{\left\lceil\frac{w}{n}\right\rceil-2}(H)$ in $G-F$, we have $d\left(G-F ; x_{h} y_{g}, x_{p} y_{q}\right) \leq$ $D_{\left\lceil\frac{w}{n}\right\rceil-2}(H)$.

Through the above analysis, we can conclude $D_{w}(G) \leq$ $D_{\left\lceil\frac{w}{n}\right\rceil}(H)$.

Consider the lower bound of the vertex fault diameter of G by giving fault vertex sets specifically, let F_{H} be a fault vertex set in H such that the diameter of $H-F_{H}$ is $D_{\left\lceil\frac{w}{n}\right\rceil}(H)$. Without loss of generality, we let

$$
F_{H}=\left\{x_{1}, \cdots, x_{\left\lceil\frac{w}{n}\right\rceil-1}\right\} .
$$

If $\bmod \left(\frac{w-1}{n}\right)=0$, we specifically give fault vertex set F_{1} obtained on the basis of F_{H}.

$$
\begin{aligned}
F_{1}=\{ & x_{1} y_{1}, \cdots, x_{1} y_{n}, x_{2} y_{1}, \cdots, x_{2} y_{n}, \cdots, \\
& \left.x_{\left\lceil\frac{w}{n}\right\rceil-1} y_{1}, \cdots, x_{\left\lceil\frac{w}{n}\right\rceil-1} y_{n}\right\} .
\end{aligned}
$$

If $\bmod \left(\frac{w-1}{n}\right) \neq 0$, we specifically give fault vertex set F_{2} obtained on the basis of F_{H}.

$$
\begin{aligned}
F_{2}=\{ & x_{1} y_{1}, \cdots, x_{1} y_{n}, x_{2} y_{1}, \cdots, x_{2} y_{n}, \cdots, \\
& \left.x_{\left\lceil\frac{w}{n}\right\rceil} y_{1}, \cdots, x_{\left\lceil\frac{w}{n}\right\rceil} y_{\bmod \left(\frac{w-1}{n}\right)}\right\} .
\end{aligned}
$$

From this, we can get

$$
d\left(G-F_{1}\right)=d\left(G-F_{2}\right)=D_{\left\lceil\frac{w}{n}\right\rceil}(H)
$$

Therefore, we have $D_{w}(G) \geq D_{\left\lceil\frac{w}{n}\right\rceil}(H)$.

From the Theorem 5, we can deduce some important results. Let $w=1$, we can get the relationship of the diameters of $H \otimes K_{n}$ and H.

Corollary 3. Let H be an incompletely connected graph with the connectivity $k \geq 1$, and K_{n} be a complete graph with order $n \geq 1$. Then

$$
d\left(H \otimes K_{n}\right)=d(H)
$$

If the fault diameter of H is given. we can directly obtain the fault diameter of $H \otimes K_{n}$ by Theorem 5. As the basic graph, the fault diameters of path, cycle and wheel graph can be easily obtained, we have the following corollaries directly.
Corollary 4. Let P_{m} be a path with order $m>2$, and K_{n} be a complete graph with order $n \geq 1$. For any $1 \leq w \leq n$. Then

$$
D_{w}\left(P_{m} \otimes K_{n}\right)=m-1
$$

Corollary 5. Let C_{m} be a cycle with order $m>3$, and K_{n} be a complete graph with order $n \geq 1$. For any $1 \leq w \leq 2 n$. Then

$$
D_{w}\left(C_{m} \otimes K_{n}\right)= \begin{cases}\left\lfloor\frac{m}{2}\right\rfloor, & \text { for } 1 \leq w \leq n \\ m-2, & \text { for } n<w \leq 2 n\end{cases}
$$

Corollary 6. Let W_{1+m} be a wheel graph with $m \geq 3$, and K_{n} be a complete graph with order $n \geq 1$. For any $1 \leq w \leq 3 n$. Then

$$
D_{w}\left(W_{1+m} \otimes K_{n}\right)= \begin{cases}2, & \text { for } 1 \leq w \leq n \\ \left\lfloor\frac{m}{2}\right\rfloor, & \text { for } n<w \leq 2 n \\ m-2, & \text { for } 2 n<w \leq 3 n\end{cases}
$$

By Corollary 1, we can still extend the Theorem 5 to t dimension, the fault diameter of the strong product graph of an incompletely connected graph and $t-1$ complete graphs is given.

Corollary 7. Let H be a incompletely connected graph with the connectivity $k \geq 1$, and $K_{v_{1}}, K_{v_{2}}, \cdots, K_{v_{t-1}}$ be $t-1$ complete graphs with number $t \geq 2$ and orders $v_{1}, v_{2}, \cdots, v_{t-1} \geq 1$. For $1 \leq w \leq \prod_{i=1}^{t-1} v_{i} k$. Then

$$
\left.D_{w}\left(H \otimes K_{v_{1}} \otimes K_{v_{2}} \otimes \cdots \otimes K_{v_{t-1}}\right)=D^{\frac{w}{\prod_{i=1}^{t-1} v_{i}}}\right]^{(H) . . . ~}
$$

Since any complete graph is a maximally connected graph, we give the upper bound of the fault diameter of strong product graph of two maximally connected graphs by Menger Theorem.

Lemma 6. ([22]) Let G_{1} and G_{2} be two maximally connected graphs with orders $n_{1}, n_{2} \geq 2$, respectively. Then

$$
\kappa\left(G_{1} \otimes G_{2}\right)=\min \left\{\delta_{1} n_{2}, \delta_{2} n_{1}, \delta_{1}+\delta_{2}+\delta_{1} \delta_{2}\right\}
$$

Lemma 7. (Menger Theorem) Let G be a connected and undirected graph, x and y are two different vertices in G. If $x, y \notin E(G)$, then $\zeta(G ; x, y)=\kappa(G ; x, y)$.

Theorem 8. Let G_{1} and G_{2} be two maximally connected graphs, orders $n_{1}, n_{2} \geq 2$, minimum degrees $\delta_{1}, \delta_{2} \geq 1$. If $G=G_{1} \otimes G_{2}$, for any $1 \leq w \leq \kappa(G)$, then
$D_{w}(G) \leq \max \left\{\left\lfloor\frac{n_{1} n_{2}-w-1}{\delta_{1} n_{2}-w+1}\right\rfloor+1,\left\lfloor\frac{n_{1} n_{2}-w-1}{\delta_{2} n_{1}-w+1}\right\rfloor+1\right.$,

$$
\left.\left\lfloor\frac{n_{1} n_{2}-w-1}{\delta_{1}+\delta_{2}+\delta_{1} \delta_{2}-w+1}\right\rfloor+1\right\} .
$$

Proof. Let F be the fault vertex set in G with $|F|=w-1$, x and y are two different vertices in $G-F$. Without loss of generality, we assume $d(G-F)=h$. When $h \leq 1, G-F$ is a complete graph, the distance between x and y in $G-F$ is 1 . When $h \geq 2$, we assume the distance between x and y in $G-F$ is $d(G-F ; x, y)=h$.

By Menger Theorem, there are at least $\kappa(G)-w+1$ internally vertex disjoint paths between x and y in $G-F$. The number of internal vertices in each path is at least $h-1$. Since the number of vertices in the strong product graph G satisfies $\left|V(G)=n_{1} n_{2}\right|$. After the vertex failure occurred in G, we have $(\kappa(G)-w+1)(h-1)+2 \leq n_{1} n_{2}-w-1$. Since $\kappa(G)=\min \left\{\delta_{1} n_{2}, \delta_{2} n_{1}, \delta_{1}+\delta_{2}+\delta_{1} \delta_{2}\right.$, we can get

$$
h \leq\left\lfloor\frac{n_{1} n_{2}-w-1}{\min \left\{\delta_{1} n_{2}, \delta_{2} n_{1}, \delta_{1}+\delta_{2}+\delta_{1} \delta_{2}\right\}-w+1}\right\rfloor+1 .
$$

From this, the theorem is proved.

III. Conclusion

In this paper, we first determine the fault diameter of strong product graph of two complete graphs. Then we determine the fault diameter of strong product graph of an incompletely connected graph and a complete graph. Through the results, we find that the strong product graph of an arbitrary connected graph and a complete graph has small fault diameter and retains the same fault diameter as its incompletely factor graph. The strong product graph of an arbitrary connected graph and a complete graph provides a new and efficient method to construct large and reliable networks through small networks. Moreover, we also give the upper bound of the fault diameter of strong product graph of two maximally connected graphs. This provides direction for solving the general situation of the fault diameter of strong product graph.

REFERENCES

[1] B. Brešar, N. Gastineau, S. Klavžar, O. Togni, "Exact distance graphs of product graphs," Graphs and Combinatorics, vol. 35, pp. 1555-1569, 2019.
[2] I. Banič, J. Žerovnik, "The fault-diameter of Cartesian products," Advances in Applied Mathematics, vol. 40, no. 1, pp. 98-106, 2008.
[3] I. Banič, J. Žerovnik, "Fault-diameter of Cartesian graph bundles," Information Processing Letters, vol. 100, no. 2, pp. 47-51, 2006.
[4] I. Banič, R. Erveš, J. Žerovnik, "Edge, vertex and mixed fault diameters," Advances in Applied Mathematics, vol. 43, no. 3, pp. 231-238, 2009.
[5] F. R. K. Chung, M. R. Garey, "Diameter bounds for altered graphs," Journal of Graph Theory, vol. 8, no. 4, pp. 511-534, 1984.
[6] P. Dankelmann, "Bounds on the fault-diameter of graphs," Networks, vol. 70, no. 2, pp. 132-140, 2017.
[7] D. Z. Du, D. F. Hsu, Y. D. Lyuu, "On the diameter vulnerability of Kautz digraphs," Discrete Mathematics, vol. 151, no. 1-3, pp. 81-85, 1996.
[8] R. Erveš, J. Žerovnik, "Mixed fault diameter of Cartesian graph bundles," Discrete Applied Mathematics, vol. 161, no. 12, pp. 17261733, 2013.
[9] R. H. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, 2nd ed. Boca Raton, FL, USA: CRC press, 2011.
[10] M. S. Krishnamoorthy, B. Krishnamurthy, "Fault diameter of interconnection networks," Computers and Mathematics with Applications, vol. 13, no. 5-6, pp. 577-582, 1987.
[11] S. Latifi, "Combinatorial analysis of the fault-diameter of the n-cube," IEEE Transactions on Computers, vol. 42, no. 1, pp. 27-33, 1993.
[12] F. Li, W. Wang, Z. B. Xu, H. X. Zhao, "Some results on the lexicographic product of vertex-transitive graphs," Applied Mathematics Letters, vol. 24, no. 11, pp. 1924-1926, 2011.
[13] M. Yuan, F. Wen, R. Wang, "Merging the A- and Q-spectrum of three kinds of graph product," IAENG International Journal of Applied Mathematics, vol. 51, no. 4, pp. 990-994, 2021.
[14] M. Ma, D. B. West, J. M. Xu, "The vulnerability of the diameter of the enhanced hypercubes," Theoretical Computer Science, vol. 694, pp. 60-65, 2017.
[15] H. Qi, X. D. Zhu, "The fault-diameter and wide-diameter of twisted hypercubes," Discrete Applied Mathematics, vol. 235, pp. 154-160, 2018.
[16] Y. Rouskov, P. K. Srimani, "Fault diameter of star graphs," Information Processing Letters, vol. 48, no. 5, pp. 243-251, 1993.
[17] G. Sabidussi, "Graph multiplication," Mathematische Zeitschrift, vol. 72, no. 1, pp. 446-457, 1959.
[18] S. Spacapan, "Connectivity of strong products of graphs," Graphs and Combinatorics, vol. 26, no. 3, pp. 457-467, 2010.
[19] T. H. Tsai, Y. C. Chen, J. J. M. Tan, "Topological properties on the wide and fault diameters of exchanged hypercubes," IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 12, pp. 3317-3327, 2014.
[20] J. M. Xu, C. Yang, "Fault diameter of product graphs," Information Processing Letters, vol. 102, no. 6, pp. 226-228, 2007.
[21] M. Xu, J. M. Xu, X. M. Hou, "Fault diameter of Cartesian product graphs," Information Processing Letters, vol. 93, no. 5, pp. 245-248, 2005.
[22] C. Yang, J. M. Xu, "Connectivity and edge-connectivity of strong product graphs," Journal of University of Science and Technology of China, vol. 5, no. 5, pp. 449-455, 2008.

[^0]: Manuscript received March 19, 2023; revised November 20, 2023.
 This work was supported by the National Natural Science Foundation of China (11551002), and Natural Science Foundation of Qinghai Province (2019-ZJ-7093).
 Yuxiang Yue is a postgraduate student of the State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai Normal University, Xining, 810003, China (corresponding author, e-mail: yueyuxiang21@126.com).

 Feng Li is a professor of School of Computer Science, Qinghai Normal University, Xining, 810003, China (e-mail: li2006369@126.com).

