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Abstract—Fault diameter is an important parameter to
measure the reliability and effectiveness of interconnection
networks. Strong product is an efficient method to construct
large graphs from small graphs. In this paper, we study the fault
diameter of strong product graph of an arbitrary connected
graph and a complete graph. According to the classification
of an arbitrary connected graph, we first determine the fault
diameter of strong product graph of two complete graphs.
Then we give the fault diameter of strong product graph of
an incompletely connected graph and a complete graph, which
can be denoted by the fault diameter of its incompletely factor
graph. In addition, we also give a more general result about
fault diameter.

Index Terms—fault diameter, complete graph, incompletely
connected graph, strong product graph.

I. INTRODUCTION

IN this paper, all graphs considered are simple and undi-
rected graphs. Let G be a graph with vertex set V (G) and

edge set E(G). The cardinality of vertex set is denoted by
|V (G)|. Let R be a path in G, the length of R is |V (R)|−1
and is denoted by L(R). Let x and y be any two vertices
in G, the length of a shortest path between x and y in G
is called the distance between x and y, which is denoted by
d(G;x, y). Then the diameter of G is the maximum length
of all distances between any two vertices in G, denoted by
d(G). If there are two or more paths connecting x and y, and
the internal vertices of these paths are not the same except for
x and y, then these paths are called internally vertex disjoint
paths. The maximum number of internally vertex disjoint
paths between x and y in G, denoted as ζ(G;x, y).

If any vertex subset in G is deleted, this is equivalent to
remove all vertices of the vertex subset and all edges incident
with the vertex subset. The connectivity of G is the minimum
cardinality of all vertex subsets in G, which are deleted from
G to obtain an unconnected or a trivial graph, denoted by
κ(G). If G is a complete graph Kn, we can directly get
κ(Kn) = n − 1. Especially, if κ(G) ≥ w, the graph G is
called w-connected graph. We use δ(G) denote the minimum
degree of G. A graph G is called maximally connected graph,
if κ(G) = δ(G). The set of neighbors of a vertex x in G
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is denoted by NG(x). In addition, the definitions of strong
product and fault diameter are given below.

Definition 1. ([21]) Let G be a w-connected graph, the fault
vertex set of G is denoted by F with |F | < w. The (w− 1)-
fault diameter of a graph G is defined as

Dw(G) = max{d(G− F ) : F ⊂ V (G), |F | < w}.

Remark 1. In the worst case of failure, we can get that
|F | = w−1. For any w-connected graph G, the relationship
between diameter and fault diameter holds

d(G) = D1(G) ≤ D2(G) ≤ · · · ≤ Dw−1(G) ≤ Dw(G).

Definition 2. ([22]) Let G1 = (V (G1), E(G1)), G2 =
(V (G2), E(G2)), the strong product of G1 and G2 is the
graph denoted as G1 ⊗G2 with vertex set V (G1)× V (G2).
Any two distinct vertices (x1, x2) and (y1, y2) in G1 ⊗ G2

are adjacent, if and only if x1 = x2, (y1, y2) ∈ E(G2),
or y1 = y2, (x1, x2) ∈ E(G1), or (x1, x2) ∈ E(G1),
(y1, y2) ∈ E(G2).

Remark 2. From the above definition, the strong product
has the following results.
(a) G1 ⊗G2

∼= G2 ⊗G1.
(b) (G1 ⊗G2)⊗G3

∼= G1 ⊗ (G2 ⊗G3).
(c) {x} ⊗G ∼= G⊗ {x} ∼= G.
(d) |V (G1 ⊗G2)| = |V (G1)||V (G2)|.

For the strong product {x}⊗G, it is usually denoted by a
symbol xG. Similarly, the strong product G⊗ {x} can also
be denoted by a symbol Gx. In addition, for brevity, the
vertices (x1, x2) are written as x1x2.

Since an arbitrary connected graph can be divided into
complete graph and incompletely connected graph, we use
Km⊗Kn to denote the strong product graph of two complete
graphs with orders m,n ≥ 1. The example K2 ⊗ K4 is
shown on Fig. 1, where V (K2) = {x1, x2} and V (K4) =
{y1, y2, y3, y4}.

Fig. 1. The strong product graph K2 ⊗K4

In addition, we use H ⊗Kn to denote the strong product
graph of an incompletely connected graph with order m ≥
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2 and a complete graph with order n ≥ 1. The example
P3 ⊗ K3 is shown on Fig. 2, where V (P3) = {x1, x2, x3}
and V (K3) = {y1, y2, y3}. In this paper, we mainly discuss
the above two kinds of strong product graphs. For undefined
symbols and terms, readers can refer to the literature [9].

Fig. 2. The strong product graph P3 ⊗K3

The topological structure of any interconnection network is
a graph, the vertex represents processor, the edge represents
link, and the diameter represents the transmission delay of
network. However, the processors are prone to failure if they
work for a long time, this will affect the effectiveness of
network information transmission. Krishnamoorthy and Kr-
ishnamurthy [10] proposed the concept of fault diameter for
the first time to quantify this influence. They also determined
the fault diameter of hypercube and gave an upper bound of
the fault diameter of Cartesian product graph in the paper.
For the general results, the upper bounds of the fault diameter
of an arbitrary connected graph are given in [5, 6], and the
relationship between fault diameter and edge fault diameter
is given in [4]. For the specific results, the fault diameters
of many well-known networks are determined [7, 11, 16].
The latest results are about the fault diameters of deformed
hypercube networks, see the literatures [14, 15, 19].

The product graph is an important method to construct
large graphs from small graphs. Recently, the researches on
the product graph have attracted more and more attention
[1, 12, 13, 20]. According to the definition of fault diameter,
the connectivity must be given before determining the fault
diameter of any graph. Especially, it is easy to determine the
connectivity of Cartesian product graphs. So most researches
on the fault diameter of product graphs focus on the fault
diameter of Cartesian product graphs. In [21], the upper
bound of fault diameter of Cartesian product graph of two
graphs is given which is the correction of the result of [10].
Subsequently, the upper bound of fault diameter of Cartesian
product graph of n graphs is given in [2]. There are also some
results about Cartesian graph bundles in [3, 8]. But for other
product graphs, such as the fault diameter of strong product
graphs, there are no relevant results.

The strong product was first proposed by Sabidussi [17].
It is the union of Cartesian product and direct product [9].
However, it took a long time to determine the connectivity
of strong product graphs. Yang and Xu [22] first gave the
connectivity of the strong product graph of an incompletely
connected graph and a complete graph. Through this result,
they also gave the connectivity of the strong product graph
of two maximally connected graphs. Then Špacapan [18]
determined the connectivity of strong product graphs. The
work on the fault diameter of strong product graphs can
be carried out. In this paper, we study the fault diameter
of strong product graph of an arbitrary connected graph
and a complete graph. According to the classification of

an arbitrary connected graph, we first determine the fault
diameter of strong product graph of two complete graphs.
Then we give the fault diameter of the strong product graph
of an incompletely connected graph and a complete graph
by constructing the worst case paths. Moreover, we also give
a more general result about fault diameter through Menger
Theorem.

II. MAIN RESULTS

Before determining the fault diameter, we first obtain the
connectivity of the two kinds of strong product graphs. It is
easy to know that the connectivity of a complete graph is
κ(Kn) = n − 1. But for the connectivity of strong product
graph of two complete graphs, we need the following lemma
to provide a solution.

Lemma 1. Let Km and Kn be two complete graphs with
orders m,n ≥ 1. Then

Km ⊗Kn = Kmn.

Proof. Let G = Km ⊗ Kn, xhyg and xpyq be any two
vertices in G, where xh, xp ∈ V (Km) and yg, yq ∈ V (Kn).
By the definition of strong product, there are three cases can
be discussed.

Case 1. xh = xp.
Since xh = xp and (yg, yq) ∈ E(Kn), the two vertices

xhyg and xhyq are adjacent in G, we can get (xhyg, xhyq) ∈
E(G).

Case 2. yg = yq .
Since (xh, xp) ∈ E(Km) and yg = yq , the two vertices

xhyg and xpyg are adjacent in G, we can get (xhyg, xpyg) ∈
E(G).

Case 3. xh ̸= xp, yg ̸= yq .
Since (xh, xp) ∈ E(Km) and (yg, yq) ∈ E(Kn), the

two vertices xhyg and xpyq are adjacent in G, we can get
(xhyg, xpyq) ∈ E(G).

So any two vertices xhyg and xpyq are adjacent in G. By
the (d) of Remark 2, we have

|V (G)| = |V (Km)||V (Kn)| = mn.

From this, G is the complete graph Kmn.

Through (a) and (b) of Remark 2, the strong product is
commutative and associative, we can still extend Lemma 1
to t-dimension.

Corollary 1. Let Kv1
,Kv2

, · · · ,Kvt
be t complete graphs

with number t ≥ 2 and orders v1, v2, · · · , vt ≥ 1. Then

Kv1
⊗Kv2

⊗ · · · ⊗Kvt
= K∏t

i=1
vi
.

Lemma 2. Let Kn be a complete graph with order n ≥ 1,
and F be the fault vertex set in Kn with |F | = d. Then

Kn − F = Kn−d.

Proof. Before removing the fault vertex set F , there is
always an edge between any two vertices in the complete
graph Kn. Since the removed edges are all incident with
the vertices in F , then any two vertices are still adjacent in
Kn − F . For |F | = d, then

|V (Kn − F )| = n− d.
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From this, Kn − F is the complete graph Kn−d.

Through the previous two lemmas, the strong product
graph of two complete graphs is still a complete graph. The
complete graph is still a complete graph if any vertex subset
is deleted.

Theorem 3. Let Km and Kn be two complete graphs with
orders m,n ≥ 1. For any 1 ≤ w ≤ mn− 1. Then

Dw(Km ⊗Kn) = 1.

Proof. Let F be the fault vertex set with |F | = w− 1. By
Lemma 1, we can get Km⊗Kn = Kmn, then κ(Km⊗Kn) =
mn−1. For any 1 ≤ w ≤ mn−1, Km⊗Kn−F is connected.
By Lemma 2, for any fault vertex set F , the diameter of
Km ⊗Kn − F is

d(Km ⊗Kn − F ) = d(Kmn − F ) = d(Kmn−w+1) = 1.

From this, we have Dw(Km ⊗Kn) = 1.

The Theorem 3 determines the fault diameter of Km⊗Kn.
By Corollary 1, we can directly extend the theorem to t-
dimension.

Corollary 2. Let Kv1 ,Kv2 , · · · ,Kvt be t complete graphs
with number t ≥ 2 and orders v1, v2, · · · , vt ≥ 1. For 1 ≤
w ≤

∏t
i=1 vi − 1. Then

Dw(Kv1 ⊗Kv2 ⊗ · · · ⊗Kvt) = 1.

Before determining the fault diameter of H ⊗ Kn, we
first obtain its connectivity. The following lemma provides a
solution.

Lemma 4. ([22]) Let H be an incompletely connected graph
with the connectivity k ≥ 1, and Kn be a complete graph
with order n ≥ 1. Then

κ(H ⊗Kn) = nk.

Under the determined connectivity, we prove the following
theorem by constructing isomorphic subgraphs and the worst
case paths.

Theorem 5. Let H be an incompletely connected graph with
the connectivity k ≥ 1, and Kn be a complete graph with
order n ≥ 1. For any 1 ≤ w ≤ nk. Then

Dw(H ⊗Kn) = D⌈w
n ⌉(H).

Proof. Let G = H ⊗ Kn with V (H) = {x1, · · · , xm}
and V (Kn) = {y1, · · · , yn}. Since H is an incompletely
connected graph, we have m ≥ 3. Let xhyg and xpyq be
any two vertices in G, where xh, xp ∈ V (H) and yg, yq ∈
V (Kn). Let F be the fault vertex set in G with |F | = w−1.
By Lemma 4, we can get κ(H ⊗ Kn) = nk. So for any
1 ≤ w ≤ nk, G−F is connected. We first discuss the upper
bound of the fault diameter of G. According to the positional
relationship between the two vertices xhyg and xpyq , it can
be divided into three cases.

Case 1. xh = xp.
Without loss of generality, we discuss the distance between

any two vertices xhyg and xhyq in xhKn after failure. By
the (c) of Remark 2, xhKn

∼= Kn, then xhKn is a complete
graph and any two vertices are adjacent in xhKn. By Lemma

2, xhKn−F ∩V (xhKn) is still a complete graph, then any
two vertices xhyg and xhyq are still adjacent in G−F . Since
m ≥ 3, then d(H) ≥ 1, we have d(G − F ;xhyg, xhyq) =
1 ≤ d(H).

Case 2. yg = yq .
Consider n disjoint subgraphs Hyj in G for j =

1, 2, · · · , n. Since the vertex sets of n disjoint subgraphs Hyj
is a partition of the vertex set of G, we have

V (G) = V (Hy1) ∪ V (Hy2) ∪ · · · ∪ V (Hyn).

The cardinality of any fault vertex set F holds 1 ≤ |F | =
w−1 ≤ nk−1. Since there are n disjoint subgraphs, even in
the worst case, there is at least one subgraph with no more
than ⌈w

n ⌉ − 1 fault vertices. Without loss of generality, we
assume that there is a subgraph Hyj satisfies

1 ≤ |F ∩ V (Hyj)| = ⌈w
n
⌉ − 1 ≤ k − 1.

According to whether the two vertices xhyj and xpyj in Hyj
are fault vertices, we can discuss three subcases.

Subcase 2.1. xhyj , xpyj /∈ F .
Since the connectivity of H is k, without loss of generality,

we let
NH(xh) = {a1, a2, · · · , ak}.

NH(xp) = {b1, b2, · · · , bk}.

By Lemma 1, we can get K2 ⊗Kn = K2n. Each vertex in
V (xhKn) is adjacent to all vertices in V (a1Kn)∪V (a2Kn)∪
· · · ∪ V (akKn), then each vertex in V (xpKn) is adjacent
to all vertices in V (b1Kn) ∪ V (b2Kn) ∪ · · · ∪ V (bkKn).
Consider in the subgraph Hyj − F ∩ V (Hyj), there is at
least a path between xhyj and xpyj of length no more than
D⌈w

n ⌉(H). Without loss of generality, we assume that R1

is the path of length D⌈w
n ⌉(H) between xhyj and xpyj in

Hyj − F ∩ V (Hyj) by the neighbors a1yj and b1yj .

R1 : xhyj → a1yj → · · · → b1yj → xpyj .

Since the two vertices xhyg and a1yj are adjacent, the two
vertices xpyg and b1yj are adjacent, we can construct a path
R2 between xhyg and xpyg in G− F .

R2 : xhyg → a1yj
R1−{xhyj ,xpyj}−−−−−−−−−−−→ b1yj → xpyg,

with L(R2) = L(R1) = D⌈w
n ⌉(H). From this, there is

at least a path between xhyg and xpyg of length no more
than D⌈w

n ⌉(H) in G− F , we have d(G− F ;xhyg, xpyg) ≤
D⌈w

n ⌉(H).
Subcase 2.2. xhyj /∈ F , xpyj ∈ F or xhyj ∈ F , xpyj /∈

F .
Without loss of generality, we assume that xhyj ∈ F and

xpyj /∈ F . The neighbors of xhyj in Hyj are

NHyj
(xhyj) = {a1yj , a2yj , · · · , akyj}.

Since xhyg is adjacent to the vertices of V (NHyj (xhyj))
and not adjacent to the vertices of V (Hyj)\V (NHyj (xhyj)).
Remove the vertex xhyj and the edges incident with xhyj
in Hyj , then consider the edge set

E1 = {(xhyg, aiyj) : i = 1, 2, · · · , k}.

Combine the vertex xhyg , the edges of E1 and the subgraph
Hyj − {xhyj} into a new subgraph H

′
. The new subgraph

H
′

has the same number of vertices and edges as subgraph
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Hyj , and retains the adjacency of the subgraph Hyj . From
this, the two subgraphs H

′
and Hyj are isomorphic. For the

subgraph H
′
, we have

|F ∩ V (H
′
)| = ⌈w

n
⌉ − 2 ≤ k − 2.

In the subgraph H
′ − F ∩ V (H

′
), even in the worst case,

there is at least a path between xhyg and xpyj of length
no more than D⌈w

n ⌉−1(H). Without loss of generality, we
assume that R3 is the path of length D⌈w

n ⌉−1(H) between
xhyg and xpyj in H

′ − F ∩ V (H
′
) by the neighbor b1yj .

R3 : xhyg → · · · → b1yj → xpyj .

Since the two vertices xpyg and b1yj are adjacent, we can
construct a path R4 between xhyg and xpyg in G− F .

R4 : xhyg
R3−xpyj−−−−−−→ b1yj → xpyg,

with L(R4) = L(R3) = D⌈w
n ⌉−1(H). From this, there is at

least a path between xhyg and xpyg of length no more than
D⌈w

n ⌉−1(H) in G − F , we have d(G − F ;xhyg, xpyg) ≤
D⌈w

n ⌉−1(H).
Subcase 2.3. xhyj , xpyj ∈ F .
Consider the neighbors of xpyj in Hyj are

NHyj
(xpyj) = {b1yj , b2yj , · · · , bkyj}.

Since xpyg is adjacent to the vertices of V (NHyj
(xpyj))

and not adjacent to the vertices of V (Hyj)\V (NHyj
(xpyj)).

Remove xhyj , xpyj and the edges incident with xhyj or xpyj
in Hyj , then consider the edge set

E2 = {(xpyg, biyj) : i = 1, 2, · · · , k}.

With the adjacency of xhyg in the Subcase 2.2, we combine
the vertex xhyg , the vertex xpyg , the edges of E1, the edges
of E2 and the sugraph Hyj − {xhyj , xpyj} into a new
subgraph H

′′
. The new subgraph H

′′
has the same number

of vertices and edges as subgraph Hyj , and retains the
adjacency of the subgraph Hyj . From this, the two subgraphs
H

′′
and Hyj are isomorphic. For the subgraph H

′′
, we have

|F ∩ V (H
′′
)| = ⌈w

n
⌉ − 3 ≤ k − 3.

In the subgraph H
′′ − F ∩ V (H

′′
), even in the worst case,

there is at least a path between xhyg and xpyg of length no
more than D⌈w

n ⌉−2(H). From this, there is also at least a path
between xhyg and xpyg of length no more than D⌈w

n ⌉−2(H)
in G− F , we have d(G− F ;xhyg, xpyg) ≤ D⌈w

n ⌉−2(H).
Case 3. xh ̸= xp, yg ̸= yq .
As in the Case 2, there is also at least one subgraph

Hyj(j = 1, 2, · · · , n) with no more than ⌈w
n ⌉ − 1 fault

vertices, we assume that there is also a subgraph Hyj
satisfies 1 ≤ |F∩V (Hyj)| = ⌈w

n ⌉−1 ≤ k−1. The following
three subcases can be discussed.

Subcase 3.1. xhyj , xpyj /∈ F .
Since the two vertices xhyg and a1yj are adjacent, the two

vertices xpyq and b1yj are adjacent, we can construct a path
R5 between xhyg and xpyq in G− F on the basis of R1.

R5 : xhyg → a1yj
R1−{xhyj ,xpyj}−−−−−−−−−−−→ b1yj → xpyq,

with L(R5) = L(R1) = D⌈w
n ⌉(H). Similarly, we have

d(G− F ;xhyg, xpyq) ≤ D⌈w
n ⌉(H).

Subcase 3.2. xhyj /∈ F , xpyj ∈ F or xhyj ∈ F , xpyj /∈
F .

Without loss of generality, we assume that xhyj ∈ F and
xpyj /∈ F . As in the Subcase 2.2, we can also construct the
subgraph H

′
, then |F ∩V (H

′
)| = ⌈w

n ⌉−2 ≤ k−2. Since the
two vertices xpyq and b1yj are adjacent, we can construct a
path R6 between xhyg and xpyq in G − F on the basis of
R3.

R6 : xhyg
R3−xpyj−−−−−−→ b1yj → xpyq,

with L(R6) = L(R3) = D⌈w
n ⌉−1(H). Similarly, we have

d(G− F ;xhyg, xpyq) ≤ D⌈w
n ⌉−1(H).

Subcase 3.3. xhyj , xpyj ∈ F .
Since xpyq is adjacent to the vertices of V (NHyj (xpyj))

and not adjacent to the vertices of V (Hyj)\V (NHyj
(xpyj)).

Remove xhyj , xpyj and the edges incident with xhyj or xpyj
in Hyj , then consider the edge set

E3 = {(xpyq, biyj) : i = 1, 2, · · · , k}.

With the adjacency of xhyg in the Subcase 2.2, we combine
the vertex xhyg , the vertex xpyq , the edges of E1, the edges
of E3 and the sugraph Hyj − {xhyj , xpyj} into a new
subgraph H

′′′
. The new subgraph H

′′′
has the same number

of vertices and edges as subgraph Hyj , and retains the
adjacency of the subgraph Hyj . From this, the two subgraphs
H

′′′
and Hyj are isomorphic. For the subgraph H

′′′
, we have

|F ∩ V (H
′′′
)| = ⌈w

n
⌉ − 3 ≤ k − 3.

Similarly, even in the worst case, there is at least a path
between xhyg and xpyq of length no more than D⌈w

n ⌉−2(H)

in the subgraph H
′′′−F ∩V (H

′′′
). From this, there is also at

least a path between xhyg and xpyq of length no more than
D⌈w

n ⌉−2(H) in G − F , we have d(G − F ;xhyg, xpyq) ≤
D⌈w

n ⌉−2(H).
Through the above analysis, we can conclude Dw(G) ≤

D⌈w
n ⌉(H).

Consider the lower bound of the vertex fault diameter
of G by giving fault vertex sets specifically, let FH be a
fault vertex set in H such that the diameter of H − FH is
D⌈w

n ⌉(H). Without loss of generality, we let

FH = {x1, · · · , x⌈w
n ⌉−1}.

If mod(w−1
n ) = 0, we specifically give fault vertex set F1

obtained on the basis of FH .

F1 = {x1y1, · · · , x1yn, x2y1, · · · , x2yn, · · · ,

x⌈w
n ⌉−1y1, · · · , x⌈w

n ⌉−1yn}.

If mod(w−1
n ) ̸= 0, we specifically give fault vertex set F2

obtained on the basis of FH .

F2 = {x1y1, · · · , x1yn, x2y1, · · · , x2yn, · · · ,

x⌈w
n ⌉y1, · · · , x⌈w

n ⌉ymod(w−1
n )}.

From this, we can get

d(G− F1) = d(G− F2) = D⌈w
n ⌉(H).

Therefore, we have Dw(G) ≥ D⌈w
n ⌉(H).
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From the Theorem 5, we can deduce some important
results. Let w = 1, we can get the relationship of the
diameters of H ⊗Kn and H .

Corollary 3. Let H be an incompletely connected graph
with the connectivity k ≥ 1, and Kn be a complete graph
with order n ≥ 1. Then

d(H ⊗Kn) = d(H).

If the fault diameter of H is given. we can directly obtain
the fault diameter of H ⊗ Kn by Theorem 5. As the basic
graph, the fault diameters of path, cycle and wheel graph can
be easily obtained, we have the following corollaries directly.

Corollary 4. Let Pm be a path with order m > 2, and Kn

be a complete graph with order n ≥ 1. For any 1 ≤ w ≤ n.
Then

Dw(Pm ⊗Kn) = m− 1.

Corollary 5. Let Cm be a cycle with order m > 3, and Kn

be a complete graph with order n ≥ 1. For any 1 ≤ w ≤ 2n.
Then

Dw(Cm ⊗Kn) =

{
⌊m

2 ⌋, for 1 ≤ w ≤ n;

m− 2, for n < w ≤ 2n.

Corollary 6. Let W1+m be a wheel graph with m ≥ 3,
and Kn be a complete graph with order n ≥ 1. For any
1 ≤ w ≤ 3n. Then

Dw(W1+m ⊗Kn) =


2, for 1 ≤ w ≤ n;

⌊m
2 ⌋, for n < w ≤ 2n;

m− 2, for 2n < w ≤ 3n.

By Corollary 1, we can still extend the Theorem 5 to t-
dimension, the fault diameter of the strong product graph of
an incompletely connected graph and t− 1 complete graphs
is given.

Corollary 7. Let H be a incompletely connected graph
with the connectivity k ≥ 1, and Kv1

,Kv2
, · · · ,Kvt−1

be
t − 1 complete graphs with number t ≥ 2 and orders
v1, v2, · · · , vt−1 ≥ 1. For 1 ≤ w ≤

∏t−1
i=1 vik. Then

Dw(H ⊗Kv1 ⊗Kv2 ⊗ · · · ⊗Kvt−1) = D⌈
w∏t−1

i=1
vi

⌉(H).

Since any complete graph is a maximally connected graph,
we give the upper bound of the fault diameter of strong prod-
uct graph of two maximally connected graphs by Menger
Theorem.

Lemma 6. ([22]) Let G1 and G2 be two maximally con-
nected graphs with orders n1, n2 ≥ 2, respectively. Then

κ(G1 ⊗G2) = min{δ1n2, δ2n1, δ1 + δ2 + δ1δ2}.

Lemma 7. (Menger Theorem) Let G be a connected and
undirected graph, x and y are two different vertices in G. If
x, y ̸∈ E(G), then ζ(G;x, y) = κ(G;x, y).

Theorem 8. Let G1 and G2 be two maximally connected
graphs, orders n1, n2 ≥ 2, minimum degrees δ1, δ2 ≥ 1. If
G = G1 ⊗G2, for any 1 ≤ w ≤ κ(G), then

Dw(G) ≤ max{
⌊
n1n2 − w − 1

δ1n2 − w + 1

⌋
+1,

⌊
n1n2 − w − 1

δ2n1 − w + 1

⌋
+1,

⌊
n1n2 − w − 1

δ1 + δ2 + δ1δ2 − w + 1

⌋
+ 1}.

Proof. Let F be the fault vertex set in G with |F | = w−1,
x and y are two different vertices in G−F . Without loss of
generality, we assume d(G− F ) = h. When h ≤ 1, G− F
is a complete graph, the distance between x and y in G−F
is 1. When h ≥ 2, we assume the distance between x and y
in G− F is d(G− F ;x, y) = h.

By Menger Theorem, there are at least κ(G) − w + 1
internally vertex disjoint paths between x and y in G − F .
The number of internal vertices in each path is at least h−1.
Since the number of vertices in the strong product graph G
satisfies |V (G) = n1n2|. After the vertex failure occurred in
G, we have (κ(G) − w + 1)(h − 1) + 2 ≤ n1n2 − w − 1.
Since κ(G) = min{δ1n2, δ2n1, δ1 + δ2 + δ1δ2, we can get

h ≤
⌊

n1n2 − w − 1

min{δ1n2, δ2n1, δ1 + δ2 + δ1δ2} − w + 1

⌋
+ 1.

From this, the theorem is proved.

III. CONCLUSION

In this paper, we first determine the fault diameter of
strong product graph of two complete graphs. Then we
determine the fault diameter of strong product graph of
an incompletely connected graph and a complete graph.
Through the results, we find that the strong product graph
of an arbitrary connected graph and a complete graph has
small fault diameter and retains the same fault diameter as
its incompletely factor graph. The strong product graph of
an arbitrary connected graph and a complete graph provides
a new and efficient method to construct large and reliable
networks through small networks. Moreover, we also give the
upper bound of the fault diameter of strong product graph of
two maximally connected graphs. This provides direction for
solving the general situation of the fault diameter of strong
product graph.
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[2] I. Banič, J. Žerovnik, “The fault-diameter of Cartesian products,”
Advances in Applied Mathematics, vol. 40, no. 1, pp. 98-106, 2008.
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[8] R. Erveš, J. Žerovnik, “Mixed fault diameter of Cartesian graph
bundles,” Discrete Applied Mathematics, vol. 161, no. 12, pp. 1726-
1733, 2013.

[9] R. H. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs,
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