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Abstract—A chain graph is a bigraph where the neigh-
borhood of vertices in each part forms a chain under set
inclusion. Chain graphs have received considerable attention
from researchers in the field of spectral graph theory, as they
have the maximum spectral radius among all the bigraphs of
prescribed size and order. Nevertheless, the areas of some graph
parameters remain untouched. The reciprocal Wiener index
or the Harary index is one of the distance-based topological
indices among several graph parameters designed to capture the
different aspects of molecular structure. This article explores
the Harary index of chain graphs, giving the bounds and other
properties. Further, the Harary index of threshold graphs, a
slight structural variant of chain graphs is also discussed. The
main focus is on chain graphs with integer-valued Harary index.
The article presents a quadratic time algorithm for the inverse
Harary index problem for chain graphs and hence contributes
significantly to the theory of inverse problems on topological
indices.

Index Terms—Chain, Bipartite graph, Bi-star graph, Com-
plete bipartite graph.

I. INTRODUCTION

Several distance and degree-based topological indices have
been introduced by chemists to correlate the structure of
chemical compounds with empirically acquired data on their
physico-chemical properties. The Harary index, introduced
by Plavsic et al. [17] and by Ivanciuc et al. [10] in 1993,
is one among the variety of such indices that are designed
to analyze the molecular structure. It has been named in
honor of Professor Frank Harary on the occasion of his 70th

birthday due to his influence on the development of graph
theory and its application in chemistry. The Harary index of
a graph G is denoted by H(G) and is defined as follows.

H(G) =
∑

{u,v}⊆V (G)

1

d(u, v)

The summation goes over all unordered pairs of vertices of
G, V (G) represents the vertex set of graph G and d(u, v)
denotes the distance between the vertices u and v. A great
deal of knowledge on Harary index is accumulated in the
literature [ [2], [4], [5], [11], and [18]].

Throughout the article, we denote a bigraph with the parts
V (G) = V1 ∪ V2 by G(V1 ∪ V2, E) and a bi-star graph (a
graph obtained by making the central vertices of the two
star graphs K1,p−1 and K1,q−1 adjacent) by B(p, q). The
adjacency and nonadjacency between any two vertices ui, vj
are denoted by ui ∼ vj and ui ≁ vj , respectively.

A chain graph is a bipartite graph with the property
that the neighborhood of vertices of each part forms a
chain with respect to set inclusion. Each of the parts of a
chain graph G(V1 ∪ V2, E) can be partitioned into h non-
empty cells V1,1, V1,2, . . . , V1,h and V2,1, V2,2, . . . , V2,h such
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that NG(u) = V2,1 ∪ ... ∪ V2,h−i+1, for any u ∈ V1,i,
1 ≤ i ≤ h. If mi = |V1,i| and ni = |V2,i|, then we
write G = DNG(m1,m2, ...,mh;n1, n2, ..., nh). Due to
this nesting property, the chain graphs are also called Double
Nested Graphs (DNGs). Further results concerned with chain
graphs are available in the literature [3], [6], [9], [13], [14],
[19], [20], and [21].

A split graph is a graph which admits a partition of
its vertex set into two parts, say W1 and W2 so that W1

induces an independent set and W2 induces a clique. All
other cross edges, join a vertex in W1 with a vertex in
W2( [14]). A threshold graph is a split graph where the
subsets of vertices W1 and W2 can be further partitioned
into h cells W1 = W1,1 ∪ W1,2 ∪ · · · ∪ W1,h and W2 =
W2,1 ∪ W2,2 ∪ · · · ∪ W2,h satisfying the following nesting
property: For each vertex u ∈ W1,i, 1 ≤ i ≤ h, NG(u) =
W2,1 ∪ ... ∪ W2,h−i+1. If |W1,i| = mi and |W2,i| = ni,
then we write G = NSG(m1,m2, ...,mh;n1, n2, ..., nh).
The readers are referred to [1], [7], [8], [12], [15], and
[16] for more results on threshold graphs. The schematic
representation of both DNGs, as well as NSGs, are given in
Figure 1.
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Fig. 1. Schematic diagram of chain and threshold graphs

The chain graphs and threshold graphs are often referred
as extremal graphs due to the fact that, they have the largest
spectral radius among all the bipartite graphs (former one)
and all the connected graphs (latter one) with prescribed
order and size.

The outline of the remainder of this paper is as follows:
In section 2, after the introduction, expressions and several
bounds for Harary index of chain graphs are given. In the
third section, further properties of Harary index of chain
graphs are discussed. Using the results of section 3, an
algorithm for the inverse Harary index problem is designed
in section 4 limiting the domain only to chain graphs.

II. HARARY INDEX

In this section, we give an expression and bounds for
Harary index of chain graphs. Some of the structural aspects
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of chain and threshold graphs, which are required to prove
the key results of this article are listed below.
For any connected chain graph G(V1∪V2, E), the following
are true:

Remark 2.1: Each of Vi has at least one dominating
vertex, which is adjacent with all the vertices of Vj (i ̸=
j) (i, j = 1, 2)

Remark 2.2: Every connected chain graph G(V1 ∪ V2, E)
with |V1| = p and |V2| = q can be obtained from the bi-star
graph B(p; q) by successively adding edges, the procedure
of which is given in [13]. Equivalently, every chain graph
G(V1 ∪ V2, E) with |V1| = p and |V2| = q can be obtained
from the complete bipartite graph Kp,q by successively
deleting edges.

Remark 2.3: By the procedure given in [13], it is true that
there exists at least one chain graph G(V1 ∪ V2, E) with
|V1| = p, |V2| = q on p + q vertices having m edges, for
every m ∈ [p+ q − 1, pq]. The bi-star graph B(p, q) and the
complete bipartite graph Kp,q attain the lower and the upper
bounds, respectively.
Similarly, if G is a threshold graph with split partition
W1,W2, with W1,W2 inducing an independent set and a
clique, respectively, then

Remark 2.4: The set W2 has at least one vertex adjacent
with every other vertices in the graph.

Remark 2.5: The set W1 has at least one vertex which is
adjacent with all the vertices of W2.
The next theorem gives the expression for Harary index.

Theorem 2.1: Let G(V1 ∪V2, E) be a chain graph of size
m where |V1| = p, |V2| = q (p, q > 1) such that p+ q = n.
Then the Harary index H(G) of G is given by

H(G) =
3n2 − 3n− 2pq + 8m

12
.

Proof: Since each of the parts has at least one dominat-
ing vertex, let u1 ∈ V1, v1 ∈ V2 be the dominating vertices
(without loss of generality, ). Any two vertices that are in
the same part are at a distance of two due to the existence
of a dominating vertex in the other part. Between any non
dominating vertex vi ∈ V1 and a vertex uj ∈ V2 with
uj ≁ vi, there exists a shortest path (vi − u1 − v1 − uj).
Thus for any two vertices ui, vj ∈ V (G),

d(ui, vj) =



1, if ui ∼ vj

2, if ui, vj belong to the same

part

3, if ui, vj belong to different

parts and ui ≁ vj

The graph G has
(
p
2

)
+
(
q
2

)
pairs of vertices having distance

two between them(since p, q > 1). Since there are m edges,
the rest of (pq−m) pairs have distance three between them.
Thus

H(G) =
1

2

(
p

2

)
+

1

2

(
q

2

)
+m+

1

3
(pq −m)

=
3
(
p2 + q2

)
− 3(p+ q) + 4pq + 8m

12

=
3n2 − 3n− 2pq + 8m

12
.

When both p = q = 1, G = K2 and H(G) = 1. When either
of p, q is 1, then G = K1,n−1 and H(G) = (n−1)(n+2)

4 .
The chain graph G = DNG(m1,m2, ...,mh;n1, n2, ..., nh)
with each of mi = ni = 1 for 1 ≤ i ≤ h is known as half
graphs. The Harary index of a half graph is given below.

Corollary 2.2: Let G be a half graph given by G =
DNG(h times︸ ︷︷ ︸ 1, 1, . . . , 1;h times︸ ︷︷ ︸ 1, 1, . . . , 1) on n ver-
tices and m edges. Then the Harary index of G is

H(G) =
13n2 + 2n

24

Proof: The number of vertices and edges in G are n =
2h and m = h(h+1)

2 , respectively. Further, on substituting
p = q = h = n

2 , the corollary follows.

Fig. 2. The half graph DNG(1, 1, 1, 1; 1, 1, 1, 1)

From the expression for H(G), one can note that the
Harary index of a chain graph depends only on the number of
vertices in both the parts and the number of edges. Further,
the addition (deletion) of an edge increases H(G) by 2

3 ,
irrespective of where the edges are added. Equivalently, the
deletion of an edge decreases H(G) by 2

3 , irrespective of
which edges are deleted. The next theorems give lower and
upper bounds for Harary index of chain graphs.

Theorem 2.3: Let G(V1 ∪ V2, E) be a connected chain
graph with |V1| = p and |V2| = q. Let H(G) be the Harary
index of G. Then

3n2 + 5n− 2pq − 8

12
≤ H(G) ≤ n2 − n+ 2pq

4

Proof: From Theorem 2.1, a chain graph G(V1∪V2, E)
with |V1| = p and |V2| = q has the maximum (minimum)
Haray index when the number of edges m is maximum
(minimum). A connected chain graph G(V1 ∪ V2, E) with
= |V1| = p and |V2| = q has the minimum number of
edges when it is a tree, that is a bi-star graph B(p, q),
where m = p + q − 1. Similarly, the number of edges
is the maximum when G = K(p, q), where m = pq. On
substituting m = p+ q− 1 and m = pq in Theorem 2.1, the
minimum and the maximum value of H(G), respectively, are
obtained.

Now, the values of p, q for which the Harary index H(G)
is optimum are investigated. In other words, the bounds for
H(G) in terms of a total number of vertices N (for even
and odd separately) rather than the cardinalities of parts are
obtained.

Theorem 2.4: Let G(V1∪V2, E) be a chain graph on N =
2n vertices. Then

5n2 + 5n− 4

6
≤ H(G) ≤ 3n2 − n

2

Proof: Let |V1| = p, |V2| = q such that p + q = 2n
and the bounds for H(G) is given in the Theorem 2.3. Since
q = 2n−p, the lower and the upper bounds, respectively are
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f(p) = 12n2+10n−4np+2p2−8
12 and g(p) = 4n2−2n+4np−2p2

4 .
For given 2n, the minima of the lower bound f(p), maxima
of the upper bound g(p) are evaluated. It can be easily noted
that f(p) attains the minimum at the critical point p = n

and the minimum value is 5n2+5n−4
6 . Similarly, the function

g(p) also attains the maxima at p = n and the maximum
value is 3n2−n

2 .
The equalities in the above theorem are attained by the graphs
B(n, n)(the lower bound) and Kn,n (the upper bound).
Similarly, the bounds when the number of vertices is odd
are optimized.

Theorem 2.5: Let G be a chain graph on N = 2n + 1
vertices. Then

5n2 + 10n

6
≤ H(G) ≤ 3n2 + 2n

2
.

Proof: The extreme values for both upper and lower
bounds are attained at p = n+ 1 and q = n.
Similarly, the graphs B(n+1, n) and Kn+1,n attain the lower
and upper bounds given in the above theorem, respectively.
Any threshold graph can be obtained from a chain
graph just by replacing either of the parts (indepen-
dent set) with a clique. That is, a threshold graph
NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh) can be obtained
from an existing chain graph G(V1 ∪ V2, E) =
DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) just by making V2

complete. Hence, the distance between any two vertices is
either one or two. The next theorem gives the Harary index
of threshold graphs.

Theorem 2.6: Let G be a threshold graph with the split
partition {W1,W2}, where W1 induces an independent set
of size p and W2 a clique of size q such that p+ q = n. Let
m be the number of edges in G which connects the vertices
of W1 with W2. Then the Harary index H(G) of G is given
by

H(G) =
n2 − n+ q2 − q + 2m

4
.

Proof: Without loss of generality, let w1 ∈ W1 be a
vertex adjacent with every other vertices of W2 and w2 ∈ W2

be the vertex adjacent with every other vertices in the entire
graph. For any two vertices wi, wj ∈ W1(i ̸= j), there exists
the shortest path (wi−w2−wj). For wk ∈ W1, all the vertices
wl ∈ W2 which are not adjacent to wk have the shortest path
(wk −w2 −w1). Thus for any two vertices wi, wj ∈ V (G),

d(wi, wj) =

{
1, if wi and wj are adjacent

2, else
.

The graph G has
(
q
2

)
+m pairs of vertices having distance

one between them. And the rest of
(
p
2

)
+ pq − m pairs of

vertices have distance two between them. Thus

H(G) =
1

2

((
p

2

)
+ pq −m

)
+

(
q

2

)
+m

=
2q2 − 2q + 2m+ p2 − p+ 2pq

4

=
n2 − n+ q2 − q + 2m

4

Analogous to half graphs in the case of
chain grphs, a special case of threshold graph
NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh) with each of

mi = ni = 1 is considered in the next corollary.
Corollary 2.7: Let G be a theshold graph given by G =

NSG(h times︸ ︷︷ ︸ 1, 1, . . . , 1;h times︸ ︷︷ ︸ 1, 1, . . . , 1) on n vertices
and m edges. Then the Harary index of G is

H(G) =
3n2 − 2n

8

Proof: Clearly, the number of vertices and edges in Gis
n = 2h. The number of edges are given by,
m = h(h+1)

2 + h(h−1)
2 = h2. But, among h2 edges, only

h(h+1)
2 edges connects the vertices of W1 with the vertices

of W2. Further, on substituting p = q = h = n
2 , the corollary

follows.
The next theorem gives the relation between a chain graphs

and a threshold graph.
Theorem 2.8: Let G1(V1 ∪ V2, E) =

DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of size m where |V1| = p, |V2| = q (p, q > 1) such that
p + q = n. Let G2 = NSG(m1,m2, ...,mh;n1, n2, ..., nh)
be a threshold graph ontained from G1 by making V2

complete. Given H(G1) = k1, then the Harary index of G2

is given by

H(G2) =
12k1 + q2 − 3q + 2nq − 2m

12

The proof of the above theorem follows directly from the
Theorem 2.6 and Theorem 2.1.

Example 2.1: Consider the following graphs where p =
5, q = 4 and m = 12,

G  =DNG(2, 1, 2) G  =NSG(2, 1,1 2)1 2

Fig. 3. Graphs G1 and G2 illustrating Theorem 2.8

The Harary indices are given by H(G1) = 68
3 and

H(G2) = 27.

III. FURTHER RESULTS

In this section, further properties of Harary index are
given. The main focus is on graphs with integral valued
Harary indices.

Theorem 3.1: Let G(V1∪V2, E) be a chain graph on N =
4k − 1 vertices for some positive integer k. Then H(G) is
never an integer.

Proof: When the number of vertices N = 4k −
1, by Theorem 2.1, H(G) = 24k2−18k+3−pq+4m

6 ,
where p = |V1| and q = |V2|. One can note that(
24k2 − 18k + 3− pq + 4m

)
̸≡ 0(mod 6), that is (3−pq+

4m) ̸≡ 0(mod 6). Since p+q = N = 4k−1 is an odd integer,
exactly one of p and q is odd. In either of the cases, the
product pq is even. Further, since 4m is even, (3−pq+4m),
in turn

(
24k2 − 18k + 3− pq + 4m

)
is odd and hence not

divisible by 6.
From Remark 2.2, it is noted that one can add edges succes-
sively and obtain any graph G(V1∪V2, E) with |V1| = p and
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|V2| = q from the bi-star B(p, q). If G2(V1∪V2, E) is a chain
graph obtained from an existing chain graph G1(V1∪V2, E

′
)

by adding an edge, then H(G2) = H(G1) +
2
3 . Further, if

G1(V1∪V2, E) has an integer Harary index, say H(G1) = n
and G2(V1 ∪ V2, E

′
) is a chain graph obtained from G1 by

adding three edges, then H(G2) = H(G1) + 2. That is, the
addition (removal) of three edges increases(decreases) the
Harary index by 2. Equivalently, the removal of three edges
decreases the Harary index by 2.

Theorem 3.2: Let N = 4k + 1 for some positive integer
k. Further, let a = 10(k2+k)

3 and b = 2(3k2 + k). Then for
every integer h ∈ [a, b], there exists at least one chain graph
G on N vertices with H(G) = h.

Proof: Since N = 4k + 1 is odd, from Theorem 2.5,
the Harary index H(G) for any graph G is bounded as a =
10(k2+k)

3 ≤ H(G) ≤ b = 2(3k2 + k). The lower and the
upper bounds are attained by the bi-star graph B(2k, 2k +
1) and the complete bipartite graph K2k,2k+1, respectively.
It is clear that H(K2k,2k+1) = b is an even integer. Also,
any chain graph obtained from K2k,2k+1 by removing three
edges has the Harary index b−2. In general, any chain graph
G(V1 ∪ V2, E) with |V1| = 2k, |V2| = 2k+1 obtained from
K2k,2k+1 by deleting 3n edges (for some positive integer n)
has the Harary index H(G) = b− 2n, an even integer such
that b − 2n ≥ a. Further, by Remarks 2.2 and 2.3, every
chain graph G(V1 ∪ V2, E) with |V1| = 2k, |V2| = 2k + 1
can be obtained from the complete bipartite graph K2k,2k+1

by successively deleting edges, but also the existence of at
least one such graph having m edges is guaranteed, for every
m ∈ [4k, 4k(k + 1)]. Thus for all even integers h ∈ [a, b],
there exists at least one chain graph G with H(G) = h.
Suppose the graph G has the |V1| = 2k − 1, |V2| = 2k + 2,
then by Theorem 2.3, a ≤ 10k2+10k+1

3 ≤ H(G) ≤ 6k2 +

2k−1 ≤ b. Let a′ = 10k2+10k+1
3 and b′ = 6k2+2k−1. The

bounds a′, b′ are attained by the graphs B(2k−1, 2k+2) and
K2k−1,2k+2, respectively. Every chain graph G(V1 ∪ V2, E)
with |V1| = 2k − 1, |V2| = 2k + 2 can be obtained from
K2k−1,2k+2 by successively deleting edges, and if G(V1 ∪
V2, E) is obtained by deleing 3n edges from K2k−1,2k+2

(for some positive integer n), then H(G) = b′ − 2n,an odd
integer such that b′ − 2n ≥ a′. Since b′ is odd, a < a′ and
b′ < b, it is clear that, for all odd integers h ∈ [a, b], there
exists at least one chain graph G with H(G) = h.

Theorem 3.3: Let N = 4k for some positive integer k.
Further, let a = 10k2+5k−2

3 and b = 6k2 − k. If k is even,
then for every even integer h ∈ [a, b], there exists at least
one chain graph G on N vertices such that H(G) = h. If k
is odd, then for every odd integer h ∈ [a, b], there exists at
least one chain graph G on N vertices such that H(G) = h.

Proof: Since N = 4k is even, from Theorem 2.4,
the Harary index H(G) for any graph G is bounded as
a = 10k2+5k−2

3 ≤ H(G) ≤ b = 6k2 − k. The lower and the
upper bounds are attained by the bi-star graph B(2k, 2k) and
the complete bipartite graph K2k,2k, respectively. Clearly,
the upper bound b is even or odd depending on k. Suppose
k is even, then so is b. Every chain graph G(V1 ∪ V2, E)
with |V1| = |V2| = 2k can be obtained from K2k,2k by
successively deleting edges, and if G(V1∪V2, E) is obtained
by deleing 3n edges (for some positive integer n), then
H(G) = b − 2n, an even integer such that b − 2n ≥ a.

Thus for all even integers h ∈ [a, b], there is at least one
chain graph G with H(G) = h. The proof is similar when
k is odd.
From the steps used in the above theorem, one can note that
if k is even, then the upper bound b is also even. Thus, if
there exists a chain graph G on 4k vertices with H(G) = h
for some integer h ∈ [a, b], then h is even. Similarly, if k
is odd and if there exists a graph G on 4k vertices with
H(G) = h for some integer h ∈ [a, b], then h is also odd.

Corollary 3.4: Let N = 4k. If k is even, then there is
no chain graph on N vertices with an odd Harary index.
Similarly, if k is odd, then there is no chain graph on N
vertices with even Harary index
Similarly, we have the next theorem and the corresponding
corollary.

Theorem 3.5: Let N = 4k + 2 for some positive integer.
Further, let k a = 10k2+15k+3

3 and b = 6k2 + 5k + 1. If k
is odd, then for every even integer h ∈ [a, b], there exists at
least one chain graph G on N vertices such that H(G) = h.
If k is even, then for every odd integer h ∈ [a, b], there
exists at least one chain graph G on N vertices such that
H(G) = h.

Corollary 3.6: Let N = 4k + 2. If k is even, then there
exists no chain graph on N vertices with an even Harary
index. Similarly, if k is odd, then there exists no chain graph
on N vertices with odd Harary index
The results in this section lead to further conclusions about
Harary index when it is an integer. Also, they contribute
significantly to writing an algorithm for the inverse Harary
index problem among chain graphs.

IV. INVERSE HARARY INDEX PROBLEM FOR CHAIN
GRAPHS

Limiting the domain to chain graphs, the inverse Harary
index problem for integers is addressed in this section. Given
an integer h, the inverse Harary index problem demands a
graph (if possible) from a prescribed class (chain graph in
this article) that attains this value.

The algorithm is written based on the theorems and the
corollaries given in the previous section. The integer value
h and the number of vertices N are the inputs. The main
algorithm consists of 3 functions, among which the first two
are to check and identify the existence of the required graph
and the last one is just to construct the corresponding graph
as per the instruction received from the previous functions.
The main algorithm inv hry index directs to one of the
functions fun 1 or fun 2 depending on the value of N .
Once the respective part is executed, it will redirect to the
last function get graph to construct the required graph, if
exists.
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Algorithm 1 function inv hry index(h,N )
Input: h,N
Output: A chain graph G with H(G) = h, if exists

1: if N ≡ 3(mod 4) then
2: Print “No chain graph G exists on N vertices having

H(G) = h.”
3: else if N ≡ 1(mod 4) then
4: goto fun 1(h,N )
5: else
6: goto fun 2(h,N )
7: end if

The functions referred above are given below.

Algorithm 2 function fun 1(h,N )

Input: h,N
Output: The arguments G, c, p, q for the function

get graph, if chain graph G with H(G) = h exists
1: if N ≡ 0(mod 4) then
2: k = N

4
3: if

[
k ≡ 1(mod 2) and h ≡ 0(mod 2)

]
or

[
k ≡

0(mod 2) and
h ≡ 1(mod 2)

]
then

4: Print “No chain graph G exists on N vertices
having H(G) = h.”

5: else
6: a = 10k2+5k−2

3
7: b = 6k2 − k
8: p = q = 2k
9: end if

10: else
11: k = N−2

4
12: if

[
k ≡ 1(mod 2) and h ≡ 1(mod 2)

]
or

[
k ≡

0(mod 2) and
h ≡ 0(mod 2)

]
then

13: Print “No chain graph G exists on N vertices
having H(G) = h.”

14: else
15: a = 10k2+15k+3

3
16: b = 6k2 + 5k + 1
17: p = q = 2k + 1
18: end if
19: if h /∈ [a, b] then
20: Print “No chain graph G exists on N vertices

having H(G) = h.”
21: else
22: c = 3(b−h)

2
23: G = Kp,q

24: if c == 0 then
25: return G
26: else
27: goto get graph(G, c, p, q)
28: end if
29: end if
30: end if

Algorithm 3 function fun 2(h,N )

Input: h,N

Output: The arguments G, c, p, q for the function
get graph, if chain graph G with H(G) = h exists

1: k = N−1
4

2: a = 10k2+10k
3

3: b = 6k2 + 2k
4: if h /∈ [a, b] then
5: Print ““No chain graph G exists on N vertices having

H(G) = h.”
6: else if h ≡ 0(mod 2) then
7: p = 2k
8: q = 2k + 1
9: m = b

10: else
11: p = 2k − 1
12: q = 2k + 2
13: m = b− 1
14: end if
15: G = kp,q
16: c = 3(m−h)

2
17: if c == 0 then
18: return G
19: else
20: goto get graph(G, c, p, q)
21: end if

One of the arguments G in the function get graph(G, c, p, q)
is the complete bipartite graph G = Kp,q with parts
V (G) = V1 ∪ V2 with vertices labeled as follows:
V1 = {1, 2, . . . , p− 1, p} and V2 = {1′, 2′, . . . , (q − 1)′, q′}.
The rest of the values p, q, c are recieved from either
fun 1(h,N ) or fun 2(h,N ). Specifically, this function
get graph(G, c, p, q) constructs the required graph G from
Kp,q by removing c edges, sequentially. Whenever the
required chain graph exists, it is noted that c = 3(b−h)

2 is an
integer, in all the cases. Finally, the procedure to construct
the required chain graph from the inputs obtained from the
previous functions is given below.

Algorithm 4 function get graph(G, c, p, q)

Input: G, c, p, q
Output: The chain graph G with H(G) = h, if exists

1: if q − 1 ≥ c then
2: for j = 2′ : c do
3: E(G) = E(G) \ (j, p)
4: end for
5: return G
6: else
7: for j = 2′ : q′ do
8: E(G) = E(G) \ (j, p)
9: end for

10: p = p− 1
11: c = c− (q − 1)
12: get graph(G, p, q, c)
13: end if

A. Complexity

The main algorithm inv hry index directs to one of the
functions fun 1 or fun 2 depending on the value of N .
The computations and comparisions in the main algorithm
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and the two functions involve only if loops and hence
the constant time. Once the respective part (either fun 1
or fun 2) is executed, it will redirect to the last function
get graph to construct the required graph, if exists. The
function get graph(G, c, p, q) contains a for loop with (q−1)
iterations (line 7), which is executed as long as c ≤ (q−1). It
takes ⌈ c

q−1−1⌉ steps for c satisfy c ≤ (q−1). Thus, until this
point, the total number of steps is (q−1)⌈ c

q−1−1⌉ ≤ c+q−2.
Then, in line 3, the for loop is executed c times where
c ≤ (q − 1). Therefore, the total time taken by function
get graph(G, c, p, q) is at most c+ 2q − 3. The expressions
for c is c = 3(b−h)

2 in fun 1 and c = 3(m−h)
2 in fun 2. On

substituting the expressions for b, q,m in c, it is noted that c
is a quadratic exprression in N . Hence the total complexity
of the above proposed algorithm is O(N2).

V. CONCLUSION

The Harary index has noteworthy applications in the field
of molecular studies. This article extends the study of Harary
index of structured graphs, namely chain and threshold
graphs. Further, a significant contribution to the existing
knowledge on inverse problems for topological indices is
made by the article.
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