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Abstract—Effective visual information representation is sig-
nificant for the feature extractability of deep neural networks.
The transformation from images to feature maps realized by
the stem, referring to the initial part of the neural network that
processes input images, causes the loss of information owing to
the heterogeneity of the color and structure information: the
most prominent features. To solve this problem, we propose a
powerful and effective image-embedding stem (IES) model with
a color-embedding module (CEM), structure embedding module
(SEM), and feature mixing module (FMM). Specifically, the
red-green-blue (RGB) ternary color information is embedded
into a high-dimensional vector space containing rich feature
information through the CEM. Simultaneously, the SEM is used
to explicitly encode multiscale structural information to enrich
the detailed information in the feature maps. Finally, they are
fused by the FMM to preserve more details. Comprehensive
experiments demonstrate the efficacy of the IES in different
visual tasks. It achieved +1.2 and +0.5 top-1 accuracy ratings
on the ImageNet-100 dataset for the VanillaNet-5 and TinyViT-
5m backbones, respectively, and obtained +2.36 and +1.7 mean
intersection-over-union scores on the UTFPR-SBD3 dataset
for PoolFormer and ConvNeXtV2 backbones, respectively. The
code and models will be released soon.

Index Terms—color embedding, deep learning, image-
embedding stem, structure embedding, visual feature represen-
tation

I. INTRODUCTION

DEEP neural networks (DNNs) have developed rapidly in
support of various computer vision tasks, such as clas-

sification [1], [2], object detection [3], [4], and segmentation
[5], [6], [7]. DNNs are known for their remarkable general-
izability in automatically learning patterns and features from
visual images. Efficient and targeted structural designs [8],
[9], [10], [11] can provide DNN backbone models with the
powerful ability to extract visual semantic features. There
are two key backbone types: convolutional neural networks
(CNNs) [2], [9], [12], [5] and transformer-based methods
[13], [14], [15], [16], [17], [18]. Both focus on extracting
high-level semantic representations from input images and
obtaining feature maps to track rich semantic information.
Features can be represented by large parameters [14], [19]
or complex structures [4], [3], [15]. Next, we outline these
two methods and introduce our novel advancement.
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A. CNN-Based Models

CNNs have efficiently evolved from AlexNet [1] to ResNet
[20] and ConvNeXtV2 [21] models, among these, the resid-
ual connection proposed in ResNet [20] has become the
most widely used. The evolution of CNN architectures
[22], [23], [24], [25] has further increased their popularity
in a variety of vision tasks. To reduce model parameters
and calculation complexity, MobileNet [24], [26], GhostNet
[27], and Xception [28], among other backbones, leverage
depthwise and group convolutions [29] to extract spatial
features, which reduces the number of parameters without
significantly reducing performance. This has influenced the
designs of many subsequent models [5], [30], [31].

Alternatively a reasonable structural design can achieve
twice the performance with half the effort [29], [4], [32],
[33] by adopting multipath or multibranch structures to
extract features at different scales. Other novel methods [2],
[9], [12], [34] have further improved model performance
using only pure convolutions while maintaining light weight.
Considering the importance of the different dimensions of
a feature map, new methods have dynamically weighted
different channels [35], [36], [37], [38], [39] and applied
spatial attention to enhance spatial feature extraction [40],
[41]. In summary, CNNs have been developed to prioritize
light weight and novelty to optimize performance. Studies
are ongoing to further enhance CNN performance, such as
by focusing on the extraction of advanced features from
deep feature maps. Our research fills a gap in this field by
improving the image-embedding stem to better characterize
visual image features.

B. Transformer-Based Models

The vision transformer (ViT) innovation [19] has ignited
enthusiasm for the application of transformers in computer
vision tasks. Many ViT variants [16], [17], [14], [15], [42]
have achieved remarkable performance. Although they have
stronger feature extraction ability than CNNs, the quadratic
complexity within their pairwise attentions prohibitively re-
stricts their computational efficiency [8], [14], [15]. Some
studies have adopted hierarchical layouts [8], [17], [14], [15]
and shift-invariant priors [43], [44], [45] to alleviate this
limitation. One impressive model [46] refined the basic trans-
former architecture by replacing the self-attention module
with pooling, convolution, or identity operations to achieve
results comparable to or better than those of CNNs.

Transformer-based models have a global receptive field,
which is one of the essential reasons for their superior perfor-
mance. However, transformer methods still rely on complex
architectures and numerous parameters to extract features,
which fail to achieve superior primary representations of
visual images using the initial part of the neural network
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that processes input images (i.e., stems). By modifying the
lowest structural stem, we propose a novel image-embedding
stem (IES) model to overcome this limitation. The proposed
IES model significantly improves the performance of existing
backbones by strengthening their image representation.

C. IES Module

Previous studies primarily focused on designing better
feature-extraction backbones, whereas we focus on improv-
ing the network representation from the source by extracting
information from the input images using the stem to provide
a more meaningful feature map. By effectively embedding
the structural texture and color information of the input
image, the subsequent feature-extraction backbone obtains
richer and more delicate feature representations, thereby
making the model more expressive.

A significant performance improvement was achieved in
comparative experiments using various state-of-the-art DNN
models. IES achieved +1.2 and +0.5 top-1 accuracy rat-
ings on the ImageNet-100 dataset for the VanillaNet-5 and
TinyViT-5m backbones, respectively, and obtained +2.36
and +1.7 mean intersection-over-union (mIoU) scores on
the UTFPR-SBD3 dataset for PoolFormer and ConvNeXtV2
backbones, respectively. The key contributions of this study
are as follows:
• We summarize the common stem feature-extraction

modules and identify their shortcomings.
• We provide a color-embedding module (CEM) and

a structure-embedding module (SEM) to enhance the
model’s ability to extract different modes of information
(i.e., color and texture) from visual images.

• Our proposed IES learns visual features from the input
image rather than the original, which enhances the
backbone’s ability to mine deep-seated features and
improve the overall performance.

II. RELATED WORK

In humans, visual information accounts for approximately
80% of all sensory inputs, and color and structural infor-
mation are the main components of visual information. The
stem is the first stage of visual image processing. Notably, a
DNN’s stem bridges the neural network and the input data,
and it is usually located at the beginning of the network. It
preprocesses the input visual data and performs preliminary
feature extraction. As validated with ResNet [20], nearly
all visual models contain stems, and they perform two key
tasks. First, they extract shallow features containing a large
amount of detailed information from the visual input, the
so-called primary feature. Second, they reduce the feature
map’s resolution by adopting convolution or max-pooling
layers with a stride greater than one.

Currently, the mainstream stem has three variants, as
illustrated in Fig 1. The first type combines convolution
with batch normalization (BN) and a rectified linear unit
(ReLU) to provide a Conv+BN+ReLU structure [20], [47].
A convolution with a kernel size of seven and stride of
two is adopted by this type to increase the receptive field.
Subsequently, a MaxPool2d layer with a kernel size of three
and stride of two is connected to reduce the resolution of
the feature map and filter out irrelevant information. The

Conv 16×16, s=16

(c)ViTs(b)VGGs

BN+ReLU

MaxPool 3×3,s=2
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Fig. 1: Three stem variants. (a) a frequently employed single-
layer stem as depicted in ResNet [20], (b) a multilayer stem
exemplified by VGG [22], and (c) a distinctive stem known
as Patch Embedding (PE) from ViT [19].

second type [23], [5] replaces the 7 × 7 convolution with a
plurality of convolution layers with small kernel sizes, which
reduces the number of model parameters while producing the
same receptive field [23]. The third type, patch embedding
(PE), combines convolution and normal layers to support ViT
models [19], commonly setting the kernel size equal to its
stride. Most visual models adopt one of these three base
stems types.

Notably, these three types of stems do not fully consider
the heterogeneity problem of the input information; there-
fore, they cannot effectively represent the image’s feature
information.

III. IES

In this section, we explain how the stem functions in most
DNNs. We then introduce the details of the proposed IES,
including the new CEM, SEM, and feature mixing model
(FMM) components.

A. Overview

During data processing, the input image must undergo
stem processing before being input into the backbone. Given
an input image, Xinput ∈ RC×H×W , the processing is
formulated as

Xf = Backbone(Stem(Xinput)) (1)

where Backbone(·) represents the feature-extraction back-
bone network that will generate a feature map, Xf , and
Stem(·) is the common primary feature-extraction module.
For different modal features, common stems use the same
processing method, which leads to information loss. As
shown in Fig 2, we offer a novel and effective variant (i.e.,
the IES) composed of three parts, where Sψ(·) is the SEM
with ψ, Cϕ(·) is the CEM with ϕ, and Fω(·) is the FMM with
ω. The given input image, Xinput ∈ RC×H×W , is first fed
into SEM and CEM to extract structural and color features.
We describe the highly concise process as follows:

IES(Xinput) = Fω(Concat(Xinput,

Cϕ(Xinput),

Sψ(Xinput)))

(2)
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Fig. 2: Overall architecture. (a) A widely used structure with stem. (b) The macro structure with our proposed IES which
contains SEM, CEM, and a feature-mixing block FMM.

where Concat(·) represents the concatenation operation. We
combine two feature extraction branches in parallel [4], [3],
noting that different features can be efficiently fused by
multiple paths. These are fully integrated using the FMM.

The proposed IES explicitly expresses the characteristics
of different modes. Thus, the essence of visual images is
captured and characterized more effectively. This hypothesis
is verified using ablation and contrast experiments, and the
results are listed in in Table II. The training matrices are
shown in Fig 4, and a detailed analysis of the results is
provided in Section IV-D.

B. CEM

Color is one of the most essential features of visual
images. Our CEM is a special multilayer perceptron con-
struct, as shown in Fig 3(b). A remarkable difference from
previous methods is that ours does not use a convolution
kernel size greater than one; instead, we apply a point-
wise convolution to encode the red-green-blue (RGB) ternary
color information, which ensures that the same color obtains
the same embedded representation in all feature maps. By
embedding three-dimensional (3D) information into a higher
dimension, the model obtains a more comprehensive and
richer data representation. Although humans cannot visualize
this phenomenon, neural networks can learn it effectively.
Furthermore, in our model, the BatchNorm (BN) is replaced
with LayerNorm [48]. BatchNorm can potentially compro-
mise the coding of color information, as it applies a specific
calculation method when using point-wise convolutions.

Cϕ(Xinput) = Ln(· · ·L1(LN2d(Conv1×1(Xinput)))) (3)

where Ln, n ∈ {1, 2, . . .} indicates the layers. When n = 1,
L1 is composed of the Gaussian error linear unit (GELU)
activation function and a 1 × 1 convolution with 16 input
channels. When n ≥ 2, Ln is based on the L1 with (n−1) 1×
1 conversion and LN2d inserted before it. In our experiments,
we used n = 2. Specifically, a single-layer CEM is called
when n = 1, and a double-layer CEM is called when n = 2.

This phenomenon is illustrated in Fig 3(b). The former (I)
has a steep change in the number of channels from 3 to 16
in our experiment, whereas the latter (II) is buffered by an
intermediate layer, and its channels change from 3 to 8 to
16.

We conducted ablation experiments on several different
structural designs, and the results are shown in Table. II.
The training metrics are shown in Fig 4. A detailed analysis
of the results is presented in IV-D.

C. SEM

The texture structure embodies the detailed information of
visual images and is an integral part of image features. The
effective representation of rich features is a critical challenge
in visual tasks [5], [49], [31]. Hence, our SEM first captures
detailed multiscale texture information from the input image
using three convolutions with different kernel sizes. To fully
preserve the details, we used a concatenation operation to
obtain feature map Xms.

Xms = Concat(fk1(Xinput),

fk2(Xinput), fk3(Xinput))
(4)

where fki is the 2D convolution with kernel size ki, i ∈
{3, 7, 11}. Subsequently, the feature map, Xms, is sent to
the feature-mixing block for feature fusion and interactions
at different scales.

Sψ(Xinput) = Conv1×1(ζ(BN(Conv1×1(Xms)))) (5)

where Conv1×1(·) is the convolution with kernel size 1 and
stride 1, ζ(·) represents the GELU [50] activation function,
and BN denotes BatchNorm.

D. FMM

The FMM includes a 1×1 convolution and a BatchNorm.
The common practical 1× 1 convolution is used to mix the
feature maps of different branches to preserve the feature
information to the greatest extent.

Fω(Xinput) = BN(Conv1×1(Concat(Xinput,

Xce, Xse)))
(6)

where Concat(·) denotes the concatenate operation. Xinput

represents the input image, and Xce and Xse are feature
maps from the color and structure embedding modules,
respectively. The final feature map is sent to the backbone
for further processing.
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Fig. 3: Architecture of the proposed method. GELU [50] is the activation function, and LN2d is the special implementation
of LayerNorm [48] without adjusting the order of dimension. K ×K represents the kernel size.

IV. RESULTS AND DISCUSSION

This section presents the quantitative and qualitative ex-
periments conducted to demonstrate the effectiveness and
efficiency of the proposed IES. We conducted quantitative
experiments on the ImageNet-100 [51] image classification
dataset, UTFPR-SBD3 [52] semantic segmentation dataset,
and CIHP [53] instance segmentation dataset. For the se-
mantic and instance segmentation datasets, we used mIoU,
mean accuracy (mAcc), and mean F-score (mFScore) to
measure the performance of different baselines. Top-1 and
Top-5 accuracies were applied to the classification datasets.

A. Datasets

Imagenet-100 [51] is a subset of the ImageNet-1K dataset
that includes 100 categories, each containing 1,300 images.
The advantage of this dataset is that the number of cat-
egorical distributions is balanced, which avoids the long-
tailed phenomenon. Owing to the limitations of hardware
and parameters, and to quickly verify the performance of
our plug-and-play IES module, we chose this dataset as our
benchmark for image classification.

UTFPR-SBD3 [52] is a high-quality dataset intended for
clothing segmentation tasks in the context of soft biometrics.
It consists of 4,500 images manually annotated into 18
classes plus backgrounds, of which 1,003 are taken from
the CCP dataset, 2,679 from the CFPD dataset, and 685
from the Fashionista dataset. Each class contains at least
100 instances, and all images were standardized to 400 ×
600 pixels in RGB.

CIHP is a large-scale multi-person segmentation bench-
mark [53] that contains 38,280 images collected from real-
world scenes, each with 19 semantic tags annotated at the
pixel level. Each image contains three people on average, in-
cluding challenging poses and viewpoints, severe occlusions,
and wide resolutions. We divided this benchmark into three
groups, 28,280 for training, 5,000 for verification, and 5,000
for testing.

B. Experimental Details

We used PyTorch, timm [54], mmpretrain [55], and mm-
segmentation [56] libraries for classification and segmenta-
tion. In the classification experiments, all baselines utilized
the same data augmentation methods and were implemented

using mmpretrain [55], and a mixed-precision training strat-
egy was added to save memory and shorten the training
period. In particular, to ensure the fairness of comparisons
and validate the effectiveness of our proposed IES, the
baselines used their original training settings and model
configurations to control variables.

C. Ablation Studies

All ablation experiments were performed on the UTFPR-
SBD3 [52] dataset using the PoolFormer backbone [46].
This model is lightweight and efficient, which allowed us
to perform faster verifications with limited resources. It also
uses a single convolution and BatchNorm in the stem, thereby
ensuring that the ablation test obtains more evidence to
validate efficiency improvements. We found that each part
of the IES contributed to the final performance, as listed in
Table I.

TABLE I: Ablation study of different components. Params
denotes the number of parameters, measured in millions (M).

CEM SEM Params(M) mIoU

15.653 49.16
✓ 15.696 51.18(+2.02)

✓ 15.719 51.21(+2.05)
✓ ✓ 15.761 51.52(+2.36)

As shown in the Table I, and ✓indicate disabling and
enabling the module, respectively. The base model achieved
a 49.16 mIoU when neither the CEM nor SEM was used.
However, with both, the performance improved by 2.36
to a 51.52 mIoU. When only the CEM was used, the
performance improved by 2.02 over the baseline to a 51.18
mIoU. Similarly, the SEM improved the base model by 2.05
to a 51.21 mIoU. The experimental results strongly indicate
that each component plays an important role in improving
performance. The next two sections explore the impacts of
the CEM and SEM more closely .

1) CEM Experiments: Noting that the number of MLP-
like CEM layers influences model representability, past
studies have adopted two full connection layers in a feed-
forward network [14], [5], [17]. Hence, we designed four
groups of experiments to determine the extent to which the
number of CEM layers affect network representability based
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on the same 42 output channels (see Table II). The first
experimental group comprised four tests corresponding to
the various model layers, incrementing the index from one to
four. The second group comprised three tests for diversifying
the output channels based on previous results. The channels
in the one-layer variant were changed from Cin to Cout,
referring to input and output channels, respectively. In the
two-layer variant, they were changed from Cin to 1

2Cout
then to Cout. For the other variants, the changes followed a
similar pattern.

TABLE II: Ablation experimental results of CEM with
various layers and output channels.

layers dims Params(M) mIoU

1 42 15.696 51.18

2 42 15.697 51.16

3 42 15.699 51.03

4 42 15.702 50.09

2 18 15.695 50.64

2 30 15.696 50.48

2 54 15.699 49.86

In Table II, layers and dims mean the number of layers and
the output channels in CEM. There was no significant dif-
ference in the experimental results (51.16 and 51.18 mIoU)
for the two- and one-layer CEMs, respectively. However,
based on the training curve illustrated in Fig 4, the two-
layer variant achieved faster adaptability. That is, under the
premise of not reducing performance, the smooth channel
layer transformation had a higher convergence than the steep
one. which allowed the model to fit the data distribution
faster. However, when the number of layers exceeded two,
the model performance declined. In the final version, we
chose a two-layer variant with a higher fitting ability as the
basic CEM architecture.

Fig. 4: Intermediate validation results for 1-layer and 2-layer
CEM.

The number of feature map channels is crucial for model
success; therefore, we further explored the influence of the
final number of color-embedding channels on model repre-
sentability. Based on the previous results, we adopted a two-
layer architecture as the fundamental structure. Four groups
of experiments were again performed in which the number
of channels followed an arithmetic progression from 18, 30,

42, to 54 with interval steps of 12. From the results, the
best performance occurred when the number of embedded
channels was 42. With an increase in the number of color-
embedding channels, the model performance first increased
and then decreased. The mIoU ranged from 50.64 to 50.48
and 51.16 to 49.86. Because the CEM is located at the
beginning of the full model, the gradient at this position has a
larger range of change than the others, which can easily lead
to gradient disappearance or explosions [20]. This instability
makes training the CEM more difficult. Although BN and
residual connections are helpful in resolving this problem,
the changes are still noticeable.

TABLE III: Ablation experiment of various kernel size
combinations and channels.

index kernels dims Params(M) mIoU

C1 3,7,11 32 15.707 50.69
C2 5,9,21 32 15.719 51.21
C3 5,11,21 32 15.720 51.16

C4 5,9,21 16 15.707 50.52
C5 5,9,21 48 15.734 51.01
C6 5,9,21 64 15.750 51.08

2) SEM Experiments: We extracted structural information
of multiple scales through convolutions of different kernel
sizes, including rich specific information. To determine the
optimal combination and verify the effectiveness of our SEM,
we conducted another set of ablation experiments.

In the upper part of Table III, mIoU is used as a mea-
sure of performance. Dims means the channels of output
feature map. The index from C1 to C3 indicates different
convolution kernel composition schemes: {3,7,11}, {5,9,21},
and {5,11,21}, respectively. This design was based on two
considerations. First, we captured small-size detailed texture
features using kernels sizes of three and five, medium-
sized detailed features were captured using kernel sizes of
seven and nine, and large-scale detailed texture features were
captured with kernel sizes of 11 and 21. Second, according to
the expressability of different convolution kernels, the feature
extractors of the large, medium, and small receptive fields
were cross-matched.

From the above considerations, three reasonable combina-
tions were designed. Although larger kernel convolutions can
increase model complexity, the small number of embedded
channels mitigates these effects. The experimental results for
the three convolution kernel combinations are summarized
in Table III, where C2 achieved the best performance with
a 51.21 mIoU, and C3 achieved a 51.16 mIoU, which was
higher than that of C1.

Based on the C2 kernel size combinations, we conducted
additional experiments to investigate the impact of varying
the channel numbers on performance indices C4 to C6, as
indicated in the lower part of Table III. In these experiments,
we compared the results for channel numbers of 16, 32, 48,
and 64, and the experimental results revealed the optimal
performance at 32 channels.

Based on this analysis, we can conclude that a medium
kernel size (C2) provides the most effective feature extractor.
When the number of output channels is 32, the generated
feature maps exhibited the richest and most effective feature
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Fig. 5: Visualization of attention maps in the last norm layer of the different methods. It clearly shows that the SOTA
baselines with IES can achieve better results than before.

information.

D. Comparisons with SOTA Methods

1) Attention Visualization: To obtain a better and more
intuitive understanding of the vital function of the stem and
proposed IES, we further visualized the feature maps using
GradCam [57], which utilizes the average gradient of the
feature maps generated by the last layer in the original stem
with respect to the specific class of our IES to generate a
helpful visual explanation.

Fig 5 shows the visualization results for EdgeNext-xxs
[58], TinyViT-5m [13], MobileViT-xxs [59], and VanillaNet
[2] backbones. Red denotes high activations in the particular
region and blue denotes weak network attention activations.
We compared the results of the four methods. “w/ IES”
indicates our proposed IES stem, and “w/o IES” indicates
the original. As shown in Fig 5, our IES module captured
more target feature information than the original in images
with multiple targets, which benefited from the multiscale
feature-extraction capability of the new SEM. The visu-
alization results show that our proposed IES also had a
strong characterization ability for textural details and played
a beneficial role in images with obvious color characteristics.
For example, it effectively represented the black color of a
swan and the red color of a chicken, which is unusually
precise for these types of models. From these results, we
can clearly see that our proposed SEM and CEM play strong
roles in improving overall model effectiveness.

2) Image Classification: We compared our method to
extant SOTA methods on the ImageNet-100 classification
dataset. For fairness and credibility of comparison, we per-
formed two offsetting configurations. First, apart from the
stem module, the two models shared the same code and
settings. Second, the same data augmentation methods were
adopted as the backbone for classification purposes. We
adopted common data augmentation methods including Ran-
domResizedCrop [23] with a crop size of 224, RandomFlip
with a crop size of 0.5, RandAugment by Timm [54], and
RandomErasing with a crop size of 0.25 [61]. We adopted
the AdamW optimizer with an initial learning rate of 0.001,
a weight decay of 0.05, betas of 0.9 and 0.999, and an eps
of 1e-8. We trained all the baselines for 100 epochs using a
batch size of 256, and a warm-up learning rate scheduler [20]
was adopted for the first 10 epochs. The remaining epochs
were adjusted using a cosine annealing scheduler. The results
of the comparative trials of the ImageNet-100 classification
experiments are summarized in Table IV. We can see that
the baselines armed with our proposed IES achieved a very
competitive performance. Different baselines had different
numbers of embedded channels in their stems; therefore, the
increased parameter quantity changed slightly after replacing
the respective baseline with our IES.

To evaluate the effectiveness of the proposed IES on di-
verse model architectures, experiments were conducted using
CNN-, transformer-, and CNN+transformer-based models.
For the CNN-based model, our IES helped the VanillaNet
[2] achieve a +1.52 top-1 accuracy at a computing cost
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TABLE IV: Results on ImageNet-100 classification dataset. Type indicates the architecture of models. The notation w/o
indicates that the model does not adopt IES, while w/ signifies the opposite.

Model IES Type Params(M) Top-1 Acc(%)

EMO[9]
w/o

CNN
5.097 84.78

w/ 5.146 86.03(+1.25)

EfficientFormer[60]
w/o

CNN
5.286 83.51

w/ 5.316 84.65(+1.14)

VanillaNet5[2]
w/o

CNN
17.649 81.20

w/ 17.780 82.72(+1.52)

EdgeNeXt[58]
w/o

CNN-Trans
1.175 81.14

w/ 1.205 81.60(+0.46)

TinyVit-5m[13]
w/o

Trans
5.104 84.98

w/ 5.133 85.5(+0.52)

TinyVit-11m[13]
w/o

Trans
10.593 85.48

w/ 10.618 85.80(+0.32)

MobileVit-xxs[59]
w/o

CNN-Trans
0.983 79.40

w/ 1.010 80.18(+0.78)

MobileVit-s[59]
w/o

CNN-Trans
5.002 84.56

w/ 5.025 84.98(+0.42)

TABLE V: Comparison with state-of-the-art methods on CIHP segmentation dataset. SS means single-scale.

Model IES Params(M) mIoU(SS) mAcc mFscore

SegNeXt[5]
w/o 4.297 48.27 60.59 59.17
w/ 4.318 50.13(+1.86) 61.94(+1.35) 61.08(+1.91)

ConvNeXtV2[21]
w/o 3.760 33.35 43.34 45.23
w/ 3.796 35.14(+1.79) 45.08(+1.74) 47.28(+2.05)

SegFormer[62]
w/o 3.612 51.32 61.91 62.61
w/ 3.634 52.70(+1.38) 63.53(+1.62) 64.12(+1.51)

HRNet[32]
w/o 9.641 59.40 71.11 72.68
w/ 9.675 59.46(+0.06) 71.69(+0.58) 72.68(+0.00)

PoolFormer[46]
w/o 15.653 49.32 61.27 63.33
w/ 15.761 51.06(+1.74) 63.00(+1.73) 65.13(+1.80)

VAN[31]
w/o 7.967 51.93 63.39 65.63
w/ 8.030 53.27(+1.34) 65.24(+1.85) 66.89(+1.26)

MobileNetV3[26]
w/o 1.141 29.89 40.64 43.72
w/ 1.162 30.32(+0.43) 40.61(-0.03) 44.65(+0.93)

of 0.131M parameters. For the transformer-based TinyVit
method [13], we performed a comparative test on two
versions, 5M and 11M, respectively, achieving consistent
performance improvements (85.5 vs. 84.98 and 85.8 vs.
85.48 top-1 accuracies). For the CNN+transformer-based
approaches (i.e., EdgeNext-xxs [58] and MobileVit [59]), the
former obtained a +0.46 top-1 accuracy with the addition of
our IES, and the latter gained +0.78 and +0.42 values for
xxs and s versions over the originals.

In conclusion, compared with all SOTA methods, the
proposed IES significantly improved their performance. For
example, Vaillanet [2] gained a +1.52 top-1 accuracy im-
provement. More importantly, the proposed IES exhibited
stable performance for distinct baseline versions, demonstrat-
ing the excellent ability of the proposed IES to extract image

features.
3) Image Segmentation: To further evaluate the generaliz-

ability of IES, we conducted experiments on the challenging
CIHP and UTFPR-SBD3 datasets for instance and semantic
segmentation tasks. We compared our method’s results on
SOTA ConvNeXtV2-atto [21], HRNet-18 [32], PoolFormer-
s12 [46], VAN-b0 [31], SegFormer-B0 [62], SegNeXt-T [5],
and MobileNet-V3 [26] baselines. We adopted the AdamW
optimizer and set the initial learning rate to 0.0001, weight
decay to 0.01, and betas to 0.9 and 0.999. For the CIHP and
UTFPR-SBD3 datasets, images were cropped to 512 × 512
and 608 × 416, respectively. We trained the SOTA baselines
for 96K iterations using their default settings and a batch
size of eight. The warm-up scheduler [20] was adopted for
the first 1.5K iterations, and the rest were adjusted using a
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TABLE VI: Comparison with state-of-the-art networks on SBD3 validation set. The number of parameters is measured on
the image size of 512× 512.

Model IES Params.(M) mIoU(SS) mAcc mFscore

SegNeXt[5]
w/o 4.297 51.06 62.49 64.91
w/ 4.318 52.67(+1.61) 64.02(+1.53) 66.61(+1.70)

ConvNeXtV2[21]
w/o 3.760 49.56 61.34 63.85
w/ 3.796 51.26(+1.70) 63.57(+2.23) 65.30(+1.45)

SegFormer[62]
w/o 3.612 52.53 62.17 65.36
w/ 3.634 54.03(+1.50) 63.85(+1.68) 67.01(+1.55)

HRNet[32]
w/o 9.641 59.70 71.74 73.18
w/ 9.675 60.11(+0.41) 71.92(+0.18) 73.43(+0.25)

PoolFormer[46]
w/o 15.653 49.16 60.63 62.92
w/ 15.761 51.52(+2.36) 63.39(+2.76) 65.75(+2.83)

VAN[31]
w/o 7.967 52.22 63.89 66.10
w/ 8.030 53.07(+0.85) 64.84(+0.95) 66.53(+0.43)

MobileNetV3[26]
w/o 1.141 51.03 62.02 64.85
w/ 1.162 51.87(+0.84) 63.19(+1.17) 65.92(+1.07)

poly-learning rate decay policy, with its power set to 1.0. For
a fair comparison, the training configurations remained the
same except for the stem, which was replaced by the IES in
the comparison models.

TABLE VII: Semantic segmentation on ADE20K validation
set. The performance is measured by single-scale mIoU.

Model IES Type mIoU(SS)

Uniformer-S[63]
w/o

CNN-Trans
46.6

w/ 46.67(+0.07)

DeiT-S[64]
w/o

Trans
44.0

w/ 44.12(+0.12)

PVT-S[17]
w/o

Trans
39.8

w/ 40.01(+0.21)

MogaNet-S[4]
w/o

CNN
47.7

w/ 47.88 (+0.18)

SLaK-S[49]
w/o

CNN
49.4

w/ 49.55 (+0.15)

Swin-S[14]
w/o

Trans
41.5

w/ 41.67 (+0.17)

On the CIHP dataset, the mIoU, mAcc, and mFscore
were again used for the SOTA methods, as listed in Table
V. In the experiments, the IES+ConvNextV2-atto gained a
+1.79 mIoU (35.14 vs. 33.35), a +1.74 mAcc (45.08 vs.
43.34), and a +2.05 mFscore (47.28 vs. 45.23) over the
ConvNextV2-atto. The IES+PoolFormer-s12, with similar
parameters, surpassed the PoolFormer-s12 by 1.74 mIoU
(51.06 vs. 49.32), by 1.73 mAcc (63.0 vs. 61.27), and by
1.8 mFscore (65.13 vs. 63.33). Moreover, the IES+VAN-b0
yielded a +1.34 mIoU improvement (53.27 vs. 51.93) over
the original VAN-b0. The results showed that the SOTA
methods achieved remarkable performance improvements
with the addition of the proposed IES.

For the UTFPR-SBD3 dataset, as listed in Table VI, we
again report the mIoU, mAcc, and mFscore. While maintain-
ing similar parameters, the fpn-PoolFormer-s12 improved by
2.36 mIoU, by 2.76 mAcc, and by 2.83 mFscore. Similarly,

ConvNeXtV2-atto [21] increased by 1.7 mIoU, 2.23 mAcc,
and 1.45 mFscore. Similarly, MobileNet-V3 [26], VAN-
b0 [31], and HRNet-18 [32] increased by 0.84, 0.85, and
0.41 mIoU, respectively. This reflects both excellent feature
representability and superior generalizability for the IES in
that the same SOTA models gained significant performance
improvements with different datasets.

We also evaluate our IES with different methods on
ADE20K [65]. The experimental results are presented in
Table VII. In all the reference models, performance improve-
ments were achieved when using IES.

V. CONCLUSION

We present our novel IES stem, which consists of a
CEM, SEM, and FMM. This combination of advancements
significantly increased the performance of existing backbone
methods while requiring fewer parameters. Preliminary fea-
ture extraction was realized by effectively fusing the color
information captured by the CEM and the detailed texture
information captured by the SEM, which provided higher-
quality feature maps for feature extraction. Our experiments
used various popular visual datasets to demonstrate and
validate the effectiveness of the proposed IES. Based on
the results, it is now possible to improve the performance
of extant SOTA CNNs and transformers by improving their
visual image representation baselines. We expect that this
advancement will provide the groundwork for additional
improvements and real-world implementation. In the future,
we plan to continue perfecting our model for more challeng-
ing visual tasks, such as video classification and key point
detection.
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