

Abstract—Locating software faults during debugging is

crucial yet challenging. Automated techniques, such as

spectrum-based fault localization (SBFL), aid developers in

efficiently localizing faults by analyzing program execution

information and utilizing statistical approaches to rank

program entities according to their suspiciousness. SBFL is

also known as lightweight fault localization because of its

scalability and minimal computational overhead. While

essential, there has been limited research on how test suites

affect fault localization. In this paper, we show how test suites

impact fault localization and how they can be optimized for

better results. SBFL techniques have some inherent limitations,

especially in diagnosing faults within loop bodies or iteration

statements. Additionally, identical suspiciousness levels can

result in ties. While SBFL techniques effectively rank faulty

program entities among the Top-N suspicious entities, they

might not consistently position the faulty entity within the

initial few positions. To address these research gaps, this paper

proposes a hybrid approach that combines test suite

optimization, statement execution frequency, and fault context

concepts to enhance the performance of existing SBFL

techniques in single fault scenarios. We evaluate our approach

using three popular SBFL methods (Ochiai, Jaccard, and

DStar) on Siemens benchmarks and four large real-world

programs (flex, grep, sed, and space) with their test suites. The

results demonstrate a significant enhancement in fault

localization performance when applying our proposed

approach to existing SBFL methods. For example, when

applied to Ochiai, it reduces examined statements by 62.76%

and 65.23% on average for the two test suites, respectively.

Furthermore, it identifies 52% of faults by examining only 1%

or less of the code and locates 60% of faults by analyzing only

0.1% or less of the code in Siemens and four large real-world

programs, respectively. Similar improvements are observed

when our approach is applied to Jaccard and DStar methods

on the same test suites. We also show that our results are

statistically significant, validating that our approach

substantially improves the performance of existing SBFL

techniques.

Index Terms—fault context, program spectrum, spectrum-

based fault localization, statement execution frequency,

suspiciousness, testing and debugging, test suite optimization.

Manuscript received May 16, 2023; revised February 21, 2024.

Amol Saxena is a PhD candidate of Computer Sc. & Engineering

Department, SCSE, Manipal University Jaipur, Jaipur, Rajasthan, India-
303007 (email: amolsaxena2015@gmail.com).

Dr. Roheet Bhatnagar is a Professor of Computer Sc. & Engineering

Department, SCSE, Manipal University Jaipur, Jaipur, Rajasthan, India-
303007 (Phone: +91-8003897115; email:

roheet.bhatnagar@jaipur.manipal.edu).

Dr. Devesh Kumar Srivastava is a Professor of Information Technology
Department, SIT, Manipal University Jaipur, Jaipur, Rajasthan, India-

303007 (email: devesh988@yahoo.com).

I. INTRODUCTION

oftware is becoming increasingly large and complex as a

result of its widespread use and adoption. Software plays

a critical role in various safety-critical systems in industries

such as healthcare, defense, aviation, nuclear energy and so

on. However, faults in software are inevitable, and the rapid

growth and intricate nature of software systems have

resulted in more faults leading to software failures, resulting

in substantial losses [1], [2]. Testing and debugging are

crucial activities in the software development process but

are generally very costly. They can account for up to 75% of

the total software development costs [3]. The process of

testing and debugging involves three steps: first, identifying

the scenarios in which a program fails, second, locating the

faults responsible for program failures, and third, fixing the

faults. The second process is the most difficult, tedious, and

costly in terms of the developer’s time and effort [4], [5]. In

software engineering literature this second process is

popularly known as software fault localization. Fault

localization can be defined as detecting and identifying the

locations of faults in software systems. In this process, the

programs are executed with predefined test cases, and

execution information is utilized to locate faults. Earlier the

process of fault localization was carried out manually and

was known to be a very tedious, time consuming and

prohibitively expensive, especially in case of large scale and

complex software systems. The manual fault localization

also depends on the expertise, experience and judgment of

the developer who is performing the debugging task.

Automated fault localization techniques have emerged as a

solution to the drawbacks of manual fault localization

methods, as they require minimal or no human intervention

to locate faults.

Over the past few decades, researchers have introduced

numerous automated software fault localization techniques.

These techniques include spectrum-based methods,

statistics-based approaches [6], [7], model-based methods

[8], machine learning-based techniques [9], [10], slice-based

methods, and program state-based approaches. These

automated techniques improve software quality, reliability,

and reduce delivery time. Spectrum-based fault localization

(SBFL), according to recent studies, is the most widely used

and effective technique due to its superior scalability and

low computational overhead [11] characteristics. Due to

these reasons SBFL is also referred to as lightweight fault

localization in the software engineering literature.

Moreover, SBFL can be used to locate faults with little or no

Effective Lightweight Software Fault

Localization Combined with Fault Context and

Test Suite Optimization

Amol Saxena, Roheet Bhatnagar, Member, IAENG, and Devesh Kumar Srivastava, Member, IAENG

S

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

mailto:devesh988@yahoo.com

knowledge of the semantics of the program being debugged.

The objective of this paper is to introduce a framework that

enhances the precision and efficiency of lightweight

software fault localization (i.e. SBFL), specifically in a

single fault scenario. Typically, a program consists of

various entities, including statements, statement blocks,

predicates, and methods. However, this study concentrates

solely on isolating faults in program statements when only

one fault is present. Therefore, whenever the term program

entity is used in this paper, it should be interpreted as

referring to program statements, unless stated otherwise.

Test suites are essential, as they drive program execution

and enable the collection of program spectrum information

for initiating the fault localization process. However, prior

studies have not given enough emphasis on the adequacy of

test suites in this context. Our study improves fault

localization performance by using optimized test suites.

Current SBFL techniques have limitations in accurately

diagnosing faults, especially in loops and iterations, as they

only consider whether a statement is executed or not.

Additionally, identical suspiciousness levels can result in

ties. To address these issues, we incorporate statement

execution frequency information into the SBFL. While

SBFL techniques effectively rank faulty program entities

among the Top-N suspicious entities, they might not

consistently position the faulty entity within the initial few

positions. To enhance the prioritization of faulty program

entities, this paper proposes incorporating the concept of

fault context into SBFL.

To address the above mentioned limitations of traditional

SBFL techniques, we propose a hybrid approach that

combines the concepts of test suite optimization, statement

execution frequency, and fault context concepts to improve

the effectiveness of existing SBFL techniques in single fault

scenarios. In order to evaluate our proposed approach, we

conducted a thorough empirical study on two benchmark

test suites: Siemens and large programs (flex, grep, sed, and

space), comparing its performance with the existing classic

SBFL techniques. We employ four metrics to assess the

efficacy of the proposed approach in comparison to the

traditional SBFL methods. The four metrics utilized are

Exam Score, Cumulative Number of Statements Examined,

Top-N, and Wilcoxon Signed-Rank Test. Our results

demonstrate that the proposed approach outperforms

existing SBFL methods in most of the cases. Our approach

on average reduces examined statements by 62.76% for

Siemens programs and 65.23% for large real-world

programs when applied to classic Ochiai. It detects 52% of

the faults in Siemens and 60% of the faults in large real-

world programs by analyzing less than or equal to 1% and

0.1% of the code, respectively, outperforming existing

classic Ochiai method. Furthermore, the proposed approach

achieves better Top-N results as it locates 20% of the faults

at top-1, 60% of the faults at top-5 positions for Siemens

programs, similarly 7% of the faults at top-1 and 27% of the

faults at top-5 positions for large real-world programs. We

also test our proposed approach on two other SBFL

techniques, Jaccard and DStar, and find that it significantly

improves fault localization effectiveness for both the

techniques. The main contribution of this paper can be

summarized as follows.

1. This paper investigates how test suites impact fault

localization and how they can be optimized for

improved software fault localization performance.

2. To address the inherent limitations of existing

spectrum-based fault localization (SBFL) techniques,

such as ties in the ranking of statements with the same

suspiciousness scores and inaccurate diagnoses of faults

occurring within loop bodies or iteration statements, we

propose incorporating the concept of statement

execution frequency into SBFL.

3. To demonstrate how the combination of fault context

with spectrum-based fault localization can enhance the

accuracy of identifying faulty program entities,

resulting in an improved absolute rank of such entities.

4. We propose a hybrid approach that combines test suite

optimization, statement execution frequency, and fault

context concepts to enhance the effectiveness of

spectrum-based software fault localization in single

fault scenarios. We evaluate its effectiveness on the

Siemens benchmark and four large real-world programs

(flex, sed, grep, and space). The results demonstrate that

the proposed approach significantly improves the

performance of existing SBFL techniques.

The subsequent sections of the paper are structured as

follows. Section II highlights the background information

necessary for a comprehensive understanding of the research

context. Section II-A introduces the lightweight (or

spectrum-based) fault localization techniques. Section II-B

explains test suite optimization process and how optimized

test suites can be used to improve the performance of

lightweight fault localization. Section II-C describes how

statement execution frequency information can be

incorporated into SBFL formulas to address some of the

inherent issues associated with SBFL. Section II-D explains

the concept of fault context, which can be combined with

SBFL techniques to further improve the absolute rank of

faulty program entities. Motivational examples are provided

to illustrate each of the concepts discussed in subsections II-

B, II-C, and II-D. Section III presents our proposed

approach/framework with the help of a motivational

example. Section IV presents the empirical study, covering

research questions, experimental setup, evaluation metrics,

results, and discussions. The related literature review is

provided in Section V, and threats to validity is summarized

in Section VI. Section VII concludes the paper highlighting

the scope of the future work.

II. BACKGROUND AND MOTIVATION

The aim of this paper is to improve the effectiveness and

precision of conventional spectrum-based fault localization

(SBFL) methods. This section presents a fundamental

introduction to SBFL, also referred to as lightweight

software fault localization (LFL). To gain a better

understanding of the methodology proposed in this paper,

we elaborate on how the ideas of test suite optimization,

statement execution frequency, and fault context can be

utilized to enhance the accuracy and effectiveness of

lightweight software fault localization from a single fault

perspective. Motivational working examples have been used

to illustrate all these concepts.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

A. Lightweight Software Fault Localization

In the domain of fault localization research, spectrum-

based fault localization (SBFL) is frequently termed as

lightweight software fault localization due to its

advantageous features of minimal computational overhead

and strong scalability. In this paper, the terms SBFL and

lightweight software fault localization (LFL) are utilized

interchangeably.

SBFL employs program spectrum information, which is

dynamically collected when the program under debugging is

executed with predefined test cases. The program spectrum

is built from the dynamic coverage information acquired

from the test execution results of the faulty program and the

corresponding test results (passed/ failed). A program is said

to be passed when it gives the expected results, and is

considered as failed otherwise. A program statement is said

to be hit when it gets executed in the testing process. This

statement hit information or statement coverage information

collected from the execution of a program with several test

cases is called the statement hit spectra. The correlation

between the test results (passed/ failed) and statement hit

spectra is utilized by the SBFL in order to locate the fault.

SBFL techniques employ formulas based on similarity

coefficients to determine the suspiciousness of program

statements, which indicates the likelihood of those

statements being faulty. These methods operate on the

fundamental concept that if the execution pattern of a

statement is similar to that of failed test cases, the statement

is more likely to be faulty and thus more suspicious.

Conversely, if the execution pattern of a statement differs

from the failed test cases' execution pattern, the statement is

considered less suspicious. These techniques use similarity

coefficient-based methods to measure the degree of

similarity between the statement's execution pattern and the

failed test cases, which is then used to determine the

statement's suspiciousness.

A debugging report that contains statements ranked in

descending order according to their suspiciousness scores is

generated to perform fault localization. In response to this

perception, researchers have proposed a number of metrics

based on similarity coefficients that calculate program

statement suspiciousness scores. Examples include

Tarantula [12], Ochiai [11], Jaccard [13], DStar [14], Zoltar-

S [15], [16], Crosstab [17] etc. These metrics, which are

based on similarity coefficients, are also known as ranking

metrics or ranking heuristics. In essence, these are statistical

formulas that compute the suspiciousness of statements in

the faulty program using program spectrum information.

We now formally define the process of spectrum-based

fault localization. Consider a faulty program P, and let S=

{S1, S2, …, SN} represent its statements and T={T1, T2, …,

TM}is the test suite, which has M test cases. Fig. 1 shows a

two dimensional matrix of size (N+1) × M, which represents

the program spectrum. This program spectrum is the input to

the SBFL process. An element Eij has a value of 1 if test

case Ti covers the statement Sj, otherwise it has a value of 0.

The last row of the matrix is the result vector R, which

represents the execution result in terms of pass (P) or fail (F)

of the program P when run with test case Ti, where i=1 to

M. When test Ti fails, result Ri is 1 (or F), but if Ti passes

(i.e. gives the expected output), result Ri is 0 (or P) (or vice

versa). The value of each statement Si's suspiciousness is

shown in the table's last column. The higher the

suspiciousness value, the more likely it is that the statement

is faulty.

SBFL utilizes the comparison of the statement vector and

result vector in the matrix shown in Fig. 1 to determine the

suspiciousness of a given statement. To simplify similarity

calculations, SBFL defines the statistical variables outlined

as follows. NCF stands for the test cases count that cover a

statement and also result in failure, whereas NUF represents

the count of test cases that fail without covering a statement.

On the other hand, NCS stands for the test cases count that

both pass and cover a statement, while NUS represents the

test cases count that pass but do not cover a statement.

Furthermore, the counts of test cases that cover and do not

cover a statement are denoted by NC and NU, respectively.

NS and NF, on the other hand, refer to the total number of

passing and failing test cases, respectively. These statistical

variables have been used to propose several similarity

coefficient based metrics/formulas by researchers in past

years. Some of them are given below in Table I.

Fig. 1. Input to SBFL (Program Spectrum)

TABLE I

SPECTRUM-BASED FAULT LOCALIZATION TECHNIQUES

Sr.

No.
Coefficient Formula (Algebraic Form)

1 Tarantula

𝑁𝐶𝐹

𝑁𝐹

𝑁𝐶𝐹

𝑁𝐹
+

𝑁𝐶𝑆

𝑁S

2 Jaccard
𝑁𝐶𝐹

𝑁𝐶𝐹 + 𝑁𝑈𝐹 + 𝑁𝐶𝑆

3 Ochiai
𝑁𝐶𝐹

√𝑁F x (𝑁𝐶𝐹 + 𝑁𝐶𝑆)

4 DStar†
(𝑁𝐶𝐹)∗

𝑁𝐶𝑆 + 𝑁𝑈𝐹

5 Kulczynski
𝑁𝐶𝐹

 𝑁𝑈𝐹 + 𝑁𝐶𝑆

6 Dice
2𝑁𝐶𝐹

 𝑁𝐶𝐹 + 𝑁𝑈𝐹 + 𝑁𝐶𝑆

7 Ample
𝑁𝐶𝐹

 𝑁𝐶𝐹 + 𝑁𝑈𝐹

−
𝑁𝐶𝑆

 𝑁𝐶𝑆 + 𝑁𝑈𝑆

8 Anderberg
𝑁𝐶𝐹

 𝑁𝐶𝐹 + 2(𝑁𝑈𝐹 + 𝑁𝐶𝑆)

9 Zoltar

𝑁𝐶𝐹

𝑁𝐶𝐹 + 𝑁𝑈𝐹 + 𝑁𝐶𝑆 +
10000 𝑥 𝑁𝑈𝐹 𝑥 𝑁𝐶𝑆

𝑁𝐶𝐹

† In our experiments, we consider the value of * = 2, as that value is
thoroughly investigated in the fault localization literature [14].

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

B. Test Suite Optimization

Because the program spectrum information is

dynamically collected by running the faulty program with

the necessary input supplied through individual test cases of

a test suite, the accuracy and efficiency of fault localization

largely depend on the test suite being used in the fault

localization process. As part of the fault localization

process, this dynamic program spectrum data is analyzed (in

our case SBFL). The majority of fault localization studies do

not much emphasize on test suite sufficiency in terms of its

capability to increase fault localization effectiveness.

Investigating the relation between test suites and fault

localization is therefore important. Past researches show that

in order to enhance the fault localization efficiency the

concept of optimized test suites was used by very few

findings, although many studies have suggested ways to

enhance fault localization performance by other means [18]–

[22]. The effectiveness of fault localization was examined

by Yan Lei et al. [19] in relation to the positive or negative

impact of various test suite components. In this case, a

positive impact indicates an improvement in the fault

localization effectiveness, whereas a negative impact

indicates a reduction in the fault localization accuracy.

As per their investigation, the accuracy of identifying

faults in a program is negatively impacted by faulty

statements that are executed by passing test cases within a

test suite. Contrarily, faulty program entities (i.e., statements

in our study) that are not executed by passing test cases have

a positive effect on the suspiciousness rank of those program

entities, which in turn enhances fault localization

performance. The performance of fault localization,

however, always increases when a test suite includes failing

test cases. The passing test cases of a test suite are largely

responsible for the variations in SBFL performance, as they

occasionally execute the faulty statement (Sf) and

occasionally do not. The final ranking of Sf is negatively

affected if passing test cases exercise (execute) the Sf

because in that case the suspiciousness of Sf is reduced. In

their work, Yan Lei et al. [19] introduced a measure known

as Passing Test Discrimination (PTD) to evaluate the

comparative efficiency of two test suites in enhancing the

suspiciousness of faulty statements. PTD is calculated as the

ratio of the number of test cases that pass in a test suite but

do not execute the faulty statement to the overall count of

passing test cases. As a result, PTD can be utilized as an

indicator to assess how well a test suite can detect faults in a

program. It is recommended to strive for a relatively high

PTD during the creation of a test suite to enhance fault

localization accuracy.

The PTD of a test suite T can be increased by the use of a

straightforward heuristic explained as follows [23]. Consider

S as a set of statements that includes all those statements

executed by all failing test cases of a test suite T. Suppose t

is a passing test case, and if t executes most of the

statements in S, then there is a high probability that t will

execute the faulty statement. So, from T, we may remove a

test case t if there is a high similarity between the set of

statements executed by t and S. Therefore, in this way, with

the application of PTD metric, an existing test suite can be

optimized, or a new optimized test suite can be created with

a sufficiently high PTD score and effectively used in the

fault localization process.

In the following paragraph we formally explain the above

heuristic. A passing test case can be removed from the test

suite if it is likely to execute a statement that is faulty. To

identify such passing test cases, dynamic statement coverage

information (program spectrum) is utilized from test cases

that give failing results. The fundamental idea is that when

the statement execution coverage of a successful test case

closely matches that of the unsuccessful test cases (or

failing) in the test suite, there is a greater likelihood that the

successful test case will run (or cover) a faulty statement. A

heuristic as explained below can be employed to determine

the degree of similarity between passing and failing test

cases. The minimum suspicious set (MSS) is the collection

of statements covered by all the failed test cases, and the

heuristic employs this concept. Due to the fact that the faulty

statement is responsible for the failure of a test case, it

makes sense that the MSS contains the faulty statement.

Now suppose t is a passing test case and S is the set of

statements executed by t, and if there is a much similarity

between S and MSS that is |𝑆 ∩ 𝑀𝑆𝑆|/|𝑀𝑆𝑆| > 𝛼, where

TABLE II

ILLUSTRATION OF FAULT LOCALIZATION WITH RANDOM TEST SUITE (TESTSUITE-1)

Stmt.

No.

Program T1 T2 T3 T4 T5 T6 NCF NCS Susp.

(Ochiai)

Susp.

Rank

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 3 3 0.71 3

S2 { char strch[100]; 0 0 0 0 0 0 0 0 0.00 13

S3 int alpha, digit, ch, i; 0 0 0 0 0 0 0 0 0.00 13

S4 alpha = digit = ch = i = 0; 1 1 1 1 1 1 3 3 0.71 3

S5 strcpy(strch,argv[1]); 1 1 1 1 1 1 3 3 0.71 3

S6 while(strch[i]!='\0') 1 1 1 1 1 1 3 3 0.71 3

S7 { if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' &&
strch[i]<='Z'))

1 1 1 1 1 1 3 3 0.71 3

S8 alpha++; 0 1 1 1 1 1 3 2 0.77 2

S9 else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 1 1 1 1 1 1 3 3 0.71 3

S10 digit++; 0 0 0 1 1 0 2 0 0.82 1

S11 else 0 0 0 0 0 0 0 0 0.00 13

S12 ch++; 1 1 1 1 1 1 3 3 0.71 3

S13 i++;} 1 1 1 1 1 1 3 3 0.71 3

S14 printf("Alphabets =%d Digits=%d Special characters = %d",
alpha,digit,ch);

1 1 1 1 1 1 3 3 0.71 3

S15 } 1 1 1 1 1 1 3 3 0.71 3

 Result (Pass=P, Fail=F) P P P F F F

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

𝛼 is a threshold; then t can be removed as we believe that

there is a certain probability that t will execute the faulty

statement. As there is no perfect practical value for this

threshold, conducting experimental studies are necessary to

determine the appropriate value of 𝛼 for a particular

practical settings.

To illustrate the process of test suite optimization, let us

consider a simple working example. Table II presents a

program that counts the number of alphabets, digits, and

special characters in its input, with an operator mutation

fault seeded at statement S9. The correct statement is also

provided as a comment at the same place. Six test cases are

executed, with three (T1, T2, and T3) producing correct

results (passed test cases), and the remaining three (T4, T5,

and T6) failing to produce the desired outputs (i.e., failed

test cases). The statement hit spectra corresponding to the

execution of these test cases are given from column three to

column eight. If an entry contains the digit "1", it implies

that the statement is covered by the corresponding test case,

whereas a "0" denotes that the statement is not covered by

the test case. For each statement, the values of NCF and NCS

are given in columns nine and ten, respectively. According

to the definition of Ochiai similarity coefficient metric

(listed in Table I) the suspiciousness scores are computed

and shown in column eleven. Each statement is ranked in

descending order of its suspiciousness score in the last

column. That is, the statement with the highest chance of

being faulty is ranked first.

In order to improve the accuracy of fault localization, we

can utilize test suite optimization. To illustrate this concept,

we will use a sample program. As mentioned previously in

this section, the localization of faults can be negatively

impacted by passing test cases that execute statements

containing faults.

The example program is run with two different sets of test

suites, testsuite-1 and testsuite-2, as shown in Table II and

Table III, respectively. The first test suite (testsuite-1) used

in the example shown in Table II is a random one with a

Passing Test Discrimination (PTD) measure of 0 (i.e. 0/3),

because in this case all three successful test cases (T1, T2,

and T3) have executed the faulty statement. The example

program executed with the second test suite (testsuite-2) in

Table III, on the other hand, is an optimized test suite with a

PTD measure of 66.66% (i.e. 2/3) because two of the three

passing test cases do not execute the faulty statement S9. As

stated at the beginning of this section, increasing the value

of PTD makes a test suite more suitable for fault

localization.

We now present the idea of test suite optimization in a

different way, in which we measure the similarity between

the set of statements executed by passing test cases and

failing test cases with the help of the minimum suspicious

set (MSS).

From the analysis of Table II, it is evident that the passing

test cases (T1, T2, and T3) cover 83.33%, 91.66%, and

91.66% of the Minimum Suspicious Set (MSS) of testsuite-

1, respectively. This significant overlap between the

statements covered by the passing test cases and the MSS

raises the probability that the faulty statements are executed

by passing test cases, thereby decreasing the precision of

fault localization. As a consequence, testsuite-1 (Table II)

can be regarded as a random test suite (i.e. inefficient for

fault localization).

 Successful (passing) test cases T1, T2, and T3 in

testsuite-2 (Table III) share 75%, 75%, and 91.66% of

statements with MSS of testsuite-2, respectively. Because

T1 and T2 (successful or passing test cases) share a smaller

portion of MSS in test suite-2, they are less likely to execute

the faulty statement. As a result, testsuite-2 is an optimized

test suite that will improve fault localization performance.

Upon examining the last columns of Table II and Table III,

it is evident that Test Suite 1 necessitates eight searches to

locate the faulty statement (S9), whereas Test Suite 2 (an

optimized version) requires only one search.

The motivational example given above thus clarifies how

test suite optimization can enhance fault localization

performance.

C. Incorporating statement execution frequency information

into lightweight fault localization

The existing SBFL techniques (some of them are listed in

Table I) have limited diagnostic capabilities as they

represent statement coverage using binary information (1 or

0). That means if a statement is covered or not covered by a

TABLE III

IlLUSTRATION OF FAULT LOCALIZATION WITH OPTIMIZED TEST SUITE (TESTSUITE-2)
Stmt.

No.
Program T1 T2 T3 T4 T5 T6 NCF NCS

Susp.

(Ochiai)

Susp.

Rank

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 3 3 0.71 4

S2 { char strch[100]; 0 0 0 0 0 0 0 0 0.00 13

S3 int alpha, digit, ch, i; 0 0 0 0 0 0 0 0 0.00 13

S4 alpha = digit = ch = i = 0; 1 1 1 1 1 1 3 3 0.71 4

S5 strcpy(strch,argv[1]); 1 1 1 1 1 1 3 3 0.71 4

S6 while(strch [i]!='\0') 1 1 1 1 1 1 3 3 0.71 4

S7 { if((strch [i]>='a' && strch [i]<='z') || (strch [i]>='A' &&

strch[i]<='Z'))
1 1 1 1 1 1 3 3 0.71 4

S8 alpha++; 1 1 1 1 1 1 3 3 0.71 4

S9 else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 0 0 1 1 1 1 3 1 0.87 1

S10 digit++; 0 0 0 1 1 0 2 0 0.82 3

S11 else 0 0 0 0 0 0 0 0 0.00 13

S12 ch++; 0 0 1 1 1 1 3 1 0.87 1

S13 i++;} 1 1 1 1 1 1 3 3 0.71 4

S14 printf("Alphabets =%d Digits=%d Special characters = %d",

alpha,digit,ch);
1 1 1 1 1 1 3 3 0.71 4

S15 } 1 1 1 1 1 1 3 3 0.71 4

 Result (Pass=P, Fail=F) P P P F F F

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

particular test case is represented by 1 or 0, respectively.

These methods ignore the information that how many times

a statement is executed by a test case. Consequently, the

fault localization accuracies of SBFL methods are limited

when faults are there in the loop bodies or iteration

statements. Moreover, identical suspiciousness levels can

result in ties.

To improve fault localization effectiveness we will use

the concept of statement execution frequencies in program

spectrum information instead of binary execution count. The

program spectrum information will be collected from the

execution of respective test cases. This concept is also

known as spectral frequencies in fault localization studies.

Statement frequency would impact suspiciousness of a

statement as it indicates how many times that statement is

executed by a corresponding test case. We will use the

sigmoid function to map or normalize this additional

information of statement execution frequency count to a

value in the range of [0, 1), means greater than or equal to 0

and less than 1. Sigmoid function is also known as logistic

function and has been used in various domains such as

economics, biology and machine learning. In fault

localization domain we adapt the definition of the sigmoid

function given in (1).

𝐾(𝑛𝑠𝑡) = {
1

𝑒−𝛼∗ 𝑛𝑠𝑡+1
 𝑖𝑓 𝑛𝑠𝑡 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

Here, n is the frequency of statement s when executed

with test case t, α is a constant value. The above function K

is evaluated for mapping the nonzero frequency counts to

the range of [0, 1). The function K returns 0, if the statement

was not executed, that means frequency count is zero. The

above function can also be referred as statement frequency

weighting function.

Fig. 2 shows a simple mapping of the frequency count of

statements ranging from 0 to 10 for different alpha values.

We show this mapping for five α values (α = 0.5, 1, 3, 5 and

25). We can see that with the increase of α value the

frequency response curve (weighting function) gets sharper.

The mapping is equivalent to binary function 0 or 1 when

the alpha (α) value gets very large (i.e. α = 25), and this is

similar to binary program spectrum information. We now

show how statement frequency information of test coverage

when incorporated into SBFL methods can perform better in

terms of improving the accuracy of pinpointing faults within

a program as compared to using traditional binary execution

information. To substantiate this fact we present a working

example as shown in Table IV, Table V and Table VI. The

example program counts the number of alphabets, digits and

special characters in its input. An operator mutation fault

has been seeded in statement S9. The correct statement

should be “else if (strch[i]>='0' && strch[i] <='9')”. The

program is exercised with six test cases T1, T2, T3, T4, T5,

and T6, out of which the first three are passing and the last

three are failing test cases. In other words, first three test

cases (T1, T2 & T3) are giving the correct output, but T4,

T5, and T6 are not giving the expected output. Table IV

shows the statement hit spectra in binary form. That means,

if a statement is executed at least once by a test case then it

is shown as ‘1’ and otherwise it is shown as ‘0’. Table V

shows the number of times each statement is executed by a

corresponding test case. In this case the statement hit spectra

consists of frequency count of statements executed by a

corresponding test case. The computation of statement

suspiciousness in our example program using the frequency

count information is demonstrated in Table VI. The

statement frequency weighting function (adapted sigmoid

function) as given in (1) is used to map the frequency counts

to the values between 0 and 1 and the mapped values are

shown in Table VI for each test case T1 to T6. The last rows

of Table IV and Table VI show program execution results as

pass (P) or fail (F) of the respective test cases. To compute

the suspiciousness score we use Ochiai similarity coefficient

metric as defined in Table I. The second last and last

columns of Table IV and Table VI show the suspiciousness

score and rank in descending order of suspiciousness scores

of each program statement, respectively. That means the

statements with higher suspiciousness scores are ranked first

as these statements are more likely to be faulty. We can

observe from Table V that the statement S6 executes 5 and 6

times when program is executed with test cases T1 and T2,

respectively. The corresponding mapped values according to

the statement weighting function as given in (1), are 0.92

and 0.95, respectively as shown in Table VI.

Table IV shows that statements {S1, S4, S5, S6, S7, S9,

S12, S13, S14, and S15} share identical suspiciousness

values, making it difficult to pinpoint the likely faulty

statement. Specifically, it requires eight searches to identify

the faulty statement S9, as depicted in Table IV. By

Fig. 2. Comparison between the statement execution frequency count of test executions and their corresponding mapped values

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

S
ca

le
 o

f
M

ap
p

ed
 V

al
u

e
F

ro
m

 0
 T

o
 1

Statment Frequency Count of Test Execution

alpha=0.5 alpha=1 alpha=3 alpha=5 alpha=25

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

integrating statement execution count information into the

SBFL formula (Table VI), the faulty statement can be

identified with a 50% improvement, requiring only four

searches. The reason is that, we are able to further

differentiate the probability of a statement being faulty

because differing values are assigned to NCF and NCS

according to the statement execution counts. We can see that

the faulty statement S9 has greater NCF value (i.e. 2.32) than

the NCS value (i.e. 2.19), and therefore has higher

suspiciousness rank. Therefore, the given working example

suggests that the concept of statement execution frequency

information can improve the performance of existing SBFL

techniques.

TABLE IV
SUSPICIOUSNESS CALCULATION USING BINARY INFORMATION FROM TEST EXECUTIONS

Stmt.
No.

Program T1 T2 T3 T4 T5 T6 NCF NCS
Susp.

(Ochiai)
Rank

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 3 3 0.71 3

S2 { char strch[100]; 0 0 0 0 0 0 0 0 0.00 13

S3 int alp, digit, ch, i; 0 0 0 0 0 0 0 0 0.00 14

S4 alp = digit = ch = i = 0; 1 1 1 1 1 1 3 3 0.71 4

S5 strcpy(strch,argv[1]); 1 1 1 1 1 1 3 3 0.71 5

S6 while(strch[i]!='\0') 1 1 1 1 1 1 3 3 0.71 6

S7 { if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' &&

strch[i]<='Z'))

1 1 1 1 1 1 3 3 0.71 7

S8 alp++; 0 1 1 1 1 1 3 2 0.77 2

S9 else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 1 1 1 1 1 1 3 3 0.71 8

S10 digit++; 0 0 0 1 1 0 2 0 0.82 1

S11 else 0 0 0 0 0 0 0 0 0.00 15

S12 ch++; 1 1 1 1 1 1 3 3 0.71 9

S13 i++;} 1 1 1 1 1 1 3 3 0.71 10

S14 printf("Alphabets =%d Digits=%d Special characters =

%d", alp,digit,ch);
1 1 1 1 1 1 3 3 0.71 11

S15 } 1 1 1 1 1 1 3 3 0.71 12

 Result (Pass=P, Fail=F) P P P F F F

TABLE V

STATEMENT EXECUTION FREQUENCY COUNT INFORMATION FROM TEST EXECUTIONS

Stmt. No. Program T1 T2 T3 T4 T5 T6

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1

S2 { char strch[100]; 0 0 0 0 0 0

S3 int alp, digit, ch, i; 0 0 0 0 0 0

S4 alp = digit = ch = i = 0; 1 1 1 1 1 1

S5 strcpy(strch,argv[1]); 1 1 1 1 1 1

S6 while(strch[i]!='\0') 5 6 5 6 8 4

S7 { if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' && strch[i]<='Z')) 4 5 4 5 7 3

S8 alp++; 2 3 2 2 3 2

S9 else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 2 2 2 3 4 1

S10 digit++; 0 2 0 2 2 0

S11 else 0 0 0 0 0 0

S12 ch++; 2 0 2 1 2 1

S13 i++;} 4 5 4 5 7 3

S14 printf("Alphabets =%d Digits=%d Special characters = %d",

alp,digit,ch);
1 1 1 1 1 1

S15 } 1 1 1 1 1 1

 TABLE VI

SUSPICIOUSNESS CALCULATION USING FREQUENCY COUNT INFORMATION FROM TEST EXECUTIONS

Stmt.

No.
Program T1 T2 T3 T4 T5 T6 NCF NCS

Susp.

(Ochiai)
Rank

S1 void main(int argc,char *argv[]) 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 12

S2 { char strch[100]; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13

S3 int alp, digit, ch, i; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14

S4 alp = digit = ch = i = 0; 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 8

S5 strcpy(strch,argv[1]); 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 9

S6 while(strch[i]!='\0') 0.92 0.95 0.92 0.95 0.98 0.88 2.82 2.80 0.69 1

S7 { if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A'
&& strch[i]<='Z'))

0.88 0.92 0.88 0.92 0.97 0.82 2.71 2.69 0.67 2

S8 alp++; 0.73 0.82 0.73 0.73 0.82 0.73 2.28 2.28 0.62 5

S9 else if(strch[i]>'0' && strch[i]<='9')

//correct strch[i]>='0'
0.73 0.73 0.73 0.82 0.88 0.62 2.32 2.19 0.63 4

S10 digit++; 0.00 0.73 0.00 0.73 0.73 0.00 1.46 0.73 0.57 7

S11 else 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15

S12 ch++; 0.73 0.00 0.73 0.62 0.73 0.62 1.98 1.46 0.62 6

S13 i++;} 0.88 0.92 0.88 0.92 0.97 0.82 2.71 2.69 0.67 3

S14 printf("Alphabets =%d Digits=%d Special

characters = %d", alp,digit,ch);
0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 10

S15 } 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11

 Result (Pass=P, Fail=F) P P P F F F

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

D. Improving absolute suspiciousness rank of faulty

statements using fault context information

Improving accuracy and effectiveness of lightweight

software fault localization techniques (or SBFL techniques)

is very important for debugging process. The fault

localization methods can only be of practical use for

developers if they have a certain level of accuracy. In order

to be accurate these methods should identify the faults as

early as possible while searching the descending order

suspiciousness rank list.

According to the literature, SBFL methods in general

perform well but in some cases SBFL methods are not able

to locate faults early in the suspiciousness rank list, which

means sometimes these methods are not so effective in

locating faults [24]. In their study, Wang Y. et al. [25]

introduced the notion of fault context to enhance the

performance of traditional SBFL (or LFL) methods. The

primary goal was to enhance the ranking (absolute) of faulty

program entities in the rank list. This was achieved by

utilizing a technique that calculates the suspiciousness of a

program entity based on both its individual suspiciousness

and that of its fault context. The suspiciousness of the

program entity can be computed using any of the statistical

lightweight software fault localization methods (examples of

which are provided in Table I). Following this, the

suspiciousness of the corresponding program entity's fault

context is determined and then combined with the program

entity's suspiciousness to arrive at the final suspiciousness

score of the program entity.

The following is a definition of the fault context for a

program entity. All program entities executed by a particular

failed test case, excluding the entity itself, are included in

the fault context of that program entity. In essence, the more

suspicious a program entity is, the lower the suspiciousness

of its fault context, resulting in a higher ranking for the

entity in question.

We now present a working example as shown in Table

VII that demonstrates the idea that how traditional

spectrum-based fault localization techniques can yield

superior results when combined with the fault context

approach. We are using a popular SBFL technique Ochiai

for the calculation of suspiciousness scores of program

entities (i.e. statements) in this illustration.

The sample program finds the occurrences of vowels,

consonants, digits and white spaces in its input. The

program traverses through each character in the inputted

string and determines the frequencies of the desired

characters.

The conditional statement at statement number S10

contains a seeded fault because it is written incorrectly as "if

(line[i] = 'p')". The correct form of the conditional

statement is “if (line[i] <= 'z')”.

As we can see in Table VII out of the total six test cases

T1, T2, T3, T4, T5, and T6, three execute successfully and

rest of the three have execution results as fail that means do

not give the expected output. The bottom row shows the

execution result as pass (P) or fail (F). The statement hit

spectra is shown from columns three to eight. The entry with

a ‘1’ means the corresponding statement has been executed

by the test case and a ‘0’ means statement did not execute.

In the following table, the NCF and NCS columns represent

the number of failed and passed test cases, respectively, that

cover a statement. These notations were previously defined

in Section II-A. The suspiciousness score for each statement

is displayed in the eleventh column, with the suspiciousness

rank shown in descending order in the twelfth column. The

rank indicates the likelihood of a statement being faulty. The

statement with the highest suspiciousness score, indicating a

greater probability of being faulty, is listed first in the rank

list arranged in descending order. If multiple statements

have the same suspiciousness score, they will share the same

rank. This rank list serves as a debugging report for the

faulty program and aids the developer in the debugging

process. By examining each statement in the rank list in

descending order, the developer can identify the faulty

statement. If two statements have the same rank, the

developer will examine them in a top-down manner. An

effective fault localization technique should necessitate as

few searches as possible from the developer in order to

identify the faulty statement. Our objective is to enhance the

fault localization performance by minimizing the

developer's effort to identify and locate the faulty statement.

The working example demonstrates how the fault context

method can be used to improve fault localization

performance.

By observing Table VII we can see that statement S16 has

the highest suspiciousness score (0.82) and therefore has the

highest rank (i.e. 1) but S16 is not the root fault. The root

fault is actually statement S10, which has a suspiciousness

score of 0.77 and a rank of 2. This scenario exemplifies the

case where traditional SBFL techniques (like Ochiai)

sometimes fail to give correct results. We now illustrate how

fault context method improves the accuracy of SBFL

techniques in such situations.

After examining the execution trace of failed test case T4,

as shown in Table VII, we discover that the statement S10 is

present in the trace. In this scenario, the fault context of S10

is {S1, S4, S5, S6, S7, S8, S9, S12, S15, S16, S17, S18}.

The suspiciousness scores of all the statements in the fault

context of S10 can be added together to determine the

suspiciousness score of S10’s fault context. Similarly, the

fault context of S10 in failed executions of test cases T5 and

T6 are {S1, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14, S15,

S16, S17, S18} and {S1, S4, S5, S6, S7, S8, S9, S17, S18},

respectively. Therefore, there exist three suspiciousness

scores for S10's fault context.

As previously discussed in this section, a program entity's

probability of being faulty increases with its higher

suspiciousness rank and lower fault context suspiciousness.

To determine the suspiciousness score of S10's fault context,

the minimum suspiciousness score among the three scores is

selected. The following formula is employed to compute the

score of suspiciousness of S10's fault context.

𝛾𝑐(S10)=[(minimum ((𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6)

+ 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S12) + 𝛾𝑒 (S15) +

𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) +

𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 ((S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒

(S11) + 𝛾𝑒 (S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) +

𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) +

𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒

(S17) + 𝛾𝑒 (S18))]

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

𝛾𝑐 (S10) = minimum (8.34, 9.34, 6.43)

𝛾𝑐 (S10) = 6.43
Where, 𝛾𝑐(S10) denotes the suspiciousness score of the

fault context of the statement S10, and 𝛾𝑒 (S1) represents the

suspiciousness score of the statement S1.

Similarly, the statement S16 is in execution trace of

program execution in unsuccessful test cases (i.e. failed) T4

and T5, and the fault contexts of S16 in these two

executions are {S1, S4, S5, S6, S7, S8, S9, S10, S12, S15,

S17, S18} and {S1, S4, S5, S6, S7, S8, S9, S10, S11, S12,

S13, S14, S15, S17, S18}, respectively. It is important to

note that because S16 does not get executed in the execution

coverage of failed test case T6, therefore, T6’s execution

coverage will not be considered in the computation of S16’s

fault context.

The following calculation can be used to determine the

suspiciousness score of the fault context for S16.

𝛾𝑐 (S16) = minimum [(𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6)

+ 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒

(S12) + 𝛾𝑒 (S15) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒

(S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) +

𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 (S11) + 𝛾𝑒

(S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒

(S17) + 𝛾𝑒 (S18))]

𝛾𝑐 (S16) = minimum (8.30, 9.30)

𝛾𝑐 (S16) = 8.30

The statement S16 is ranked higher than the root fault S10

in our example. The statement S16 was influenced by S10,

and S10 is contained in its fault context. Therefore, it is

possible that the fault context of S16 has a higher

suspiciousness score than that of S10.

Table VIII lists the scores of suspiciousness of all

program entities (in our case statements), the normalized

suspiciousness scores of all statement’s fault contexts, and

the final overall rank of each statement based on the two

suspiciousness ranks.

Steps to compute suspiciousness using fault context method

In this section, we formally explain how fault context

information can be combined with spectrum-based fault

localization to improve the absolute suspiciousness rank of

faulty program entities.

Consider a faulty program P being debugged and a test

suite T being represented as follows:

P = {e1, e2, e3, …,en}, each ei is a program entity (i.e.

statement in this study). T= {t1, t2, t3, …, tm}, each tj is a test

case of test suite T. The test suite T is divided into passed

and failed test cases, which are denoted as TP and TF,

respectively. In order to collect the program spectra,

program P is executed using input from both test cases TP

and TF. Following this, the suspiciousness score of each

program entity (using any of the SBFL similarity coefficient

techniques), along with the suspiciousness score of its

corresponding fault context, is calculated.

TABLE VIII

SUSPICIOUSNESS OF STATEMENTS, THEIR FAULT CONTEXTS AND

IMPROVED SUSPICIOUSNESS RANK (STEP-2 & 3 OF FAULT CONTEXT

METHOD TO FAULT LOCALIZATION)

Statement
No.

Ochiai Fault
Context

Ochiai incorporating
Fault Context

𝛾𝑒 Re 𝛾𝑐 Rc Re + Rc Rank (R)

S1 0.707 4 0.650 3 7 3

S2 0.000 17 10.000 17 34 17

S3 0.000 17 10.000 17 34 17

S4 0.707 4 0.650 3 7 3

S5 0.707 4 0.650 3 7 3

S6 0.707 4 0.650 3 7 3

S7 0.707 4 0.650 3 7 3

S8 0.775 2 0.643 1 3 1

S9 0.707 4 0.650 3 7 3

S10 0.775 2 0.643 1 3 1

S11 0.333 14 0.978 14 28 14

S12 0.516 13 0.860 13 26 13

S13 0.333 14 0.978 14 28 14

S14 0.333 14 0.978 14 28 14

S15 0.577 12 0.854 12 24 12

S16 0.816 1 0.830 11 12 11

S17 0.707 4 0.650 3 7 3

S18 0.707 4 0.650 3 7 3

S19 0.000 17 10.000 17 34 17

TABLE VII

SUSPICIOUSNESS CALCULATION USING TRADITIONAL OCHIAI METHOD (STEP-1 OF FAULT CONTEXT METHOD TO FAULT LOCALIZATION)

Stmt.

No.
Program

T

1

T

2

T

3

T

4

T

5

T

6
NCF NCS

Susp.

(Ochiai)
Rank

S1 int main(int argc, char *argv[]) { 1 1 1 1 1 1 3 3 0.71 4

S2 char line[150]; 0 0 0 0 0 0 0 0 0.00 17

S3 int vowels, consonant, digit, space; 0 0 0 0 0 0 0 0 0.00 17

S4 vowels = consonant = digit = space = 0; 1 1 1 1 1 1 3 3 0.71 4

S5 strcpy(line,argv[1]); 1 1 1 1 1 1 3 3 0.71 4

S6 for (int i = 0; line[i] != '\0'; ++i) { 1 1 1 1 1 1 3 3 0.71 4

S7 if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' ||line[i] == 'o' ||

line[i] == 'u')

1 1 1 1 1 1 3 3 0.71 4

S8 ++ vowels; 1 0 1 1 1 1 3 2 0.77 2

S9 else if (line[i] >= 'a'){ 1 1 1 1 1 1 3 3 0.71 4

S10 if(line[i] <= 'p') //correct if(line[i] <= 'z') 1 1 0 1 1 1 3 2 0.77 2

S11 ++consonant;} 1 1 0 0 1 0 1 2 0.33 14

S12 else if (line[i] >= '0'){ 1 1 1 1 1 0 2 3 0.52 13

S13 if(line[i] <= '9') 1 1 0 0 1 0 1 2 0.33 14

S14 ++digit;} 1 1 0 0 1 0 1 2 0.33 14

S15 else if (line[i] == ' ') 0 1 1 1 1 0 2 2 0.58 12

S16 ++space;} 0 0 0 1 1 0 2 0 0.82 1

S17 printf("Vowels: %d\nConsonants: %d\nDigits: %d\nWhite

spaces: %d", vowels, consonant, digit, space);
1 1 1 1 1 1 3 3 0.71 4

S18 return 0; 1 1 1 1 1 1 3 3 0.71 4

S19 } 0 0 0 0 0 0 0 0 0.00 17

 Result (Pass=P, Fail=F) P P P F F F

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

The final suspiciousness rank for each program entity is

generated based on the ranks of the two suspiciousness

scores. The resulting rank list reflects the likelihood of each

program entity being faulty, where the most suspicious

entity is assigned a rank of 1, followed by the next

suspicious entity with a rank of 2, and so on. A programmer

can examine each program entity (i.e., program statement)

one by one according to its suspiciousness rank in order to

locate the faulty statement.

The fault context approach to fault localization has the

following major steps.

i. Suspiciousness computation for the program entities

In this step suspiciousness is computed using a spectrum-

based similarity coefficient metric as defined in Table I. The

program is executed with the given test suite T and run time

program spectra is collected for the passing (TP) and failing

(TF) test cases. The program spectra has two components,

the coverage data for each program entity (i.e. whether a

statement executed or not) and the result vector, which

indicates whether the program passed or failed according to

the given input. In this example we use Ochiai similarity

coefficient metric as an SBFL tool to compute the

suspiciousness of statements. The metric is defined below in

(2) and the notations NCF, NCS and NF are explained in

Section II-A.

𝛾𝑒
𝑂𝑐ℎ𝑖𝑎𝑖(𝑗) =

𝑁𝐶𝐹

√𝑁𝐹 𝑥 (𝑁𝐶𝐹+ 𝑁𝐶𝑆)
 (2)

Where 𝛾
𝑒
(𝑗) stands for the suspiciousness score of a

program entity j using Ochiai metric.

ii. Suspiciousness computation for fault contexts

This step involves providing a formal definition of the

fault context. Let eci = {e1, …, ej, …, ek} denotes the set of

covered entities for a failed test case execution ti. For a

given entity ej, the fault context is defined as the collection

of all statements that are included in the failed test execution

ti, excluding the entity ej itself. The following expression

given in (3) can be used to denote the fault context of ej.

𝐹𝑐(𝑒𝑗 , 𝑡𝑖) = 𝑒𝑐𝑖 / 𝑒𝑗 (3)

To determine the suspiciousness score of the fault context

of statement ej, we need to add up the suspiciousness scores

of all statements eci covered during the execution of test

case ti, while excluding the statement ej itself. Formula

given in (4) provides the formal expression for calculating

the suspiciousness score of the fault context of entity ej.

𝛾
𝑐
(𝑒𝑗, 𝑡𝑖) = ∑ 𝛾

𝑒
(𝐹𝑐(𝑒𝑗, 𝑡𝑖)(𝑒𝑘)) (4)

Where, 𝐹𝑐(𝑒𝑗, 𝑡𝑖) is the fault context of entity ej in test

execution ti. The fault context for entity ej in test execution ti

is defined as the collection of all entities that are covered by

the failed test execution ti, excluding the entity ej itself. The

notation ek represents the kth entity in this set. The value of k

will range from 1 to n, where n is the total number of

entities in the fault context. The function 𝛾𝑒 returns the

suspiciousness score of the entity passed to it as per the

SBFL metric defined in (2). Hence, the suspiciousness score

of the fault context of entity ej will be calculated by

summing up suspiciousness scores of all entities present in

the fault context of program entity ej.

We must determine which fault context for the program

entity ej in TF is the smallest, if ej has multiple fault

contexts. The definition of ej's fault context and its

suspiciousness are provided below in (5) and (6),

respectively.

𝐹𝑐(𝑒𝑗) = {𝑒𝑐𝑖/𝑒𝑗| 𝑖 ∈ 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑒𝑠𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑡} (5)

𝛾𝑐 (𝑒𝑗) = minimum{𝛾𝑐 (𝑒𝑗, 𝑡𝑖)| i ∈

 failed test executions set} (6)

iii. Generation of new fault ranking list

The first step computes the suspiciousness scores for

program entities, and the second step calculates the

suspiciousness score for each program entity’s fault context.

In the third step, a new improved fault rank list is

generated as per the following explanation. Firstly, two fault

rank lists are created, Re and Rc, where, Re ranks the

program entities in descending order based on their

suspiciousness scores (i.e. 𝛾𝑒), while Rc ranks the program

entities in ascending order based on the suspiciousness

scores of their fault contexts (i.e. 𝛾𝑐). Finally, a new

improved rank list, R, is created by combining the rank lists

Re and Rc as follows. Consider that ei and ej are two entities

that are probably suspicious, with ei having ranks 𝑅𝑒
𝑖 and 𝑅𝑐

𝑖

and ej having ranks 𝑅𝑒
𝑗
 and 𝑅𝑐

𝑗
. If 𝑅𝑒

𝑖 + 𝑅𝑐
𝑖 <= 𝑅𝑒

𝑗
 + 𝑅𝑐

𝑗
, then

ei will be given a higher rank than ej in the new fault rank

list. Assuming e is a program entity, its rank in the newly

generated ranking list will be determined by its

suspiciousness score 𝛾e (e) and the suspiciousness score of

its fault context 𝛾𝑐 (e), where a higher 𝛾𝑒 (e) and lower 𝛾𝑐 (e)

will result in a higher overall suspiciousness rank for the

entity e. It is important to emphasize that, a program entity

is more likely to have a higher potential suspiciousness rank

(root cause of fault) if its own suspiciousness score is

greater and the suspiciousness score of its fault context is

lower. Conversely, if the suspiciousness score of a program

entity’s fault context is higher, then lower will be the

suspiciousness score of that entity, and therefore, that entity

cannot be the root fault.

Table VII indicates that the conventional approach for

fault localization requires three searches to identify the

faulty statement S10. In contrast, the new fault context-

based approach enables developers to locate the faulty

statement by searching only two statements, as shown in

Table VIII. Consequently, the developer's effort is reduced

by 33.33% due to the improvement in the absolute rank of

faulty statement. Here, we are measuring the effectiveness

of fault context based approach in terms of improvement

relative to the traditional SBFL metric Ochiai.

Before moving to the next section, we now summarize the

background information given in Section-II. Section-II

outlined three techniques aimed at enhancing the efficiency

and efficacy of spectrum-based fault localization (SBFL).

Test suites have a pivotal role in testing and debugging since

they are responsible for driving program execution. In

Section II-B, we see how optimized test suites can be

selected or generated using Passing Tests Discrimination

based method. The working example given in Section II-B

illustrates that the use of optimized test suites improves the

performance of existing SBFL methods. Section II-C

explains how the concept of statement frequency is

incorporated in suspiciousness formula instead of binary

coverage information to improve the effectiveness of

software fault localization. Section II-D elaborates on the

notion of fault context, which can be employed to enhance

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

the absolute suspiciousness ranking of faulty statements (i.e.

program entities) by comprehending the underlying cause of

failure.

The next section presents our proposed hybrid approach

(a fault localization framework for lightweight fault

localization or SBFL) that combines the concepts of test

suite optimization, statement execution frequency and fault

context, to further improve the accuracy and performance of

existing SBFL techniques in a single fault scenario. In this

study, we employ the proposed approach to enhance the

performance of existing classical SBFL techniques. It is

important to emphasize that our approach can be applied to

any SBFL technique to improve its performance.

III. PROPOSED APPROACH

A. Framework

This section presents a formal description of our proposed

framework that integrates test suite optimization, statement

execution frequency, and fault context to enhance the

accuracy and performance of spectrum-based software fault

localization in a single fault perspective. The framework,

illustrated in Fig. 3, comprises several steps, which are

presented in algorithmic form in Table IX.

B. Motivational Example

The following section provides a practical demonstration

of the working of our proposed framework, showing how

program entities (i.e., statements in this study) can be ranked

efficiently based on their suspiciousness in descending order

to identify the faulty statement. Fig. 3 depicts the process

flow of our proposed framework/ approach. Through this

example, we aim to demonstrate the effectiveness of our

proposed approach in improving the performance (improved

suspiciousness ranks of faulty program entities) of existing

SBFL techniques. We illustrate that how our proposed

approach, when applied to the classic Ochiai method,

improves its fault localization performance.

For illustration purpose we consider the same program

that has been used earlier in Section II-D, which finds the

occurrences of vowels, consonants, digits and white spaces

in its input. Throughout in this study we focus on fault

localization in a single fault context, therefore our example

uses the program that has a single seeded fault.

We first perform fault localization using the traditional

Ochiai technique as shown in Table X. The statement S10

has an artificially seeded fault and its correct form is also

given in the comments.

Table X presents the program's execution outcomes using

a test suite that comprises three passing (T1, T2, and T3)

and three failing test cases (T4, T5, and T6). The third

through eighth columns show the execution result or

statement coverage information. The NCF and NCS values are

presented in columns nine and ten, respectively, where NCF

denotes the number of failing test cases that cover a

statement and NCS represents the number of passing test

cases that cover a statement. In accordance with the

definition of the Ochiai similarity coefficient-based metric,

as described in subsection II-A, the suspiciousness value of

each statement is calculated and displayed in the eleventh

column. In the last column, each statement is ranked in

decreasing order according to how suspicious it is. As can

be observed, using the conventional Ochiai method, it would

require eight searches to identify the faulty statement (i.e.,

S10).

In order to illustrate the performance of our proposed

framework, we now perform fault localization on the same

example program using the proposed framework. Table XI

and Table XII show the step by step execution of different

phases of the proposed fault localization approach.

As per the step-1 of the proposed framework, we use

optimized test suite for the fault localization. As explained

in Section II-B a test suite’s effectiveness depends on its

Passing Test Discrimination (PTD) measure. PTD is defined

as ratio of total count of passing test cases not executing the

faulty statement over the total number of passing test cases

in a test suite.

TABLE IX

MAJOR STEPS (ALGORITHM) OF THE PROPOSED LIGHTWEIGHT FAULT LOCALIZATION APPROACH

(i) Step-1: Test Suite Optimization

This step creates or selects effective and reduced set of test cases (test suite) using Passing Test Discrimination-based method.

(ii) Step-2: Computation of statement execution frequency and normalization

Execution count of each statement is calculated with respect to each test case. A frequency weighting function (i.e.an adapted sigmoid function)

is used to map the statement execution frequency into a normalized real value in the range of 0 and 1 [0, 1), as specified in (1).

(iii) Step-3: Improving absolute suspiciousness rank of faulty statements using fault context information

A new fault ranking list is produced in this stage, which considers both the suspiciousness score of a program entity and the suspiciousness

score its fault context.

(a) Suspiciousness computation for program entities and their fault contexts

i. This step utilizes the program spectrum information obtained from the Step-2, to compute the suspiciousness of each statement using

one of the SBFL similarity coefficient metric (e.g. Ochiai, Jaccard, DStar, etc.) as per the normalized frequency count instead of a

binary coverage information (0 or 1).

ii. Fault contexts for each program entity is generated in each failed execution.

iii. The suspiciousness score of each program entity’s fault context is then calculated according to the definition of suspiciousness of a

fault context as explained in Section II-D. If a program entity (i.e., a program statement) has multiple fault contexts, then the

minimum value among the different suspiciousness scores of the entity’s fault contexts is selected.

(b) Upon completing step iii (a), we obtain the suspiciousness scores for each program entity and suspiciousness scores of their corresponding

fault contexts. Utilizing these two suspiciousness scores, we generate two distinct lists of fault rankings, denoted as Re and Rc. Re ranks the

program entities in descending order based on their suspiciousness scores (i.e. 𝛾𝑒), while Rc ranks the program entities in ascending order

based on the suspiciousness scores of their fault contexts (i.e. 𝛾𝑐).

(iv) Step-4: Finally, a new improved rank list, R, is created by combining the rank lists Re and Rc as follows. Consider that ei and ej are two entities

that are probably suspicious, with ei having ranks 𝑅𝑒
𝑖 and 𝑅𝑐

𝑖 and ej having ranks 𝑅𝑒
𝑗
 and 𝑅𝑐

𝑗
. If 𝑅𝑒

𝑖 + 𝑅𝑐
𝑖 <= 𝑅𝑒

𝑗
 + 𝑅𝑐

𝑗
, then ei is ranked higher than

ej in the new fault ranking list. A developer can then start examining the statements one by one as per the new fault rank list to locate the faulty
statement.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Fig. 3. Process flow of the proposed approach/ framework.

TABLE X
FAULT LOCALIZATION USING TRADITIONAL OCHIAI METHOD

Stmt.

No.
Program

T

1

T

2

T

3

T

4

T

5

T

6
NCF NCS

Suspiciousness

(Ochiai)

Suspiciousness

Rank

S1 int main(int argc, char *argv[]) { 1 1 1 1 1 1 3 3 0.71 2

S2 char line[150]; 0 0 0 0 0 0 0 0 0.00 16

S3 int vowels, consonant, digit, space; 0 0 0 0 0 0 0 0 0.00 16

S4 vowels = consonant = digit = space = 0; 1 1 1 1 1 1 3 3 0.71 2

S5 strcpy(line,argv[1]); 1 1 1 1 1 1 3 3 0.71 2

S6 for (int i = 0; line[i] != '\0'; ++i) { 1 1 1 1 1 1 3 3 0.71 2

S7 if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' ||line[i]

== 'o' || line[i] == 'u')

1 1 1 1 1 1 3 3 0.71 2

S8 ++ vowels; 1 0 1 0 0 1 1 2 0.33 13

S9 else if (line[i] >= 'a'){ 1 1 1 1 1 1 3 3 0.71 2

S10 if(line[i] <= 'p')

//correct if(line[i] <= 'z')
1 1 1 1 1 1 3 3 0.71 2

S11 ++consonant;} 1 1 1 0 0 0 0 3 0.00 16

S12 else if (line[i] >= '0'){ 1 1 1 1 0 1 2 3 0.52 12

S13 if(line[i] <= '9') 1 1 0 1 0 0 1 2 0.33 13

S14 ++digit;} 1 1 0 1 0 0 1 2 0.33 13

S15 else if (line[i] == ' ') 0 1 1 1 0 1 2 2 0.58 11

S16 ++space;} 0 0 0 1 0 1 2 0 0.82 1

S17 printf("Vowels: %d\nConsonants: %d\nDigits:

%d\nWhite spaces: %d", vowels, consonant, digit,
space);

1 1 1 1 1 1 3 3 0.71 2

S18 return 0; 1 1 1 1 1 1 3 3 0.71 2

S19 } 0 0 0 0 0 0 0 0 0.00 16

 Result (Pass=P, Fail=F) P P P F F F

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

In Table X, the program being debugged is executed by a

random test suite, which has PTD score of 0, as all passing

test cases execute the faulty statement S10. Whereas, the test

suite used in Table XI is an optimized test suite with a PTD

score of 33.33% (i.e. 1/3). We can see that passing test case

T3 does not execute the faulty statement S10.

As per step-2 of our proposed framework, we refrain from

using binary information (0 or 1) to indicate whether a

program statement is executed by a test case or not. Instead,

we use statement coverage count (execution frequency) for

each statement covered by a test case, as depicted in Table

XI. We further normalize the statement execution

frequencies within the [0, 1) range by employing the

sigmoid function (with α =0.5) as described in (1) of Section

II-C. As illustrated in Table XI, the test suite comprises six

test cases, with three passing and the remaining three failing.

Now, we compute the suspiciousness score of each

program statement according to the step-3 of the proposed

framework (see Table IX). First, we compute the

suspiciousness score of each program statement using

Ochiai SBFL technique as defined in Table I of Section II-

A. The suspiciousness score of each statement is given in

column number eleven of Table XI. Then fault context of

each statement is generated in each failed execution. By

observing Table XI we can see that statement S16 has the

highest suspiciousness score (0.70) and therefore has the

highest rank (i.e. 1), but S16 is not the root fault. The root

fault is actually statement S10, which has a suspiciousness

score of 0.69 and has a rank of 2. In this scenario, even if we

have used a statement execution frequency count instead of

binary information to represent the statement coverage

information, the faulty statement is still not ranked at the

highest position in the rank list.

We now demonstrate how fault context method further

improves the absolute suspiciousness rank of a faulty

statement in such situations.

By observing execution trace of failed test case T4 as

shown in Table XI, we find that the statement S10 is in the

execution trace of T4, and in this situation the fault context

of S10 is {S1, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14,

S15, S16, S17, S18}. The suspiciousness score of S10’s

fault context can be expressed as the sum of the

suspiciousness scores of all statements in the S10’s fault

context i.e. {S1, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14,

S15, S16, S17, S18}. Similarly, the fault contexts of S10 in

failed executions of test cases T5 and T6 are {S1, S4, S5,

S6, S7, S8, S9, S11, S12, S13, S14, S15, S16, S17, S18} and

{S1, S4, S5, S6, S7, S8, S9, S17, S18}, respectively. We can

note that the fault context in test executions T4 and T5 are

same. We can define the suspiciousness score for S10's fault

context as the total of suspiciousness scores of every

statement present within S10’s fault context. Therefore, we

can say that for statement S10, there exist three

suspiciousness scores in its fault context for each failed test

case T4, T5 and T6 where S10 executes. As already

explained in this section, a program entity is likely to be

faulty if its rank, which is based on the descending order of

its suspiciousness, is higher and its fault context’s

suspiciousness is lower. Hence, we choose the least among

the three suspiciousness scores associated with the fault

context of S10. The below given formula finds the

suspiciousness score of S10’s fault context.

𝛾𝑐 (S10) = minimum [(𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒

(S6) + 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S11) + 𝛾𝑒 (S12) + 𝛾𝑒

(S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒

(S18)), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 𝛾𝑒

(S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S11) + 𝛾𝑒 (S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) +

𝛾𝑒 (S15) + 𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 (S1) + 𝛾𝑒

(S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 ((S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒

(S17) + 𝛾𝑒 (S18))]

𝛾𝑐 (S10) = minimum (8.94, 8.94, 5.42)

𝛾𝑐 (S10) = 5.42

TABLE XI

LIGHTWEIGHT SOFTWARE FAULT LOCALIZATION USING THE PROPOSED APPROACH (STEPS 1 & 2 OF THE PROPOSED APPROACH AS SHOWN IN TABLE IX)

Stmt.

No.
Program T1 T2 T3 T4 T5 T6 NCF NCS

Susp.

(Ochiai)

Susp.

Rank

S1 int main(int argc, char *argv[]) { 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11

S2 char line[150]; 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 17

S3 int vowels, consonant, digit, space; 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 17

S4 vowels = consonant = digit = space = 0; 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11

S5 strcpy(line,argv[1]); 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11

S6 for (int i = 0; line[i] != '\0'; ++i) { 0.92 0.88 0.88 1.00 0.99 0.82 2.8 2.69 0.69 3

S7 if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i'
||line[i] == 'o' || line[i] == 'u')

0.88 0.82 0.82 0.99 0.98 0.73 2.71 2.52 0.68 5

S8 ++ vowels; 0.73 0.73 0.62 0.73 0.62 0.62 1.98 2.08 0.57 10

S9 else if (line[i] >= 'a'){ 0.73 0.62 0.73 0.98 0.97 0.62 2.58 2.08 0.69 4

S10 if(line[i] <= 'p')

//correct if(line[i] <= 'z')
0.62 0.62 0.00 0.88 0.73 0.62 2.23 1.24 0.69 2

S11 ++consonant;} 0.62 0.62 0.00 0.62 0.62 0.00 1.24 1.24 0.46 16

S12 else if (line[i] >= '0'){ 0.62 0.00 0.73 0.88 0.92 0.00 1.8 1.35 0.59 8

S13 if(line[i] <= '9') 0.62 0.00 0.00 0.73 0.82 0.00 1.55 0.62 0.61 6

S14 ++digit;} 0.62 0.00 0.00 0.73 0.82 0.00 1.55 0.62 0.61 6

S15 else if (line[i] == ' ') 0.00 0.00 0.73 0.73 0.73 0.00 1.46 0.73 0.57 9

S16 ++space;} 0.00 0.00 0.00 0.73 0.73 0.00 1.46 0 0.70 1

S17 printf("Vowels: %d\nConsonants: %d\nDigits:
%d\nWhite spaces: %d", vowels, consonant,

digit, space);

0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11

S18 return 0; 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11

S19 } 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 17

 Result (Pass=P, Fail=F) P P P F F F

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Where, 𝛾𝑐(S10) denotes the suspiciousness score of the

fault context of the statement S10 and 𝛾𝑒 (S1) represents the

suspiciousness score of the statement S1 (computed using

Ochiai method). Here, it should be noted that the

suspiciousness scores of S10’s fault context are same in

failed executions of test cases T4 and T5 (i.e. 8.94).

Likewise, statement S16 is present in the execution trace

of failed test cases T4 and T5, both having the same fault

context {S1, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13,

S14, S15, S17, S18}. However, since S16 is not covered in

the execution of failed test case T6, its execution trace is

excluded when calculating the fault context of S16. We can

compute the suspiciousness score of S16's fault context

using the following formula.

𝛾𝑐 (S16) = minimum [(𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6)

+ 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 (S11) + 𝛾𝑒

(S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 (S17) + 𝛾𝑒

(S18), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 𝛾𝑒

(S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 (S11) + 𝛾𝑒 (S12) + 𝛾𝑒 (S13) +

𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18))]

𝛾𝑐 (S16) = minimum (8.94, 8.94)

𝛾𝑐 (S16) = 8.94

The statement S16 is ranked higher than the root fault S10

in our example. The statement S16 was influenced by S10,

and S10 is contained in its fault context. Therefore, the score

of suspiciousness of S16's fault context may be higher than

that of S10's.

Table XII presents a summary of the suspiciousness

scores of all program statements, the normalized

suspiciousness scores of all statements' fault contexts, and

the final overall rank of each statement based on the two

suspiciousness ranks. We have normalized the

suspiciousness scores of all statement’s fault contexts as

shown in column four (𝛾𝑐) of Table XII.

The final ranks of statements’ suspiciousness is shown in

column 7 of Table XII. We can see that the faulty statement

(S10) can now be directly identified as it has the top rank of

1. If we compare our proposed approach with traditional

SBFL method (Ochiai, Jaccard and Dstar in this study), we

find that the traditional approach (see Table X) took eight

searches to locate the faulty statement whereas the proposed

approach directly identified the faulty statement in one

search. Therefore, in this example, applying our proposed

approach to the traditional SBFL method, Ochiai, resulted in

an 87.5% improvement in fault identification accuracy.

IV. EMPIRICAL STUDY

This section highlights the research questions of the

study, programs used as subjects for the experiments, the

process of data collection, evaluation metrics, evaluation

criteria for the experimental process, and results and

analysis.

The objective of this study is to improve the performance

and efficacy of spectrum-based (or lightweight) fault

localization techniques in a single-fault scenario. To

substantiate this claim, we conducted a thorough

experimental study using the standard Siemens benchmark

suite and some large real-world subject programs taken from

the software-artifact infrastructure repository (SIR)

(http://sir.unl.edu/portal/index.php) [26]. We perform an

empirical evaluation to investigate how the proposed

approach enhances the performance of existing SBFL

methods. In this research study, we apply the proposed

approach to three existing SBFL methods, namely Ochiai,

Jaccard, and DStar, and analyze the resulting performance

improvements.

A. Research Questions

The research questions that we aim to answer through our

empirical study are as follows:

RQ1: Can test suites be optimized to improve the

performance of existing spectrum-based fault localization

techniques?

RQ2: How does the concept of statement execution

frequency information improve fault localization

performance when it is incorporated into the suspiciousness

formula of SBFL techniques instead of binary information

of execution count?

RQ3: Is it possible to improve the absolute suspiciousness

ranking of faulty program entities by understanding the root

cause of failure using fault context?

RQ4: Is the proposed framework/approach, which combines

the concepts of statement execution frequency, test suite

optimization, and fault context, effective in further

enhancing the performance of spectrum-based software fault

localization in a single fault context?

The concepts related to first three research questions have

already been explained in Section II that presents the

background and motivation of our proposed approach.

However, in the following paragraphs, we provide explicit

answers to all four research questions by referring to each

related concepts. The answers to the first and the fourth

research questions are given in greater detail in Results and

Analysis section (i.e. Section IV-C).

We have evaluated our proposed approach on subject

programs as listed in Table XIII. We have downloaded all

subject programs along with standard test suites from the

software-artifact infrastructure repository (SIR)

(http://sir.unl.edu/portal/index.php) [26]. For our empirical

study, we have used a total of 40 different faulty versions,

TABLE XII

SUSPICIOUSNESS OF STATEMENTS, THEIR FAULT CONTEXTS AND

IMPROVED SUSPICIOUSNESS RANK (STEP 3 & 4 OF THE PROPOSED

APPROACH AS SHOWN IN TABLE IX)

Stmt.

No.

Ochiai Fault Context Ochiai Incorporating

Fault Context

𝛾𝑒 Re 𝛾𝑐 Rc Re + Rc Rank (R)

S1 0.56 11 0.56 6 17 7

S2 0.00 17 10.00 17 34 17

S3 0.00 17 10.00 17 34 17

S4 0.56 11 0.56 6 17 7

S5 0.56 11 0.56 6 17 7

S6 0.69 3 0.54 2 5 2

S7 0.68 5 0.54 4 9 4

S8 0.57 10 0.55 5 15 6

S9 0.69 4 0.54 3 7 3

S10 0.69 2 0.54 1 3 1

S11 0.46 16 0.92 16 32 16

S12 0.59 8 0.90 14 22 14

S13 0.61 6 0.90 12 18 12

S14 0.61 6 0.90 12 18 12

S15 0.57 9 0.91 15 24 15

S16 0.70 1 0.89 11 12 5

S17 0.56 11 0.56 6 17 7

S18 0.56 11 0.56 6 17 7

S19 0.00 17 10.00 17 34 17

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

out of which 25 faulty versions we have taken from the

Siemens test suites, and 15 faulty versions we have taken

from large real-world programs (see Table XIII).

In response to the first research question (RQ1), we

optimized the test suites using Passing Test Discrimination

(PTD) method, which has been explained in detail in the

subsection II-B. The motivational example shown in Table

II uses a random test suite (testsuite-1) for testing, and in

this case, it requires eight searches to locate the faulty

statement. Whereas, the example shown in Table III uses an

optimized test suite (testsuite-2), which requires only one

search to locate the fault.

The primary aim of the PTD metric is to enhance the

efficiency of a test suite by preventing the execution of

faulty statements by passing test cases. Such execution can

adversely impact the accuracy of localization of faults.

Therefore, a test suite with a high PTD value is deemed

optimal, indicating that a greater proportion of passing test

cases do not execute faulty statements.

When comparing the PTD scores of the two test suites in

the motivational examples provided in Tables II and III of

Section II-B, we observe that the optimized test suite

(testsuite-2) achieves a PTD score of 66.66%. This is

because two out of three passing test cases do not execute

the faulty statement (i.e., 2/3). On the other hand, the

original test suite (testsuite-1) has a PTD score of 0% since

all test cases that produce the expected output (i.e., passing)

execute the faulty statement S9. As a result, testsuite-2 is

considered to be an optimized test suite that provides

improved fault localization results.

In order to optimize an existing test suite, we eliminate

those passing test cases that are likely to execute the faulty

statement. The minimum suspicious set (MSS) notion is

utilized to recognize the potential test cases for removal

from the original test suite. To increase a test suite's PTD

score, we can add new passing test cases whose execution

covers a smaller percentage of statements in MSS, reducing

the possibility of executing the faulty statement. In this way

we select or create the optimized test suites. We have

provided a detailed explanation of test suite optimization in

Section II-B. In the proposed fault localization approach we

use the concept of optimized test suites as shown in Fig. 3.

With regard to the second research question (RQ2), we

use the concept of statement execution frequency

information (instead of binary information) in

suspiciousness calculation formula of spectrum-based fault

localization. As explained in Section II-C, existing SBFL

techniques have limited diagnostic capabilities particularly

when faults occur in loop bodies or iteration statements.

There is one more limitation with SBFL techniques that

statements with same suspiciousness scores result in ties in

the ranking [1]. These limitations can be addressed if we

incorporate statement execution frequency information

instead of binary coverage information (0 or 1) in the

suspiciousness calculation formula of existing SBFL

techniques. The motivational examples given in Section II-C

(Table IV, Table V, and Table VI) clearly show that, when

we incorporate statement execution frequency information

in the suspiciousness formula, the fault localization

performance improves by 50% (from rank 8 to rank 4).

Therefore, our proposed approach solves the inherent

problems that exist with SBFL as discussed above, by

incorporating the concept of statement execution frequency

information in the suspiciousness calculation formula of

existing SBFL techniques as shown in Fig. 3.

The following paragraph answers the third research

question (RQ3). As outlined in Section II-D, SBFL

techniques generally perform well, but there are instances

where they are unable to identify faults early in the

suspiciousness rank list. To address this limitation and

further enhance the absolute rank of faulty program entities,

we incorporate the concept of fault context into existing

SBFL techniques. This approach involves computing the

suspiciousness of a program entity by combining its own

suspiciousness score with that of its fault context, as

explained in Section II-D. The practical example provided in

the section demonstrates how utilizing fault context can lead

to further improvement in the performance of existing SBFL

techniques. In Section II-D, we provided a motivational

example that demonstrates how the fault context-based

method can enhance the accuracy of fault localization

compared to traditional SBFL techniques such as Ochiai,

Jaccard etc. Specifically, as explained in the example given

in Section II-D, the fault context-based method improved

the fault localization accuracy by 33.33%. To enhance the

absolute rank of program entities responsible for the failure

of the program, our proposed framework (depicted in Fig. 3)

make use of the concept of fault context.

In response to the fourth research question (RQ4), we

propose a hybrid framework that effectively enhances the

performance of existing SBFL techniques in a single fault

perspective. We have conducted rigorous experimentation to

measure the efficiency of our proposed approach. We have

evaluated the proposed approach using four different

measures, namely, Exam score, Cumulative Number of

Statements Examined, Top-N, and Wilcoxon signed-rank

test. Section IV-C contains a detailed presentation of the

experimental results. Therefore, by analyzing these results,

we are able to answer the fourth research question.

B. Experimental Setup

In order to apply our proposed approach, we have created

a prototype tool. The suspiciousness score and other results

are computed by this automated tool, which we have

developed in Python 3.7.3, for use in our experimentation.

i. Subject Programs

To evaluate our proposed approach, we have performed

extensive experimentation work in which we have utilized

the popular seven Siemens test suite subject programs and

four large real-world programs, as described in Table XIII.

Out of four large real-world programs, three are UNIX

utilities, namely flex, sed, grep, and the fourth one is ‘space’

program, which is an interpreter for array definition

language (ADL). All subject programs were obtained from

the software-artifact infrastructure repository (SIR)

(http://sir.unl.edu/portal/index.php) [26]. As per the software

engineering literature, these subject programs have been

widely utilized in fault localization experimentation [12],

[14], [27]. In contrast to UNIX utilities, which contain both

real-world and seeded errors, Siemens applications contain

only a single seeded fault. In our experimentation study, we

have utilized only single fault versions of all the subject

programs.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

ii. Data Collection Process

In our experimentation work, various faulty versions of

subject programs are used, as shown in Table XIII. With all

of the available test inputs, we executed each faulty version.

For the purpose of determining whether the outcome was

successful or unsuccessful, we then compared the test

execution output of each faulty version to its corresponding

fault-free original version. The test input is marked as

failing if the output of a version that has a fault differs from

the output of its fault-free counterpart. But, if the output of a

faulty version is identical to that of its faulty-free

counterpart, the test input is deemed successful.

On a Windows 10 computer with an Intel® Core i5

processor running at 2.7 GHz and 8 GB of RAM, a Linux

environment was installed and used for all experiments. The

programs were compiled using GCC 11.3.0, and the code

coverage data for each test execution was collected using

GCOV 11.3.0 [https://gcc.gnu.org/onlinedocs/gcc/Gcov.html].

iii. Evaluation metrics and criteria

In order to evaluate the effectiveness of a specific fault

localization technique, it is necessary to utilize appropriate

metrics. Within this section, we will examine the various

evaluation metrics employed to measure the efficacy of our

proposed approach in comparison to traditional SBFL

methods. This study employs four metrics to evaluate the

proposed approach, specifically the Exam score, Cumulative

Number of Statements Examined, Top-N, and Wilcoxon

Signed-Rank Test, in order to assess its performance against

the classic SBFL methods.

a) Exam Score

Choosing an appropriate metric is essential when

evaluating the efficacy of a single fault localization

technique. Among the most frequently used metrics in the

fault localization literature [11], [12], [27], [29], is the Exam

Score. This metric is a subset of the original Score metric

[12], which represents the proportion of code that does not

require inspection to locate a fault. In contrast, the Exam

Score is a more straightforward metric that refers to the

percentage of code that needs to be inspected to identify the

initial faulty statement in a program being debugged. The

EXAM score metric has two variants: the relative and the

absolute variant. The relative variant takes into account the

size of the program being debugged, i.e., the total number of

statements. In contrast, the absolute variant, which is also a

form of the EXAM score metric, calculates the number of

statements that need to be inspected to detect the first faulty

instruction. The formula for the EXAM score metric is

presented below in (7).

Exam Score =
Rank of Fault

Overall Statement Count of the Program
× 100% (7)

A higher level of performance of the fault localization

method is indicated by a lower Exam Score because it

necessitates the inspection of a smaller fraction of the code

to identify the faulty statements. In this study, we utilize the

Exam Score metric to compare the proposed approach with

traditional SBFL methods. The objective is to evaluate the

effectiveness of the proposed approach compared to the

existing SBFL techniques. The proposed approach enhances

the absolute suspiciousness ranking of the faulty program

entities in the fault rank list. The improvement in the

proposed approach can be defined using the formula given

in (8).

Improvement (𝐴, B) =
𝐴−𝐵

𝐴
× 100% (8)

In the above formula, A and B represent the definitive

rank (i.e. absolute rank) produced by the traditional SBFL

method and the proposed approach, respectively.

b) Cumulative Number of Statements Examined

The cumulative number of statements examined (CSE) is

a valuable evaluation tool used to estimate the effectiveness

of a fault localization technique. It reflects the total number

of program statements scrutinized by the technique in

question during the fault localization process. The basic idea

behind CSE is that a good fault localization technique

should examine as few statements as possible to locate the

fault accurately. Therefore, the lower the CSE value, the

more efficient the technique is considered to be.

CSE is a cumulative metric, which means that it counts

all the statements examined by the technique up to a certain

point in the debugging process, and not just the statements

examined in a single iteration. This allows for a fair

comparison of different fault localization techniques, even if

they use different strategies for examining program

statements.

As the fault localization technique is applied, the number

of program statements examined is counted. A program

statement is considered examined if it is executed or

evaluated in some way during the fault localization process.

The cumulative number of statements examined is

calculated as the sum of the statements examined up to the

point where the fault was successfully localized across all

faulty versions considered in the experimentation. This

value is used as a measure of the efficiency of the fault

localization technique.

Suppose there is a program with N faulty versions, and

two fault localization techniques, S and T. Let S(i) and T(i)

represent the number of statements that need to be inspected

by techniques S and T, respectively, to locate all the faults in

the ith faulty version. If it is observed that technique S

requires fewer statements to be examined than technique T,

as depicted in (9), then it can be concluded that technique S

is more effective than technique T in identifying all the

faults in the faulty versions.

TABLE XIII

SUBJECT PROGRAMS USED IN EMPIRICAL RESEARCH

Program
Line of
Code

Faulty versions

used in the

Experimentation

Brief Description

Siemens programs

print_tokens 565 v5, v7 Lexical analyzer

print_tokens2 510 v4, v5, v6, v7 Lexical analyzer
tcas 173 v1, v2, v3, v4, v5 Altitude separation

tot_info 406 v2, v4, v5, v7 Information

measure
replace 562 v1, v3, v4, v6, v7 Pattern recognition

schedule 412 v2, v3, v4 Priority scheduler

schedule2 307 v6, v7 Priority scheduler
Large real-world programs

flex 13,892 v1, v2, v3, v4 Lexical analyzer

generator
sed 12,062 v2, v3 Textual manipulator

grep 12,653 v1, v2 Pattern searcher

space 9,126 v5, v14, v15, v18,
v20, v21, v23

ADL interpreter

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

∑ 𝑆(𝑖) < 𝑁
𝑖=1 ∑ 𝑇 (𝑖)𝑁

𝑖=1 (9)

c) Top-N

The metric known as Top-N refers to the percentage of

faults detected by a fault localization technique within the

top-n positions of the ranked list [28]. Here, N in Top-N

denotes the position like N =1, 5, 10. The smaller value of N

is considered to be more stringent. For example, N=5

requires that all faults (in different versions of a subject

program) should be ranked in top 5 positions in the ranked

list. The fault localization literature frequently makes use of

the Top-N metric. In our study, we use the top-N metric to

compare the performance of the conventional SBFL

techniques and our proposed approach.

d) Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a statistical technique

that is frequently employed to compare two paired samples

and evaluate the difference between them. It is a non-

parametric test, which implies that it does not assume any

particular distribution of the data. This makes it a useful

alternative to parametric tests, like the paired t-test, when

normality assumptions are not met. The test works by

comparing the ranks of the differences between paired

observations, rather than the actual values themselves. This

approach makes it particularly useful when dealing with

data that is not normally distributed or contains outliers [14].

The Wilcoxon signed-rank test can be utilized in fault

localization to compare the efficacy of various techniques

used to locate faults on a single set of faults. By comparing

the performance of various fault localization techniques on

the same set of faults, their effectiveness can be assessed. To

do this, the techniques are applied to the set of faults, and

the number of statements that each technique examines to

locate the first faulty statement is recorded. These numbers

can then be used to rank the performance of the techniques.

The Wilcoxon signed-rank test can then be applied to

determine whether any differences in the rankings are

statistically significant or just due to chance. This allows for

a more robust evaluation of the effectiveness of different

fault localization techniques and can help identify which

techniques are most effective for a given software system.

In this research work, we conducted experiments to

demonstrate that our proposed approach significantly

improves the performance of existing SBFL techniques. We

began by calculating the total number of statements that a

programmer would need to analyze to locate the first faulty

statement, and found that our proposed approach was more

efficient than Ochiai and other conventional SBFL

approaches. We then evaluated the two-sided alternative

hypothesis that the existing SBFL methods like Ochiai (or

Jaccard, DStar etc.) must examine an equal or greater

number of statements than our proposed approach to achieve

similar results.

The null hypothesis used in this study is as follows.

H0: The existing SBFL technique requires examining the

same or fewer statements than the proposed approach.

In the event that the null hypothesis is rejected, the

alternative hypothesis will be accepted. According to the

alternative hypothesis, the proposed approach necessitates

examining fewer statements than the compared classical

SBFL technique, indicating its superior efficiency.

C. Results and Analysis

This section presents a comprehensive analysis of the

results of the experimental study to validate our proposed

approach/ framework. We use four evaluation metrics

namely EXAM score, cumulative number of statements

examined (CSE), Top-N, and Wilcoxon Signed-Rank Test,

as explained above in Section IV-B (iii), to evaluate the

performance and efficiency of the proposed approach as

against the classic SBFL techniques.

i. Improving fault localization performance using test suite

optimization

In response to the first research question (RQ1), this

section further illustrates that as per the proposed approach,

how we have used the concept of test suite optimization (see

Section II-B for details) to improve the effectiveness of

locating faults within a program in our experimentation

work. In Section II-B, it is explained how the PTD score of

a test suite can influence the accuracy of identifying faults in

a program in both positive and negative ways. To be precise,

a test suite with a higher PTD score can enhance the

efficiency of fault localization by refining the placement of

faulty program units (e.g., statements) in the suspicious

ranking list. The said ranking list is arranged in descending

order based on the suspiciousness score of program entities,

and the enhancement signifies that the faulty statement is

more likely to be positioned at a higher rank in the list, thus

facilitating its localization.

 To increase the PTD score of a test suite T, we utilize a

heuristic discussed in Section II-B. This heuristic involves

eliminating from T those passing test cases, denoted as t,

which exhibit a greater likelihood of executing a faulty

statement. The heuristic is explained as follows. Here, S is

the set of statements executed by t, MSS is the minimum

suspiciousness set and 𝛼 is the threshold value.

|𝑆∩𝑀𝑆𝑆|/|𝑀𝑆𝑆|> 𝛼

The test case t can be removed from the test suite T, if 𝛼

is greater than a certain threshold. There is no standard value

for 𝛼 in practice as it is a matter of investigation on different

experimental settings. It is understood that when passing test

cases execute a significant number of statements within the

MSS, there is a higher likelihood that they will execute the

faulty statement, resulting in poorer accuracy in identifying

faults during the debugging process of a program.

Conversely, if the passing test cases execute only a small

number of statements within the MSS, the test suite is

considered optimized, and this approach can lead to

improvement in the accuracy of identifying faults in a

program.

As previously stated, our experiments involved six test

cases, three of which are passing test cases while the other

three are failing that means do not give the expected output.

The passing test cases executed specific percentage of

statements within the MSS, and this information is presented

in Table XIV for every subject program being utilized in our

experiments. We can observe that certain passing test cases

cover only a small number of statements in the MSS,

making it less likely for those specific passing test cases to

execute the statement that is a faulty one. In this way we

optimize test suites for our proposed fault localization

process (see Section II-B for details). Table XIV shows the

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

portion of MSS covered by the execution of each passing

test case (T1, T2 & T3) in percentage. We can note that the

passing test cases (T1, T2 & T3) of the optimized test suite

for version V5 of ‘print_tokens’ subject program are

covering 55.09%, 53.89% and 86.83% of statements in

MSS, respectively. It is worth mentioning that in this

scenario, T1 and T2 provide coverage to a limited portion of

the MSS. Consequently, the probability of these passing test

cases executing the faulty statement, as per the heuristic

explained earlier, is relatively low. Similarly, the version

V14 of ‘space’ subject program is covering 45.86%, 38.73%

and 70.63% of statements in MSS, respectively. Now,

suppose that in this case (V14 of ‘space’ program) passing

test cases T1 and T2 do not execute the faulty statement as

they are covering very less portion of the MSS in the test

suite. These test cases exhibit coverage over a minimal

section of the MSS. As a result, the PTD (Passing Test

Discrimination) score for the test suite computes to 66.66%,

specifically denoting that two out of three passing test cases

do not execute the faulty statement.

ii. Performance evaluation of the proposed approach based

on EXAM Score

In this subsection, we apply the proposed approach to

three existing SBFL methods, namely Ochiai, Jaccard, and

DStar, and evaluate the resulting performance improvements

with respect to the EXAM score metric. The primary

objective of our proposed approach is to enhance the

performance of existing SBFL techniques. When we apply

the proposed approach to the existing SBFL techniques, we

denote them by appending an asterisk symbol ('*') to their

respective original names. For instance, our proposed

approach for the baseline Ochiai method is denoted as

Ochiai*, and similarly, we use Jaccard* and DStar* denote

the proposed approaches for the baseline methods Jaccard

and DStar, respectively. In other words, our improved

version of the baseline Ochiai method is denoted as Ochiai*,

while Jaccard* and DStar* represent the improved versions

of the baseline methods Jaccard and DStar, respectively.

Table XV and Table XVI show a comparative analysis of

the effectiveness between the proposed approach (Ochiai*)

and the classic Ochiai method on Siemens programs and

large real-world subject programs, respectively. The subject

program, faulty version, and line of code (LOC) are

displayed in the first three columns of Table XV and Table

XVI, respectively. The performance of baseline method

(classic Ochiai) in absolute and relative variants of EXAM

score metric is shown in column 4 and 5, respectively. The

absolute version of the EXAM score metric indicates the

cost of finding the first fault by counting the number of

program entities (in our study, statements) examined. On the

other hand, the relative version of the metric takes into

consideration the program's size and expresses the required

effort as a percentage of the code examined to locate the

fault.

The line of code need to be examined (developer’s effort)

using traditional Ochiai method in order to locate fault in

terms of absolute measure is shown in column 4, and

developer’s effort in terms of relative measure of EXAM

score is shown in column 5. Similarly, the performance of

the proposed approach (Ochiai*) in absolute and relative

variants of EXAM score metric is shown in column 6 and 7,

respectively. Columns 8 and 9 of Table XV and Table XVI

illustrate how the traditional Ochiai method and the

proposed approach differ in terms of the absolute and

relative measures of EXAM score. The improvement

achieved by the proposed approach over the classic Ochiai

method in terms of relative changes in the EXAM score

values is summarized in column 10 of both the tables.

By observing row 1 of Table XV, we can note that in

order to locate fault in ‘print_tokens’ program the traditional

Ochiai method requires 16 statements to be examined (i.e. in

relative terms it requires 2.83% of total code to be

inspected), whereas our proposed approach in this particular

case is able to locate the fault directly in one search with an

improvement of 93.75%. Likewise, if we observe row 7 of

Table XVI (‘sed’ UNIX utility program, version V2), we

find that 31 statements need to be searched (0.26% of total

code) by the classic Ochiai technique and only 3 statements

need to be searched (0.02%) by our proposed approach, with

an improvement of 90.32%. Similarly version 21 of ‘space’

program (row 12 of Table XVI) requires 95 statements to be

checked (1.04% of code) by the classic Ochiai, while, only 9

statements are required to be examined (0.10% of code) by

our proposed approach, with an improvement of 90.53% as

shown in the last column of Table XVI.

TABLE XIV
PASSING TEST CASES (T1, T2 & T3) OF OPTIMIZED TEST SUITES

COVERING A SPECIFIC PERCENTAGE OF STATEMENTS IN MSS

Subject Program Version T1 T2 T3

Siemens Programs
print_tokens V5 55.09 53.89 86.83

print_tokens V7 56.59 87.60 62.02

print_tokens2 V4 46.49 76.76 47.03
print_tokens2 V5 67.40 60.77 77.35

print_tokens2 V6 48.86 67.05 86.36

print_tokens2 V7 69.82 50.89 66.86
replace V1 41.26 87.38 41.26

replace V3 75.61 33.17 92.68

replace V4 61.17 30.10 82.52
replace V6 40.19 35.41 29.67

replace V7 50.00 71.79 71.79

schedule V2 29.80 29.80 82.78

schedule V3 86.75 86.09 57.62

schedule V4 67.55 86.09 85.43

schedule2 V6 43.61 80.45 69.92
schedule2 V7 43.38 79.41 60.29

tcas V1 96.23 86.79 56.60

tcas V2 56.60 56.60 96.23
tcas V3 3.92 3.92 86.27

tcas V4 56.60 94.34 94.34

tcas V5 3.51 52.63 52.63
tot_info V2 73.08 47.12 47.12

tot_info V4 76.11 65.49 38.94

tot_info V5 55.56 84.26 34.26
tot_info V7 77.19 40.35 42.98

Large real-world programs

flex V1 62.22 47.40 43.32
flex V2 58.27 44.45 41.78

flex V3 56.12 42.68 36.47

flex V4 59.46 40.77 38.92
grep V1 68.90 63.89 64.23

grep V2 70.85 80.15 77.30

sed V2 95.09 94.57 87.17
sed V3 93.94 62.66 39.03

space V14 45.86 38.73 70.63

space V15 68.21 66.58 40.72
space V18 81.69 76.42 48.39

space V20 76.24 58.71 78.25

space V21 80.60 38.36 76.41
space V23 76.67 28.46 29.00

space V5 73.61 73.61 81.22

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

The average improvement achieved by the proposed

approach (Ochiai*) over the classic Ochiai method in terms

of relative EXAM score is shown in the last row of Table

XV (for Siemens subject programs) and Table XVI (for

large real-world subject programs) . We can note that there

is an overall improvement of 62.76% on Siemens suite

programs and 65.23% on large real-world programs.

TABLE XV

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON SIEMENS PROGRAMS BY THE PROPOSED APPROACH (OCHIAI*)

Subject

Program

Version LOC Line of Code Examined Difference Improvement

% Ochiai EXAM Score

% (Ochiai)

Using Proposed

Approach (Ochiai*)

EXAM Score

% (Ochiai*)

LOC

Examined

EXAM

Score %

print_tokens V7 565 16 2.83 1 0.18 -15 -2.65 93.75

print_tokens V5 565 15 2.65 5 0.88 -10 -1.77 66.67

print_tokens2 V6 510 6 1.18 1 0.20 -5 -0.98 83.33
print_tokens2 V7 510 7 1.37 2 0.39 -5 -0.98 71.43

print_tokens2 V5 510 8 1.57 2 0.39 -6 -1.18 75.00

print_tokens2 V4 510 8 1.57 4 0.78 -4 -0.78 50.00
replace V6 562 28 4.98 1 0.18 -27 -4.80 96.43

replace V7 562 13 2.31 4 0.71 -9 -1.60 69.23

replace V1 562 22 3.91 4 0.71 -18 -3.20 81.82
replace V4 562 28 4.98 17 3.02 -11 -1.96 39.29

replace V3 562 76 13.52 36 6.41 -40 -7.12 52.63

schedule V3 412 5 1.21 1 0.24 -4 -0.97 80.00

schedule V2 412 19 4.61 6 1.46 -13 -3.16 68.42

schedule V4 412 15 3.64 9 2.18 -6 -1.46 40.00

schedule2 V6 307 17 5.54 3 0.98 -14 -4.56 82.35
schedule2 V7 307 92 29.97 46 14.98 -46 -14.98 50.00

tcas V4 173 2 1.16 1 0.58 -1 -0.58 50.00

tcas V1 173 13 7.51 3 1.73 -10 -5.78 76.92
tcas V2 173 16 9.25 3 1.73 -13 -7.51 81.25

tcas V3 173 27 15.61 19 10.98 -8 -4.62 29.63

tcas V5 173 30 17.34 24 13.87 -6 -3.47 20.00
tot_info V7 406 9 2.22 2 0.49 -7 -1.72 77.78

tot_info V2 406 35 8.62 10 2.46 -25 -6.16 71.43

tot_info V4 406 15 3.69 12 2.96 -3 -0.74 20.00
tot_info V5 406 24 5.91 14 3.45 -10 -2.46 41.67

Average 21.84 6.29 9.20 2.88 -12.64 -3.41 62.76

TABLE XVI

IMPROVEMENT IN PERFORMANCE OF FAULT LOCALIZATION ON LARGE REAL-WORLD PROGRAMS BY THE PROPOSED APPROACH (OCHIAI*)

Subject

Program

Version LOC Line of Code Examined Difference Improvement

% Ochiai EXAM Score

% (Ochiai)

Using Proposed

Approach (Ochiai*)

EXAM Score

% (Ochiai*)

LOC

Examined

EXAM

Score %

flex V3 13892 23 0.17 9 0.06 -14 -0.10 60.87
flex V1 13892 38 0.27 17 0.12 -21 -0.15 55.26

flex V2 13892 52 0.37 29 0.21 -23 -0.17 44.23

flex V4 13892 58 0.42 32 0.23 -26 -0.19 44.83
grep V1 12653 33 0.26 1 0.01 -32 -0.25 96.97

grep V2 12653 20 0.16 17 0.13 -3 -0.02 15.00

sed V2 12062 31 0.26 3 0.02 -28 -0.23 90.32
sed V3 12062 38 0.32 5 0.04 -33 -0.27 86.84

space V23 9126 23 0.25 2 0.02 -21 -0.23 91.30

space V20 9126 147 1.61 7 0.08 -140 -1.53 95.24
space V18 9126 50 0.55 8 0.09 -42 -0.46 84.00

space V21 9126 95 1.04 9 0.10 -86 -0.94 90.53

space V5 9126 19 0.21 9 0.10 -10 -0.11 52.63
space V15 9126 29 0.32 16 0.18 -13 -0.14 44.83

space V14 9126 207 2.27 154 1.69 -53 -0.58 25.60

Average 57.53 0.56 21.20 0.21 -36.33 -0.36 65.23

(a)

2.83 2.65

0.18
0.88

0.00

2.00

4.00

V7 V5

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

print_tokens

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

(b)

1.18 1.37 1.57 1.57

0.20 0.39 0.39
0.78

0.00

1.00

2.00

V6 V7 V5 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

print_tokens2

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

Fig. 4. Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai* on

Siemens suite subject programs: (a) print_tokens (b) print_tokens2.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

(a)

4.98

2
.3

1

3.91 4
.9

8

13.52

0.18 0
.7

1

0.71

3
.0

2 6.41

0.00

5.00

10.00

15.00

V6 V7 V1 V4 V3

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

replace

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

(b)

1.21

4.61
3.64

0.24
1.46

2.18

0.00

2.00

4.00

6.00

V3 V2 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

schedule

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

(c)

5.54

29.97

0.98

14.98

0.00

20.00

40.00

V6 V7

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

schedule2

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

(d)

1
.1

6 7.51 9.25

1
5

.6
1

1
7

.3
4

0
.5

8

1.73 1.73

1
0

.9
8

1
3

.8
7

0.00

10.00

20.00

V4 V1 V2 V3 V5
%

 o
f

th
e

co
d

e
ex

am
in

ed

version

tcas

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

(e)

Fig. 5. Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai*on Siemens

suite subject programs: (a) replace (b) schedule (c) schedule2 (d) tcas (e) tot_info.

2.22

8.62

3.69

5.91

0.49
2.46 2.96 3.45

0.00

5.00

10.00

V7 V2 V4 V5

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

tot_info

EXAM Score % (Ochiai) EXAM Score % (Ochiai*)

(a)

0
.1

7

0.27
0.37 0.42

0
.0

6

0.12
0.21 0.23

0.00

0.50

V3 V1 V2 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

flex

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

(b)

0.26
0.16

0.01
0.13

0.00

0.20

0.40

V1 V2

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

grep

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

Fig. 6. Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai* on large

real-world subject programs: (a) flex (b) grep.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Furthermore, in order to better demonstrate the

improvement achieved by our proposed approach compared

to the existing SBFL techniques, we employ the EXAM

score to assess its effectiveness in a more insightful manner.

To illustrate this, we graphically depict the effectiveness of

Ochiai* in comparison to classic Ochiai on the faulty

versions of Siemens programs (Fig. 4 & Fig. 5) and the four

large real-world programs (Fig. 6 & Fig. 7), respectively.

The y axis represents the developer’s effort in terms of

percentage of code examined (relative EXAM score) and the

x axis signifies the faulty version of the subject program

being debugged. Upon analyzing Fig. 4(b), it becomes

evident that in the case of version v6 of the ‘print_tokens2’

program, the proposed approach significantly reduces the

effort required to locate the fault. For example, while 1.18%

of the code needs to be searched using Ochiai metric, the

proposed approach (Ochiai*) only requires tracing through

0.20% of the code. Likewise, when examining the ‘grep’

UNIX utility (version v1) in Fig. 6(b), the Ochiai method

necessitates checking 0.26% of the code (33 LOC), while

our proposed approach (referred to as Ochiai*) only requires

searching through a mere 0.01% of the code (1 LOC).

We now present the results of applying our proposed fault

localization approach to the widely-used Jaccard and DStar

SBFL methods. This enhancement of Jaccard and DStar are

referred to as Jaccard* and DStar*, respectively. Table XVII

and Table XVIII compare the improvement achieved by

Jaccard* over classic Jaccard on Siemens programs and

large real-world programs, respectively. As a specific case,

for example, the version V7 of the subject program ‘replace’

(row 8 in Table XVII) requires only 5 statements to be

inspected for locating a fault by the Jaccard*, whereas 15

statements are required to be checked if we use simple

Jaccard method.

 (a)

0.26
0.32

0.02 0.04

0.00

0.10

0.20

0.30

0.40

V2 V3

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

sed

EXAM Score % (Ochiai)

EXAM Score % (Ochiai*)

 (b)

0
.2

5

1
.6

1

0
.5

5

0
.2

1

1
.0

4

0
.3

2

2
.2

7

0
.0

2

0
.0

8

0
.0

9

0
.1

0

0
.1

0

0
.1

8

1
.6

9

0.00

0.50

1.00

1.50

2.00

2.50

V23 V20 V18 V5 V21 V15 V14

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

space

EXAM Score % (Ochiai) EXAM Score % (Ochiai*)

Fig. 7. Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai* on large

real-world subject programs: (a) sed (b) space.

TABLE XVII

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON SIEMENS PROGRAMS BY THE PROPOSED APPROACH (JACCARD*)

Subject
Program

Version LOC

Line of Code Examined Difference
Improvement

%
Using

Jaccard

EXAM Score

% (Jaccard)

Using Proposed

Approach (Jaccard*)

EXAM Score

% (Jaccard*)

Code

Examined

EXAM

Score %

print_tokens V7 565 16 2.83 1 0.18 -15 -2.65 93.75
print_tokens V5 565 15 2.65 6 1.06 -9 -1.59 60.00

print_tokens2 V6 510 13 2.55 2 0.39 -11 -2.16 84.62

print_tokens2 V4 510 8 1.57 4 0.78 -4 -0.78 50.00
print_tokens2 V7 510 18 3.53 4 0.78 -14 -2.75 77.78

print_tokens2 V5 510 6 1.18 6 1.18 0 0.00 0.00

replace V1 562 12 2.14 4 0.71 -8 -1.42 66.67
replace V7 562 15 2.67 5 0.89 -10 -1.78 66.67

replace V6 562 28 4.98 11 1.96 -17 -3.02 60.71

replace V4 562 28 4.98 17 3.02 -11 -1.96 39.29
replace V3 562 96 17.08 39 6.94 -57 -10.14 59.38

schedule V3 412 2 0.49 1 0.24 -1 -0.24 50.00

schedule V2 412 10 2.43 6 1.46 -4 -0.97 40.00
schedule V4 412 15 3.64 9 2.18 -6 -1.46 40.00

schedule2 V6 307 17 5.54 3 0.98 -14 -4.56 82.35

schedule2 V7 307 81 26.38 48 15.64 -33 -10.75 40.74
tcas V2 173 6 3.47 4 2.31 -2 -1.16 33.33

tcas V4 173 10 5.78 5 2.89 -5 -2.89 50.00

tcas V1 173 20 11.56 8 4.62 -12 -6.94 60.00
tcas V3 173 27 15.61 13 7.51 -14 -8.09 51.85

tcas V5 173 30 17.34 24 13.87 -6 -3.47 20.00
tot_info V7 406 9 2.22 2 0.49 -7 -1.72 77.78

tot_info V5 406 10 2.46 6 1.48 -4 -0.99 40.00

tot_info V4 406 15 3.69 7 1.72 -8 -1.97 53.33
tot_info V2 406 35 8.62 24 5.91 -11 -2.71 31.43

Average 21.68 6.22 10.36 3.17 -11.32 -3.05 53.19

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Thus, in this case the Jaccard* has achieved an

improvement of 66.67% in fault localization result over the

classic Jaccard method. Similarly, if we observe Table

XVIII, we find that in case of ‘sed’ UNIX program (row 8,

version v3), there is an improvement of 88.89% in fault

localization results in favor of Jaccard*.

It can be observed that the Jaccard* method demonstrates

a significant enhancement, with an overall average

improvement of 53.19% on Siemens suite programs and

65.66% on large real-world subject programs compared to

the traditional Jaccard approach, as depicted in the last row

of Table XVII and Table XVIII, respectively.

Fig. 8 to Fig. 11 graphically highlight the effectiveness of

Jaccard* in comparison to the classic Jaccard method for the

faulty versions of each subject program in the Siemens suite

and in the large real-world programs, respectively. In Fig. 8

(a), we observe that for version v7 of the ‘print_tokens’

subject, the classic Jaccard method necessitates checking

2.83% of the code, whereas the proposed approach

(Jaccard*) only requires 0.18% of the code to be checked.

Similarly, for version v5 of print_tokens, Jaccard* examines

just 1.06% of the code compared to Jaccard, which needs

2.65% of the code to be examined. Based on the observation

of Fig. 9 (c) for ‘schedule2’ program (version v6), it is

evident that the Jaccard method requires 5.54% of the code

to be searched in order to locate the fault, whereas Jaccard*

only needs 0.98% of the code to be inspected for the same

purpose. Moving on to version v7 of ‘schedule2’ program,

Jaccard* demonstrates higher efficiency, as it requires only

15.64% of the code to be checked compared to Jaccard,

which needs 37.46% of the code to be searched to identify

the faulty statement. Similarly, if we observe other graphs

shown in Fig. 8 and Fig. 9, it is evident that Jaccard*

(proposed approach) outperforms the traditional Jaccard in

most of the cases.

In the same way as shown in Fig. 10 (a), the ‘flex’

program (version V3) requires 0.20% (28 LOC) and 0.08%

(11 LOC) of the code to be examined by Jaccard and

Jaccard*, respectively. Likewise, when examining 'grep'

UNIX utility for version v1 in Fig. 10 (b), we observe that

the Jaccard method entails checking 0.26% of the code (33

LOC), whereas Jaccard* only needs to search through a

mere 0.03% of the code (4 LOC). Also, in Fig. 11 (b), when

analyzing 'space' program (version v20), Jaccard proves to

be less efficient, as it necessitates the examination of 1.61%

of the code (147 LOC) to locate the faulty statement. In

contrast, Jaccard* outperforms it, as it only needs to search

0.30% of the code (27 LOC) to achieve the same result.

Similarly, for the 'space' program (version v23), the classic

Jaccard method necessitates inspecting 0.25% of the code

(23 LOC), while Jaccard* requires only 0.08% of the code

(7 LOC) to be searched to identify the fault.

TABLE XVIII

IMPROVEMENT IN PERFORMANCE OF FAULT LOCALIZATION ON LARGE REAL-WORLD PROGRAMS BY THE PROPOSED APPROACH (JACCARD*)

Subject

Program
Version LOC

Line of Code Examined Difference
Improvement

%
Using

Jaccard

EXAM Score

% (Jaccard)

Using Proposed

Approach (Jaccard*)

EXAM Score

% (Jaccard*)

Code

Examined

EXAM

Score %

flex V3 13892 28 0.20 11 0.08 -17 -0.12 60.71

flex V2 13892 45 0.32 20 0.14 -25 -0.18 55.56
flex V1 13892 49 0.35 27 0.19 -22 -0.16 44.90

flex V4 13892 63 0.45 27 0.19 -36 -0.26 57.14

grep V1 12653 33 0.26 4 0.03 -29 -0.23 87.88
grep V2 12653 28 0.22 17 0.13 -11 -0.09 39.29

sed V2 12062 13 0.11 2 0.02 -11 -0.09 84.62

sed V3 12062 18 0.15 2 0.02 -16 -0.13 88.89
space V23 9126 23 0.25 7 0.08 -16 -0.18 69.57

space V18 9126 50 0.55 8 0.09 -42 -0.46 84.00

space V5 9126 23 0.25 9 0.10 -14 -0.15 60.87
space V20 9126 147 1.61 27 0.30 -120 -1.31 81.63

space V15 9126 57 0.62 29 0.32 -28 -0.31 49.12

space V21 9126 145 1.59 49 0.54 -96 -1.05 66.21
space V14 9126 235 2.58 107 1.17 -128 -1.40 54.47

Average 63.80 0.63 23.07 0.23 -40.73 -0.41 65.66

(a)

2.83 2.65

0.18

1.06

0.00

1.00

2.00

3.00

V7 V5

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

print_tokens

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(b)

2.55

1.57

3.53

1
.1

8

0.39
0.78 0.78 1

.1
8

0.00

2.00

4.00

V6 V4 V7 V5

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

print_tokens2

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

Fig. 8. Comparison of fault localization performance using EXAM score between the traditional Jaccard and the proposed approach Jaccard* on

Siemens suite subject programs: (a) print_tokens (b) print_tokens2.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

(a)

2
.1

4

2
.6

7

4
.9

8

4
.9

8

17.08

0
.7

1

0
.8

9

1
.9

6

3
.0

2 6.94

0.00

10.00

20.00

V1 V7 V6 V4 V3

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

replace

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(b)

0
.4

9

2.43

3.64

0
.2

4 1.46
2.18

0.00

2.00

4.00

V3 V2 V4

%
 o

f
th

e
cd

o
d

e
ex

am
in

ed

version

schedule

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(c)

5.54

37.46

0.98

15.64

0.00

20.00

40.00

V6 V7

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

schedule2

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(d)

3
.4

7

5
.7

8 11.56
15.61 1

7
.3

4

2
.3

1

2
.8

9

4.62
7.51

1
3

.8
7

0.00

10.00

20.00

V2 V4 V1 V3 V5
%

 o
f

th
e

co
d

e
ex

am
in

ed

version

tcas

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(e)

Fig. 9. Comparison of fault localization performance using EXAM score between the classic Jaccard and the proposed approach Jaccard* on Siemens
suite subject programs: (a) replace (b) schedule (c) schedule2 (d) tcas (e) tot_info.

2.22 2.46
3.69

8.62

0.49
1.48 1.72

5.91

0.00

5.00

10.00

V7 V5 V4 V2

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

tot_info

EXAM Score % (Jaccard) EXAM Score % (Jaccard*)

(a)

0.20
0.32 0.35

0.45

0.08 0.14 0.19 0.19

0.00

0.50

V3 V2 V1 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

flex

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(b)

0.26 0.22

0.03
0.13

0.00

0.20

0.40

V1 V2

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

grep

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

Fig. 10. Comparison of fault localization performance using EXAM score between the traditional Jaccard and the proposed approach Jaccard* on

large real-world subject programs: (a) flex (b) grep.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

(a)

0.11

0.15

0.02 0.02

0.00

0.05

0.10

0.15

0.20

V2 V3

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

sed

EXAM Score % (Jaccard)

EXAM Score % (Jaccard*)

(b)

0
.2

5

0
.5

5

0
.2

5

1.61

0
.6

2

1.59

2.58

0
.0

8

0
.0

9

0
.1

0

0.30 0
.3

2

0.54

1.17

0.00

0.50

1.00

1.50

2.00

2.50

3.00

V23 V18 V5 V20 V15 V21 V14

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

space

EXAM Score % (Jaccard) EXAM Score % (Jaccard*)

Fig. 11. Comparison of fault localization performance using EXAM score between the classic Jaccard and the proposed approach Jaccard* on large

real-world subject programs: (a) sed (b) space.

TABLE XIX

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON SIEMENS PROGRAMS BY THE PROPOSED APPROACH (DSTAR*)

Subject
Program

Version LOC

Line of Code Examined Difference
Improvement

%
Using

DStar

EXAM Score

% (DStar)

Using Proposed

Approach (DStar*)

EXAM Score

% (DStar*)

Code

Examined

EXAM

Score %

print_tokens V7 565 16 2.83 1 0.18 -15 -2.65 93.75

print_tokens V5 565 12 2.12 5 0.88 -7 -1.24 58.33

print_tokens2 V7 510 8 1.57 2 0.39 -6 -1.18 75.00
print_tokens2 V4 510 6 1.18 4 0.78 -2 -0.39 33.33

print_tokens2 V5 510 20 3.92 14 2.75 -6 -1.18 30.00

print_tokens2 V6 510 23 4.51 16 3.14 -7 -1.37 30.43
replace V1 562 11 1.96 3 0.53 -8 -1.42 72.73

replace V7 562 4 0.71 4 0.71 0 0.00 0.00

replace V6 562 13 2.31 9 1.60 -4 -0.71 30.77
replace V4 562 28 4.98 17 3.02 -11 -1.96 39.29

replace V3 562 82 14.59 41 7.30 -41 -7.30 50.00

schedule V3 412 14 3.40 1 0.24 -13 -3.16 92.86
schedule V2 412 14 3.40 6 1.46 -8 -1.94 57.14

schedule V4 412 9 2.18 7 1.70 -2 -0.49 22.22

schedule2 V6 307 7 2.28 3 0.98 -4 -1.30 57.14
schedule2 V7 307 28 9.12 18 5.86 -10 -3.26 35.71

tcas V1 173 21 12.14 4 2.31 -17 -9.83 80.95

tcas V2 173 15 8.67 4 2.31 -11 -6.36 73.33
tcas V4 173 29 16.76 6 3.47 -23 -13.29 79.31

tcas V5 173 24 13.87 8 4.62 -16 -9.25 66.67

tcas V3 173 27 15.61 20 11.56 -7 -4.05 25.93
tot_info V7 406 7 1.72 2 0.49 -5 -1.23 71.43

tot_info V5 406 14 3.45 8 1.97 -6 -1.48 42.86

tot_info V2 406 35 8.62 10 2.46 -25 -6.16 71.43
tot_info V4 406 38 9.36 12 2.96 -26 -6.40 68.42

Average 20.20 6.05 9.00 2.55 -11.20 -3.50 54.36

TABLE XX

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON LARGE REAL-WORLD PROGRAMS BY THE PROPOSED APPROACH (DSTAR*)

Subject

Program

Version LOC Line of Code Examined Difference Improvement

% Using

Dstar

EXAM Score

% (Dstar)

Using Proposed

Approach (DStar*)

EXAM Score

% (DStar*)

Code

Examined

EXAM

Score %

flex V3 13892 24 0.17 7 0.05 -17 -0.12 70.83
flex V1 13892 34 0.24 18 0.13 -16 -0.12 47.06
flex V2 13892 51 0.37 13 0.09 -38 -0.27 74.51

flex V4 13892 55 0.40 24 0.17 -31 -0.22 56.36

grep V1 12653 28 0.22 1 0.01 -27 -0.21 96.43
grep V2 12653 156 1.23 67 0.53 -89 -0.70 57.05

sed V3 12062 30 0.25 2 0.02 -28 -0.23 93.33

sed V2 12062 20 0.17 11 0.09 -9 -0.07 45.00
space V23 9126 15 0.16 2 0.02 -13 -0.14 86.67

space V20 9126 57 0.62 6 0.07 -51 -0.56 89.47

space V18 9126 74 0.81 8 0.09 -66 -0.72 89.19
space V5 9126 68 0.75 17 0.19 -51 -0.56 75.00

space V14 9126 34 0.37 19 0.21 -15 -0.16 44.12

space V21 9126 83 0.91 29 0.32 -54 -0.59 65.06
space V15 9126 187 2.05 104 1.14 -83 -0.91 44.39

Average 61.07 0.58 21.87 0.21 -39.20 -0.37 68.96

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Table XIX and Table XX shown above compare the

improvement achieved by DStar* over classic DStar. In the

case of the 'tcas' program (version v5) given in row 20 of

Table XIX, the traditional DStar method requires searching

through 24 statements (13.87% of the code), whereas

DStar* only needs to check 8 statements (4.62% of the

code) to identify the faulty statement. The last column

shows that there is an improvement of 66.67% in terms of

reduction in the developer’s effort in searching for the fault.

For the 'space' program (version v18) as shown in Table

XX, DStar examines 74 statements (0.81% of the code),

while DStar* only needs to search 8 statements (0.09% of

the code) to find the fault, reducing the developer's effort by

89.19%. It is noteworthy that the DStar* method attains a

notable improvement, achieving an overall average

improvement of 54.36% on Siemens suite programs and

68.96% on large real-world programs compared to the

conventional DStar, as evidenced in the last rows of Table

XIX and Table XX, respectively.

We will now graphically compare the performance of

DStar* and classic DStar on Siemens programs (see Fig. 12,

and Fig. 13) and large real-world programs (see Fig. 14),

respectively. For the 'schedule' program (version v3) in Fig.

12 (d), DStar checks 3.40% of the code (14 LOC) to find the

fault, whereas DStar* inspects only 0.24% of the code

(1 LOC) to locate the fault. For the tot_info program

(version v7) in Fig. 13, DStar identifies faults by checking

1.72% of the code (7 LOC), whereas DStar* achieves the

same with just 0.49% of the code (2 LOC) inspected.

Similarly, for the 'flex' program (version v3) as shown in

Fig. 14 (a), classic DStar searches through 0.17% of the

code (24 LOC) to find the fault, while DStar* examines only

0.05% of the code (7 LOC) to identify the faulty statement.

Similar results can be observed from the other graphs shown

in Fig. 12, Fig. 13, and Fig. 14.

(a)

2.83
2.12

0.18
0.88

0.00

2.00

4.00

V7 V5

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

print_tokens

EXAM Score % (Dstar)

EXAM Score % (DStar*)

(c)

1
.9

6

0
.7

1

2
.3

1

4
.9

8 1
4

.5
9

0
.5

3

0
.7

1

1
.6

0

3
.0

2

7
.3

0

0.00

10.00

20.00

V1 V7 V6 V4 V3

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

replace

EXAM Score % (Dstar)

EXAM Score % (DStar*)

(e)

2.28

9.12

0.98

5.86

0.00

5.00

10.00

V6 V7

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

schedule2

EXAM Score % (Dstar)

EXAM Score % (DStar*)

(b)

1
.5

7

1
.1

8

3
.9

2

4
.5

1

0
.3

9

0
.7

8 2
.7

5

3
.1

4

0.00

5.00

V7 V4 V5 V6

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

print_tokens2

EXAM Score % (Dstar)

EXAM Score % (DStar*)

(d)

3.40 3.40

2
.1

8
0.24

1.46 1
.7

0
0.00

2.00

4.00

V3 V2 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

schedule

EXAM Score % (Dstar)

EXAM Score % (DStar*)

(f)

12.14
8.67

16.76
13.87 1

5
.6

1

2.31 2.31 3.47 4.62

1
1

.5
6

0.00

10.00

20.00

V1 V2 V4 V5 V3

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

tcas

EXAM Score % (Dstar)

EXAM Score % (DStar*)

Fig. 12. Comparison of fault localization performance using EXAM score between the traditional DStar and the proposed approach DStar* on

Siemens suite subject programs: (a) print_tokens (b) print_tokens2 (c) replace (d) schedule (e) schedule2 (f) tcas.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Our results confirm improved fault localization with

Jaccard* and DStar*, reinforcing the efficacy of our

proposed approach/ framework.

In the following sections we present a comprehensive

evaluation of our proposed approach's overall performance

using three SBFL techniques Ochiai, Jaccard, and DStar.

We assess their effectiveness based on the EXAM score,

considering both Siemens programs and large real-world

subject programs. Our proposed approach enhances the

performance of classic SBFL techniques, resulting in

improved versions labeled as Ochiai*, Jaccard*, and DStar*,

as explained before. In Fig. 15, we compare the performance

of Ochiai with that of Ochiai*, while Fig. 16 presents a

comparison between Jaccard and Jaccard* and Fig. 17

displays the comparative analysis of DStar and DStar*. Fig.

15 (a) shows that Ochiai* can identify 52% of the faults in

the faulty versions of the Siemens test suite subject

programs by inspecting only 1% or less of the code. In

contrast, the Ochiai method is unable to locate any fault by

examining the same 1% or less of the code. Moreover, the

Ochiai* can identify 64% of the faults in the faulty versions

of the Siemens test suite by inspecting 2% or less of the

code, whereas the traditional Ochiai method can only

identify 24% of the faults.

(a)

0.17
0.24

0.37 0.40

0.05
0.13 0.09

0.17

0.00

0.20

0.40

0.60

V3 V1 V2 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

flex

EXAM Score % (Dstar)

EXAM Score % (DStar*)

Fig. 13. Comparison of fault localization performance using EXAM score between the classic DStar and the proposed approach DStar* on Siemens suite
subject program: tot_info.

1.72
3.45

8.62 9.36

0.49
1.97 2.46 2.96

0.00

5.00

10.00

V7 V5 V2 V4

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

tot_info

EXAM Score % (Dstar) EXAM Score % (DStar*)

(c)

0.25

0.17

0.02

0.09

0.00

0.10

0.20

0.30

V3 V2

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

sed

EXAM Score % (Dstar)

EXAM Score % (DStar*)

(d)

0
.1

6 0
.6

2

0
.8

1

0
.7

5

0
.3

7 0
.9

1

2
.0

5

0
.0

2

0
.0

7

0
.0

9

0
.1

9

0
.2

1

0
.3

2

1
.1

4
0.00

0.50

1.00

1.50

2.00

2.50

V23 V20 V18 V5 V14 V21 V15

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

space

EXAM Score % (Dstar) EXAM Score % (DStar*)

(b)

0.22

1.23

0.01

0.53

0.00

0.50

1.00

1.50

V1 V2

%
 o

f
th

e
co

d
e

ex
am

in
ed

version

grep

EXAM Score % (Dstar)

EXAM Score % (DStar*)

Fig. 14. Comparison of fault localization performance using EXAM score between the classic DStar and the proposed approach DStar* on large real-

world subject programs: (a) flex (b) grep (c) sed (d) space.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Now, as shown in Fig. 15 (b), we examine the fault

localization performance of our proposed approach

(Ochiai*) against the classic Ochiai method on the faulty

versions of the large real-world subject programs. It can be

noted that Ochiai* can locate 60% of the faults by

inspecting less than or equal to 0.1% of the code, whereas

the traditional Ochiai method is unable to locate any of the

fault by examining the same percentage of the code (i.e.

0.1%). Similarly, 93.33% of the faults can be located by

examining 0.5% of the code by Ochiai*, whereas, only

73.33% of the faults can be located by examining the same

0.5% of the code by the traditional Ochiai method.

(a)

0

20

40

60

80

100

120

1 2 5 10 15 20 25 30

%
 o

f
lo

ca
te

d
 f

au
lt

s

% of the code examined (Effort)

Ochiai Proposed Approach (Ochiai*)

(b)

0

20

40

60

80

100

120

0.1 0.5 1 2 3

%
 o

f
lo

ca
te

d
 f

au
lt

s

% of the code examined (Effort)

Ochiai Proposed Approach (Ochiai*)

Fig. 15. Comparison of overall effectiveness using Exam Scores between classic Ochiai and the proposed approach Ochiai* (a) on Siemens test suite

programs (b) on large real-world subject programs.

(a)

0

20

40

60

80

100

120

1 2 5 10 15 20 25 30

%
 o

f
lo

ca
te

d
 f

au
lt

s

% of the code examined (Effort)

Jaccard

Proposed Approach (Jaccard*)

(b)

0

20

40

60

80

100

120

0.1 0.5 1 2 3

%
 o

f
lo

ca
te

d
 f

au
lt

s

% of the code examined (Effort)

Jaccard

Proposed Approach (Jaccard*)

Fig. 16. Comparison of overall effectiveness using Exam Scores between classic Jaccard and the proposed approach Jaccard* (a) on Siemens test suite

programs (b) on large real-world subject programs.

(a)

0

20

40

60

80

100

120

1 2 5 10 15 20 25 30

%
 o

f
lo

ca
te

d
 f

au
lt

s

% of the code examined (Effort)

DStar Proposed Approach (DStar*)

(b)

0

20

40

60

80

100

120

0.1 0.5 1 2 3

%
 o

f
lo

ca
te

d
 f

au
lt

s

% of the code examined (Effort)

DStar Proposed Approach (Dstar*)

Fig. 17. Comparison of overall effectiveness using Exam Scores between classic DStar and the proposed approach DStar* (a) on Siemens test suite

programs (b) on large real-world subject programs.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Fig.16 shows a comparison between the overall

effectiveness score of Jaccard* and the classic SBFL

method Jaccard, in terms of EXAM score on both the

Siemens test suite programs and the large real-world

programs. By observing the curves in Fig. 16 (a), we can

examine that the Jaccard* can locate 36% of the faults by

examining less than or equal to 1% of the code with respect

to the Siemens programs, whereas Jaccard can only locate

4% of the faults in this case. In the same way Jaccard* can

locate 60% of the faults by inspecting less than or equal to

2% of the code, as against of this traditional Jaccard can

only locate 12% of the faults on Siemens programs.

In Fig. 16 (b) we analyze the fault localization

performance of Jaccard* in comparison to the classic

Jaccard, using the faulty versions of the large real-world

programs. By examining just 0.1% of the code, Jaccard*

successfully identifies 47% of the faults, while the Jaccard

method fails to locate any of the faults. Furthermore, when

examining 0.5% of the lines of code, Jaccard* locates an

impressive 87% of the faults, whereas the Jaccard method

can only detect 67% of the faults.

In Fig. 17, we present a comparison of the overall

effectiveness score between DStar* and the baseline SBFL

method DStar. This evaluation is based on the EXAM score

for both the Siemens test suite programs and the large real-

world subject programs. By looking at the curves in Fig. 17

(a) it is clear that DStar* can locate 52% of the faults with

respect to the Siemens programs by examining less than or

equal to 2% of the code, in comparison to this classic DStar

can only locate 20% of the faults. In the same way, Fig. 17

(b) shows that by examining 0.1% of the code, DStar* can

locate 53% of the faults while the classic DStar method fails

to locate any of the faults on large real-world programs.

Similarly, by examining 0.5% of the code the DStar* can

locate 87% of the faults while DStar is only able to locate

60% of the faults on large real-world subject programs.

The graphs depicted in Fig. 15, Fig. 16 and Fig. 17 clearly

show that the proposed approach has a significant

improvement over the baseline SBFL methods in terms of

percentage of code examined (EXAM score) on all faulty

versions in Siemens programs and in large real-world

programs used in the experimentation. That means the

proposed approach requires significantly less number of

statements to be examined by the developer in order to

locate faults.

Moreover, our proposed methodology has the ability to

identify faults by examining a considerably smaller portion

of code when compared to traditional approaches. This

makes our framework a valuable tool for developers

engaged in the development of real-world software

applications.

Fig. 18 and Fig. 19 show comparison of improvement

achieved by the three lightweight fault localization

techniques after applying the proposed approach. The

comparison is shown separately for Siemens subject

programs and large real-world programs in Fig. 18 and Fig.

19, respectively. We can observe that Ochiai* is better in

case of Siemens subject programs, whereas, DStar* is

slightly better than the other two methods on large real-

world subject programs.

iii. Assessing the efficiency of the proposed approach by

using the Cumulative Number of Statements Examined

metric

The Cumulative Number of Statements Examined (CSE)

metric serves as a valuable tool for assessing the efficiency

and effectiveness of fault localization approaches. It can

assist researchers and developers in selecting the most

suitable technique for their specific debugging needs.

Fig. 19. Comparison of the improvement achieved by the proposed

approach (Ochiai *, Jaccard* and DStar*) on large real-world subject

programs.

Fig. 18. Comparison of the improvement achieved by the proposed

approach (Ochiai *, Jaccard* and DStar*) on Siemens programs.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

In Table XXI and Table XXII, we present a comparative

analysis of cumulative number of statements examined for

fault localization. This assessment contrasts the performance

of three classical SBFL methods, i.e., Ochiai, Jaccard, and

DStar, before and after applying our proposed approach to

Siemens programs and large real-world programs

individually. Notably, our proposed approach enhances the

efficiency of these classical SBFL techniques, and we

denote their improved variants as Ochiai*, Jaccard*, and

DStar*.

It is important to note that, the figures presented in Table

XXI and Table XXII indicate the total number of statements

that each fault localization method needs to examine to

locate faults in all faulty versions of every subject program

used in this study. The details of these subject programs and

their different faulty versions (with single faults) used in the

study is given in Table XIII. We have conducted

experiments on a total of 40 faulty versions out of which 25

faulty versions are from standard benchmark seven Siemens

programs and 15 faulty versions are from four large real-

world programs- flex, grep, sed and space.

By observing Table XXI and Table XXII we can note

that, for each program, the cumulative number of statements

examined by the proposed approach is much smaller than

the baseline methods Ochiai, Jaccard and DStar. In the case

of the print_tokens program (see Table XXI), the Ochiai

method requires examination of 31 statements to find the

fault, while Ochiai* requires only 6 statements to be

checked, reducing the examined statements by 25. In the

same way, Jaccard requires 31 statements and DStar needs

28 statements, while Jaccard* and DStar* requires only 7

and 6 statements, respectively to locate the faults in

print_tokens program. Analogously, it can be noted by

examining Table XXII that the large real-world (UNIX

utility) program ‘grep’ requires a total of 53 statements to be

examined by the Ochiai method as against the total 18

statements required by our proposed approach Ochiai*. So,

in this case 35 less number of statements need to be

examined due to our proposed approach. Similarly, 61

statements are required by Jaccard and 184 statements by

DStar in comparison to 21 and 68 statements by Jaccard*

and DStar*, respectively. This highlights a significant

decrease in the count of inspected statements when

employing the proposed approach, thereby reducing the

developer’s effort.

TABLE XXI
CUMULATIVE NUMBER OF STATEMENTS EXAMINED TO LOCATE FAULTS FOR EACH SUBJECT PROGRAM IN SIEMENS SUITE

Approach/ Subject

Program
print_tokens print_tokens2 replace schedule schedule2 tcas tot_info

Ochiai 31 29 167 39 109 88 83
Ochiai* 6 9 62 16 49 50 38

Jaccard 31 45 179 27 132 93 69

Jaccard* 7 16 76 16 51 54 39
DStar 28 57 138 37 35 116 94

DStar* 6 36 74 14 21 42 32

TABLE XXII

CUMULATIVE NUMBER OF STATEMENTS EXAMINED TO LOCATE

FAULTS IN LARGE REAL-WORLD SUBJECT PROGRAMS

Approach/ Subject
Program

flex grep sed space

Ochiai 171 53 69 570

Ochiai* 87 18 8 205
Jaccard 185 61 31 680

Jaccard* 85 21 4 236

DStar 164 184 50 518

DStar* 62 68 13 185

TABLE XXIII

OVERALL CUMULATIVE NUMBER OF STATEMENTS EXAMINED TO

LOCATE FAULTS ACROSS ALL FAULTY VERSIONS OF SUBJECT

PROGRAMS USED IN THE EXPERIMENTAL STUDY

Approach/ Subject

Program

Siemens Programs Large Real-World

Programs

Ochiai 546 863
Ochiai* 230 318

Jaccard 576 957

Jaccard* 259 346
DStar 505 916

DStar* 225 328

Fig. 20. Cumulative number of statements examined to locate faults across all faulty versions of Siemens test suite subject programs used in the

experimental study.

31 29

167

39

109

88 83

6 9

62

16

49 50
3831

45

179

27

132

93

69

7
16

76

16

51 54
39

28

57

138

37 35

116

94

6

36

74

14 21

42
32

0

50

100

150

200

print_tokens print_tokens2 replace schedule schedule2 tcas tot_infoC
u
m

u
la

ti
v
e

n
u
m

b
er

 o
f

st
at

em
en

ts

ex
am

in
ed

Siemens programs

Ochiai Ochiai* Jaccard Jaccard* DStar DStar*

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Table XXIII provides an overall comparison between our

proposed approach and the traditional SBFL methods. As

previously mentioned, we performed experiments on 25

faulty versions of Siemens programs and 15 faulty versions

of large real-world programs. Each version considered in

our experimentation had a single fault. We can see that 546

statements need to be examined by Ochiai in order to locate

faults in all 25 faulty versions of Siemens programs whereas

the Ochiai* required only 230 statement to be examined in

this case. Similarly, 863 statements need to be examined by

the Ochiai method in order to locate faults in all 15 faulty

versions of large real-world programs, whereas the Ochiai*

requires only 318 statements to be examined. In the same

way, we see that Jaccard needs 576 statements, while

Jaccard* only requires 259 statements to be checked on

Siemens programs, and 957 statements need to be examined

on large real-world programs, as opposed to that 346

statements required by Jaccard*. If we compare the

performance of DStar and DStar* we find the similar the

trend. For Siemens programs and large real-world programs,

DStar requires 505 and 916 statements to be checked, while

DStar* requires 225 and 328 statements to be inspected to

locate faults, respectively.

To enhance legibility and comprehension, we present a

graphical comparison of the performance of the proposed

approach with the traditional Ochiai, Jaccard and DStar

methods using the Cumulative Number of Statements

Examined metric on Siemens programs and large real-world

programs in Fig. 20 and Fig. 21, respectively. Additionally,

Fig. 22 provides an overall analysis of the performance

between the proposed approach and the classic methods

Ochiai, Jaccard and DStar, measured in terms of the

cumulative number of statements examined metric, across

all subject programs used in our experimental study (i.e.

Siemens programs and large real-world programs).

iv. Assessing the efficiency of the proposed approach by

using the Top-N metric

Table XXIV and Table XXV present fault localization

results comparing the proposed approach with traditional

SBFL techniques (i.e., Ochiai, Jaccard, and DStar) by means

of the Top-N evaluation metric on Siemens programs and

large real-world subject programs, respectively.

We use five metrics (Top-1, Top-5, Top-10, Top-15, and

Top-20) to verify the effectiveness of our proposed

approach against the traditional SBFL methods.

According to Table XXIV, the percentage of faults

effectively located by the proposed approach Ochiai* on the

Siemens test suite programs at the Top-1, Top-5, Top-10,

and Top-15 positions are 20%, 60%, 72%, and 80%,

respectively. As opposed to that, the percentages of faults

located by the classic Ochiai method at the same positions

are 0%, 8%, 28%, and 48%, respectively. In the same way,

Jaccard* locates 8%, 44%, 72%, and 80% of the faults at the

Top-1, Top-5, Top-10, and Top-15 positions, respectively,

while Jaccard can locate only 0%, 4%, 32%, and 56% of the

faults, respectively. Similar to Jaccard*, DStar* is able to

locate 8%, 44%, 72%, and 80% of the faults at the Top-1,

Top-5, Top-10, and Top-15 positions, respectively, while

classic DStar is unable to locate any of the faults at the Top-

1 position, and it can locate only 4%, 24%, and 52% of the

faults at the Top-5, Top-10, and Top-15 positions,

respectively.

Fig. 21. Cumulative number of statements examined to locate faults across all faulty versions of large real-world subject programs used in the

experimental study.

171

53 69

570

87
18 8

205185

61 31

680

85
21 4

236
164 184

50

518

62 68
13

185

0

100

200

300

400

500

600

700

800

flex grep sed space

C
u
m

u
la

ti
v
e

n
u
m

b
er

 o
f

st
at

em
en

ts

ex
am

in
ed

Large real-world subject programs

Ochiai Ochiai* Jaccard Jaccard* DStar DStar*

Fig. 22. Overall cumulative number of statements examined to locate

faults across all faulty versions of subject programs (Siemens and large

real-world programs) utilized in the experimental study.

546

863

230
318

576

957

259
346

505

916

225

328

0

200

400

600

800

1000

1200

Siemens Programs Large real-world

programs

C
u
m

u
la

ti
v
e

n
u
m

b
er

 o
f

st
at

em
en

ts
 e

x
am

in
ed

Subjects used in experimental study

Ochiai Ochiai* Jaccard

Jaccard* DStar DStar*

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Table XXV illustrates a comparison between the

proposed approach and the classical SBFL methods on large

real-world programs using the Top-N metric. The

percentages of faults identified by the Ochiai* at the Top-1,

Top-5, Top-10, and Top-15 positions, are 7%, 27%, 60%,

and 60%, respectively. Conversely, the classic Ochiai

method failed to locate any of the faults at these positions,

as indicated in Table XXV.

If we compare Jaccard* with Jaccard, we find that at the

Top-1 position, both methods are unable to find any of the

faults. However, at the Top-5, Top-10, and Top-15

positions, the Jaccard* can locate 20%, 40%, and 47% of the

faults, respectively. As compared to that, Jaccard is still

unable to locate any of the faults at the Top-5 and Top-10

positions, and is only able to locate 7% of the faults at the

Top-15 position. As indicated in Table XXV, DStar and

Jaccard exhibit nearly identical performances. Both methods

fail to identify any faults at the Top-1, Top-5, and Top-10

positions. At the Top-15 position, both methods can only

detect 7% of the faults. At the Top-1, Top-5, Top-10, and

Top-15 positions, DStar* can locate 7%, 20%, 40%, and

53% of the faults, respectively.

To visually depict the comparison, we include graphical

representations of the performance of the proposed approach

against the classical SBFL methods (Ochiai, Jaccard, and

DStar) using the Top-N metric. Fig. 23 and Fig. 24 illustrate

this comparison on Siemens programs and large real-world

programs, respectively.

It can be observed in more intuitive way by seeing Fig. 23

and Fig. 24 that our proposed approach outperforms the

baseline SBFL methods in locating faults. In other words,

applying the proposed approach to existing SBFL methods

enhances their performance.

TABLE XXIV
COMPARISON OF THE PERFORMANCE BETWEEN THE PROPOSED

APPROACH AND THE TRADITIONAL SBFL METHODS IN TERMS OF TOP-N

METRIC ON SIEMENS PROGRAMS

Approach Percentage of faults identified for each Top-N metric
Top-1 Top-5 Top-10 Top-15 Top-20 Other

Ochiai 0% 8% 28% 48% 64% 36%

Ochiai* 20% 60% 72% 80% 88% 12%

Jaccard 0% 4% 32% 56% 72% 28%
Jaccard* 8% 44% 72% 80% 84% 16%

DStar 0% 4% 24% 52% 60% 40%

DStar* 8% 44% 72% 80% 96% 4%

TABLE XXV

COMPARISON OF THE PERFORMANCE BETWEEN THE PROPOSED

APPROACH AND THE TRADITIONAL SBFL METHODS IN TERMS OF TOP-

N METRIC ON LARGE REAL-WORLD PROGRAMS

Approach Percentage of faults identified for each Top-N metric

Top-1 Top-5 Top-10 Top-15 Top-20 Other

Ochiai 0% 0% 0% 0% 13% 87%

Ochiai* 7% 27% 60% 60% 80% 20%

Jaccard 0% 0% 0% 7% 13% 87%
Jaccard* 0% 20% 40% 47% 60% 40%

DStar 0% 0% 0% 7% 13% 87%

DStar* 7% 20% 40% 53% 73% 27%

Fig. 23. Comparison of performance between conventional SBFL techniques and the proposed approach using the Top-N metric on Siemens programs.

0
% 8

%

2
8

%

4
8

% 6
4

%

3
6

%

2
0

%

6
0

% 7
2

% 8
0

% 8
8

%

1
2

%

0
% 4
%

3
2

%

5
6

% 7
2

%

2
8

%

8
%

4
4

%

7
2

% 8
0

%

8
4

%

1
6

%

0
% 4
%

2
4

%

5
2

% 6
0

%

4
0

%

8
%

4
4

%

7
2

% 8
0

% 9
6

%

4
%

0%

20%

40%

60%

80%

100%

120%

Top-1 Top-5 Top-10 Top-15 Top-20 Other

%
 o

f
fa

u
lt

s
lo

ca
te

d

Top-N metric

Ochiai Ochiai* Jaccard Jaccard* DStar DStar*

Fig. 24. Comparison of performance between conventional SBFL techniques and the proposed approach using the Top-N metric on large real-world

subject programs.

0
%

0
%

0
%

0
%

1
3

%

8
7

%

7
%

2
7

%

6
0

%

6
0

%

8
0

%

2
0

%

0
%

0
%

0
% 7

% 1
3

%

8
7

%

0
%

2
0

%

4
0

% 4
7

% 6
0

%

4
0

%

0
%

0
%

0
% 7

% 1
3

%

8
7

%

7
%

2
0

%

4
0

% 5
3

%

7
3

%

2
7

%

0%

20%

40%

60%

80%

100%

Top-1 Top-5 Top-10 Top-15 Top-20 Other

%
 o

f
fa

u
lt

s
lo

ca
te

d

Top-N metric

Ochiai Ochiai* Jaccard Jaccard* DStar DStar*

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

v. Assessing the efficiency of the proposed approach by

using Wilcoxon Signed-Rank Test

Fault localization research often involves the comparison

of different techniques to determine which one is more

effective at identifying the root cause of a fault. The

Wilcoxon signed-rank test is a statistical test commonly

used in fault localization research to compare the

effectiveness of different techniques. This test is particularly

useful for comparing two related samples, such as two fault

localization techniques applied to the same set of programs.

The Wilcoxon signed-rank test involves ranking the

differences between pairs of observations and determining

whether the median difference is statistically significant. By

using this test, fault localization researchers can evaluate the

effectiveness of different techniques in a statistically sound

manner, and make confident conclusions about the relative

performance of each technique.

To reinforce our experimental results, we utilized the

Wilcoxon signed-rank test as part of our evaluation

methodology. This statistical test has extensive usage in

comparing the efficacy of various methods and has been a

conventional practice in earlier studies concerning fault

localization. By adopting this approach, we can establish the

validity of our conclusions through statistical analysis.

To assess the statistical significance of the difference

between the traditional SBFL methods when employed with

and without our proposed approach, we employ the

Wilcoxon-Signed-Rank Test. This non-parametric statistical

hypothesis test is used to examine the differences between

pairs of measurements.

We conducted Wilcoxon-Signed-Rank tests, utilizing the

ranks of faulty statements as pairs of measurements denoted

as L(x) and M(y). Each test involved a two-tailed p-value

assessment at a significance level (α level) of 0.01.

Specifically, for L(x), we utilized the ranked list of faulty

statements generated through the proposed approach

(Ochiai*, Jaccard*, and DStar*) across all faulty versions of

the subject programs from our experiments, as listed in

Table XIII. For M(y), we used the ranked list of faulty

statements obtained without using the proposed approach

i.e. ranks calculated through the original SBFL methods

(e.g. Ochiai, Jaccard, and DStar) on the same set of faulty

program versions.

If the p-value is less than 0.01, then, in accordance with

the alternative hypothesis (H1), we accept that the

suspiciousness ranks obtained using our proposed approach

tend to be significantly smaller than those obtained without

the proposed approach (i.e. obtained through traditional

SBFL). This indicates that our proposed approach

demonstrates superior effectiveness in comparison to the

traditional SBFL methods. Conversely, if the p-value is

greater than or equal to 0.01, in accordance with the null

hypothesis (H0), we accept that the ranks obtained using our

proposed approach do not significantly differ from those of

the traditional SBFL methods, implying that the proposed

approach does not outperform the established baseline SBFL

methods.

Table XXVI shows the Wilcoxon-Signed-Rank Test

results on this relationship, where the cells show the p

values of Wilcoxon-Signed-Rank Tests. The results show

that when existing SBFL methods use our proposed

approach the ranks of the faulty statements are significantly

smaller than those of baseline SBFL methods not using the

proposed approach. Therefore, the alternative hypothesis is

accepted at a confidence level of 99.99%., indicating that

the proposed approach is more effective than the compared

techniques (existing SBFL methods) in terms of examining

fewer statements to detect faults. The ‘Conclusion’ column

in Table XXVI indicates, that the improved versions of

SBFL methods (Ochiai*, Jaccard*, DStar*), obtained by

applying our proposed approach to the original SBFL

method, exhibit better performance compared to the

traditional SBFL methods.

In summary, the findings obtained through the Wilcoxon

signed-rank test provide strong evidence that the proposed

approach outperforms the compared techniques on the faulty

versions of the subject programs in the Siemens test suite

and the large real-world programs as listed in Table XIII.

Our findings align with our previous conclusion that the

proposed approach outperforms the traditional SBFL

techniques in terms of efficiency, as evidenced by several

metrics such as cumulative number of statements examined,

Top-N, and Exam scores.

vi. Space and time complexity

In this section, we analyze the space and time complexity

of our proposed approach. The input to our fault localization

approach will be a program spectrum, which is a matrix of N

× T, where N is the number of program entities (i.e.,

program statements) and T is the number of test cases.

According to the same problem settings used in Section II-

D, test suite T consists of passing (TP) and failing (TF) test

cases.

The space complexity is largely dependent on the space

requirement to store the program spectrum matrix and the

program execution result vector, which can be specified as

O (N × T) and O (T), respectively.

The time complexity can be determined by analyzing the

time required for optimizing the test suite and computing the

suspiciousness score for each program statement and the

suspiciousness score of its fault context.

The test suite optimization requires primarily the

calculation of the minimum suspiciousness set (MSS) and

finding how closely it matches with the statement execution

coverage of each passing test case (TP) in the test suite (T).

Therefore, execution coverage of each statement against

each passing and failing test case is required. Thus, the time

complexity for the test suite optimization phase can be

TABLE XXVI

WILCOXON SIGNED RANK TEST RESULTS OF THE THREE FAULT

LOCALIZATION TECHNIQUES USING THE PROPOSED APPROACH AND

WITHOUT USING THE PROPOSED APPROACH

Comparison Subjects 2-tailed test

(p values)

Conclusion

Ochiai vs
Ochiai*

Siemens suite 1.29E-05 Better
Large real-world

programs

7.25E-04 Better

Jaccard vs
Jaccard*

Siemens suite 1.92E-05 Better
Large real-world

programs

7.23E-04 Better

Dstar vs
Dstar*

Siemens suite 1.92E-05 Better
Large real-world

programs

7.23E-04 Better

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

expressed as O (N × T).

Furthermore, for our fault localization approach, the time

complexity mainly depends on the computation time

required for both the suspiciousness score of each program

entity (O (N × T)), and the suspiciousness score of its fault

context (O (N × T) + O (N × TF)), and subsequently the time

required to generate the ordered list of suspiciousness ranks

(O (N × log (N))).

vii. Overall observations

It can be concluded that our proposed approach, which

incorporates test suite optimization, statement execution

frequency, and fault context, significantly improves the

accuracy of fault localization when applied to existing SBFL

methods. This hypothesis is validated by the experimental

results that compare the performance of our proposed

approach to the traditional SBFL methods. In this study we

have compared the performance of the proposed approach

with three traditional SBFL methods namely Ochiai, Jaccard

and DStar.

We employed four widely used metrics to assess the

performance of our proposed approach in comparison to the

traditional SBFL methods, Ochiai, Jaccard and DStar. Our

findings indicate that our approach/ framework outperforms

existing SBFL methods. That means, the results illustrate a

notable improvement in fault localization performance when

integrating our proposed approach with existing SBFL

methods.

Subsections II-B, II-C, and II-D demonstrate that the

concepts of test suite optimization, statement execution

frequency, and fault context, respectively, can overcome

certain inherent limitations of SBFL when applied

individually to existing SBFL methods.

Our hybrid approach, as explained in Section III,

capitalizes on these concepts by integrating them to enhance

the efficiency and accuracy of SBFL from a single fault

perspective. The experimental outcomes validate the

superiority of our proposed approach over the current

baseline SBFL methods. Ochiai* demonstrates an average

enhancement of 62.76% in terms of EXAM score on

Siemens suite subjects, while Jaccard* and DStar* show

average improvements of 53.19% and 54.36%, respectively.

Likewise, for large real-world subject programs, the average

improvements are 65.23% for Ochiai*, 65.66% for Jaccard*,

and 68.96% for DStar*.

V. RELATED WORK

In the following section, we will explore the existing

literature on spectrum-based fault localization. This area has

been widely researched and experimented in software

engineering, and many literature reviews have provided an

overview of the current advanced research in this field. In

recent years, numerous studies have been carried out to

enhance the accuracy and effectiveness of SBFL (spectrum-

based fault localization).

In their study, Wong et al. [1] presented a comprehensive

survey of various techniques relevant to software fault

localization. The authors addressed relevant issues and

concerns that are significant to this field, providing readers

with necessary background knowledge and enabling the

application of fault localization techniques that are efficient

and scalable in terms of time and space complexity. Their

study thoroughly examines different issues and concerns

associated with various software fault localization

techniques.

Lei et al. [19] found that there is no significant correlation

between the size of the test suite and the accuracy of fault

localization in a program under testing and debugging.

Furthermore, they analyzed how different segments of test

suites can positively or negatively affect fault localization

performance.

In their work, Perez et al. [20] introduced a new metric

called DDU that aims to enhance adequacy measurements

by evaluating the diagnosability of a test suite. The term

diagnosability refers to the effectiveness of utilizing

spectrum-based fault localization to identify faults in the

code when test failures occur. The authors claim that a

diverse test suite that exercises multiple combinations of

components is more comprehensive than one that solely

aims to maximize code coverage.

In their study, Inozemtseva et al. [21] demonstrated that

there is a weak correlation between the coverage of a test

suite and the effectiveness of fault detection. Their analysis

indicated that the relationship between test suite coverage

and its effectiveness is only moderate to low.

In their work, Xuan et al. [22] introduced a new idea

called "spectrum-driven test case purification" to enhance

fault localization. The primary objective of this approach is

to divide the current test cases into smaller subsets, known

as purified test cases, and refine the test oracles to better

identify faults. By integrating this technique with an existing

fault localization method (such as Tarantula), the program

statements can be ranked more accurately.

In their research, Zakari et al. [29] presented a fault

localization approach called FLCN-S, which employs

complex network theory to enhance the effectiveness of

localizing faults in single-fault programs. This technique

evaluates and prioritizes potentially faulty program

statements by assessing their anomalous behavior and

proximity to one another during failed test executions, using

two network centrality measures (degree centrality and

closeness centrality).

Ju et al. [30] created a fault localization framework that

uses a multivariate logistic regression model. The model

incorporates both static and dynamic features collected from

the program being debugged.

Roychowdhury et al. [31] discovered in their study that

the principles of machine learning's feature selection can be

effectively utilized in fault localization. Their experiments

showed that the lines of code with the most varied feature

information can pinpoint the most dubious statements.

In their study, Shu et al. [32] introduced FLSF, which

improves upon traditional fault localization techniques by

considering statement execution frequency, resulting in

greater reliability and effectiveness compared to Tarantula,

particularly for faults within loop bodies or iteration

statements, as per their experiments.

In their study, Sarhan et al. [33] introduced a novel SBFL

formula that tackles the challenge of ties by giving weight to

the significant number of failing test cases and the low

number of passing ones for a specific code element. This

approach enables straightforward handling of common tie

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

scenarios. Empirical findings indicate that the suggested

formula outperforms three extensively researched SBFL

formulas in terms of average ranking.

To improve the performance of bug localization, Lee et

al. [34] integrated supplementary data into SBFL. They

leveraged the statement execution count data obtained from

program execution and transformed it into program

spectrum properties using a weighted function. By

evaluating different SBFL techniques, they discovered that

incorporating this information resulted in a substantial

enhancement in bug localization performance in comparison

to the conventional approach, which only considers whether

a statement was executed or not during the test execution

(i.e., binary information).

Lun et al. [35] conducted research in the field of software

architecture testing, a critical aspect for ensuring software

quality and dependability. They indicated that achieving

component path coverage stands as a significant benchmark

for evaluating the adequacy of software architecture testing.

They introduced two distinct criteria for component path

coverage, one based on node coverage and the other on edge

coverage. These coverage criteria were found to be effective

in detecting various types of faults within software systems.

The researchers proposed two algorithms for quantifying the

component path coverage rates based on these criteria.

Enhanced interaction among components resulted in higher

path coverage, thus improving the diagnostic capability of

the test suite for identifying faults. Empirical findings from

their study highlighted that the proposed component path

coverage criteria offer a robust framework for practical

software architecture testing and lay a strong foundation for

future research in this domain.

Oo et al. [36] suggested a mutation-based testing

technique to fix object-oriented program errors. This method

identifies the correct repair code within the search space

using the faulty statement's type and the MuJava mutation

system. Initially, program faults are detected by assessing

the suspiciousness of statements. A two-level mutation

system modifies the code, and similar candidates to the

faulty statement type are collected. An ordered list of

potential patches is tested one by one using a test suite until

a valid fix is found. The approach was evaluated using the

Defects4J dataset.

In their survey paper, Wu et al. [37] outlined the process

flow for testing the artificially intelligent systems. Their

study offers an extensive overview of methods used to

isolate faulty behavior in intelligent systems. It summarizes

techniques related to testing coverage metrics, test data

generation, testing approaches, formal verification methods,

and widely used datasets.

Alakeel [38] presented an automated approach to detect

and fix test dependencies in web application test suites. The

technique employs data flow analysis to identify noticeable

test dependencies responsible for test failures and

subsequently automates the repair process for the issues

arising from these dependencies.

Setiadi et al. [39] introduced an algorithm designed to test

concurrent programs efficiently by minimizing the number

of test cases for fault identification. This is achieved by

generating test cases through the analysis of execution

traces, incorporating different interleaving. Redundant test

cases are pruned while maintaining fault detection accuracy.

The algorithm makes use of branch structures and data flows

extracted from execution traces to isolate only those

interleaving that impact branch outcomes. The effectiveness

of the proposed approach was assessed using a suite of

JAVA-based concurrent programs.

Integration testing is significant in identifying errors that

emerge between class interfaces. Given the potentially

numerous interfaces within object-oriented software's

individual classes, conducting testing can prove costly.

Laokok et al. [40] introduced an approach to generate test

cases for integration testing by analyzing the static call

graph. This technique ensures that the produced test cases

traverse all branches within the static call graph at least

once. By extracting data from the source code and

constructing a static call graph that encompasses all class

interfaces, the test cases achieve complete coverage,

encompassing branch scenarios.

VI. THREATS TO VALIDITY

The potential bias of the experimenters poses an internal

validity threat to our proposed approach. To collect program

execution traces, we used manually instrumented programs

and ran them with the instrumentation. However, there is a

risk of bias due to experimenter negligence, such as the

inadvertent skipping or misplacement of certain program

blocks during the instrumentation process.

The presence of external validity threats concerns the

extent to which the experimental findings can be applied to

subjects beyond the subject programs utilized in the study.

In response to such threats we have conducted

experimentation on widely used standard benchmark

Siemens test suite programs and on some real-world

programs which are quite larger in size.

We recognize that there is no empirical study that can be

completely flawless, and that there may be complex

programs and bugs that were not included in our

experiments. In our future work, we intend to expand the

scope of our subjects.

The issue of construct validity threats pertains to whether

the performance metrics employed in empirical studies

accurately depict the real-life scenario. The first threat

relates to the suitability of evaluation metrics used in the

empirical study. Considering this threat, our study employs

four widely recognized metrics, namely Exam score,

Cumulative Number of Statements Examined, Top-N, and

Wilcoxon signed-rank test, to evaluate the effectiveness of

our proposed approach in comparison to the traditional

SBFL approaches. To compare our proposed approach with

the classical SBFL methods, we used the EXAM score

metric to calculate the improvement in the absolute rank of

faulty program entities. Furthermore, we examined the

suitability of the baseline approach in terms of stability and

efficiency, considering the potential threat posed by its use

as a comparison point for our proposed approach. Although

we have used three popular and most studied approaches i.e.

Ochiai, Jaccard and DStar as a benchmark for comparison

with the proposed approach, in future we also intend to use

other similarity coefficient metrics for a more

comprehensive comparative analysis.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

VII. CONCLUSION

In this paper, we have introduced a hybrid approach that

aims to improve the accuracy and efficiency of spectrum-

based software fault localization in single fault scenarios.

The approach consists of the following major steps. Firstly,

the test suite to be used in the fault localization process is

optimized using passing test discrimination based approach.

In the second step, the execution count of each statement is

calculated with respect to each test case in the test suite. A

frequency weighting function, specifically an adapted

sigmoid function, is used to transform the statement

execution frequency count to a normalized real value within

the range of 0 and 1. Then, in the third step, the

suspiciousness of each statement is calculated using one of

the SBFL similarity coefficient metric (e.g., Ochiai, Jaccard,

DStar, etc.). Here, the SBFL formula utilizes the normalized

frequency count, instead of the binary coverage information

(0 or 1) for the calculation of suspiciousness scores. Next,

fault context for each program statement is generated in

each failed execution, and then its suspiciousness score is

calculated. Finally, a new improved fault rank list is

generated based on the suspiciousness of a statement and its

fault context.

The study conducted an empirical analysis on two

standard benchmarks, namely the Siemens test suite and

large real-world subject programs (flex, grep, sed, and

space). The experimental results revealed that the proposed

approach/ framework outperforms the traditional SBFL

techniques in single fault perspective. The experimental

results validate the effectiveness of our proposed approach

compared to the existing baseline SBFL methods.

Specifically, the Ochiai* technique demonstrates an average

improvement of 62.76% in terms of EXAM score across

Siemens suite subjects. Similarly, the Jaccard* and DStar*

methods exhibit average improvements of 53.19% and

54.36%, respectively. Likewise, when examining large real-

world programs, the average improvements are 65.23% for

Ochiai*, 65.66% for Jaccard*, and 68.96% for DStar*.

Here, the term ‘improvement’, refers to the average

reduction in the number of examined statements

(developer's effort) by the specified percentage. For

example, the Ochiai* method achieving a 62.76%

improvement implies that developers, on average, need to

examine 62.76% fewer statements to locate faults across the

faulty versions of Siemens programs utilized in the

experimental study.

Our approach considerably reduces the developer’s effort

in locating the faults, for example, our approach when

applied to classic Ochiai (denoted as Ochiai*), identifies

52% of the faults in Siemens and 60% of the faults in large

real-world programs by examining less than or equal to 1%

and 0.1% of the code, respectively. In contrast, the classic

Ochiai method is unable to locate any of the faults by

examining the same percentages of codes.

Furthermore, in terms of the Top-N evaluation metric,

applying our approach to existing Ochiai, Jaccard, and

DStar methods on Siemens programs leads to fault

identification percentages of 60%, 44%, and 44%,

respectively within the Top-5 positions. In contrast, without

applying our approach, these methods only manage to locate

8%, 4%, and 4% of faults in the same scenario. Similarly,

for large real-world programs, our approach applied to

existing Ochiai, Jaccard, and DStar methods results in fault

identification percentages of 27%, 20%, and 20%,

respectively within the Top-5 positions. In contrast, without

applying our approach, these traditional SBFL methods fail

to identify any faults at the Top-5 position.

We also performed statistical tests (Wilcoxon signed-rank

test) to justify the significance of the improved fault

localization performance achieved with our proposed

approach, in comparison to traditional SBFL techniques.

These results indicate that our proposed approach achieves a

substantial improvement over the classical SBFL

approaches, and therefore can effectively improve the

performance and accuracy of existing SBFL techniques.

Our research outcomes provide a new perspective on fault

localization and open up interesting directions for future

exploration. In future work, we intend to extend our

approach to locate multiple faults. Additionally, we plan to

investigate the efficacy of our technique on diverse subject

programs written in various programming languages, such

as Java and Python, in order to provide further evidence for

our assertions. Further research is also necessary to establish

a fault-context structure that facilitates a deeper

comprehension of the underlying cause of failure, ultimately

enhancing the accuracy of fault ranking.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on

software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,

pp. 707–740, 2016.
[2] Amol Saxena, Roheet Bhatnagar, and Devesh Kumar Srivastava,

"Software Fault Localization: Techniques, Issues and Remedies,"

IAENG International Journal of Computer Science, vol. 49, no.2,
pp299-317, 2022.

[3] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software

Fault Localization: A survey of techniques, advances, and
challenges,” arXiv [cs.SE], 2016.

[4] H. Cleve and A. Zeller, “Locating causes of program failures,” in

Proceedings of the 27th international conference on Software
engineering - ICSE ’05, 2005, pp.342-351.

[5] R. Gao and W. E. Wong, “MSeer—an advanced technique for

locating multiple bugs in parallel,” IEEE Trans. Softw. Eng., vol. 45,
no. 3, pp. 301–318, 2019.

[6] A. S. Namin, "Statistical Fault Localization Based on Importance

Sampling," 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), Miami, FL, USA, 2015, pp. 58-

63, doi: 10.1109/ICMLA.2015.91.

[7] S. Parsa, M. Vahidi-Asl, and M. Asadi-Aghbolaghi, “Hierarchy-
Debug: a scalable statistical technique for fault localization,” Softw.

Qual. J., vol. 22, no. 3, pp. 427–466, 2014.

[8] F. Wotawa, M. Nica, and I. Moraru, “Automated debugging based on
a constraint model of the program and a test case,” J. Log. Algebr.

Program, vol. 81, no. 4, pp. 390–407, 2012.

[9] W. Zheng, D. Hu, and J. Wang, “Fault localization analysis based on
deep neural network,” Math. Probl. Eng., vol. 2016, pp. 1–11, 2016.

[10] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham,

“Effective software fault localization using an RBF neural
network,”IEEE Trans. Reliab., vol. 61, no. 1, pp. 149–169, 2012.

[11] R. Abreu, P. Zoeteweij and A. J. c. Van Gemund, "An Evaluation of
Similarity Coefficients for Software Fault Localization," 2006 12th

Pacific Rim International Symposium on Dependable Computing

(PRDC'06), Riverside, CA, USA, 2006, pp. 39-46, doi:
10.1109/PRDC.2006.18.

[12] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula

automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software

Engineering, 2005, pp. 273–282.

[13] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox and E. Brewer, "Pinpoint:
problem determination in large, dynamic Internet services,"

Proceedings International Conference on Dependable Systems and

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

Networks, Washington, DC, USA, 2002, pp. 595-604, doi:

10.1109/DSN.2002.1029005.
[14] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for

effective software fault localization,” IEEE Trans. Reliab., vol. 63,

no. 1, pp. 290–308, 2014.
[15] R. Abreu, P. Zoeteweij and A. J. C. v. Gemund, "Localizing Software

Faults Simultaneously," 2009 Ninth International Conference on

Quality Software, Jeju, Korea (South), 2009, pp. 367-376, doi:
10.1109/QSIC.2009.55.

[16] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Simultaneous

debugging of software faults,” J. Syst. Softw., vol. 84, no. 4, pp. 573–
586, 2011.

[17] E. Wong, T. Wei, Y. Qi and L. Zhao, "A Crosstab-based Statistical

Method for Effective Fault Localization," 2008 1st International
Conference on Software Testing, Verification, and Validation,

Lillehammer, Norway, 2008, pp. 42-51, doi: 10.1109/ICST.2008.65.

[18] A. Saxena, R. Bhatnagar and D. K. Srivastava, "Improving
Effectiveness of Spectrum-based Software Fault Localization using

Mutation Testing," 2021 2nd International Conference for Emerging

Technology (INCET), Belagavi, India, 2021, pp. 1-7, doi:
10.1109/INCET51464.2021.9456109.

[19] Y. Lei, C. Sun, X. Mao, and Z. Su, “How test suites impact fault

localisation starting from the size,” IET Softw., vol. 12, no. 3, pp.

190–205, 2018.

[20] A. Perez, R. Abreu and A. van Deursen, "A Test-Suite Diagnosability

Metric for Spectrum-Based Fault Localization Approaches," 2017
IEEE/ACM 39th International Conference on Software Engineering

(ICSE), Buenos Aires, Argentina, 2017, pp. 654-664, doi:
10.1109/ICSE.2017.66.

[21] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated

with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 435-445,

https://doi.org/10.1145/2568225.2568271

[22] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering,

2014, pp.52-63 https://doi.org/10.1145/2635868.2635906
[23] A. Saxena, R. Bhatnagar, and D. Kumar Srivastava, “Effective

lightweight software fault localization based on test suite

optimization,” in 15th Innovations in Software Engineering
Conference,2022, pp.1–10. https://doi.org/10.1145/3511430.3511437

[24] T.-D. B. Le, D. Lo, and F. Thung, “Should I follow this fault

localization tool’s output?: Automated prediction of fault localization

effectiveness,” Empir. Softw. Eng., vol. 20, no. 5, pp. 1237–1274,

2015.

[25] Y. Wang, Z. Huang, Y. Li, and B. Fang, “Lightweight fault
localization combined with fault context to improve fault absolute

rank,” Sci. China Inf. Sci., vol. 60, no. 9, 2017.

[26] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its

potential impact,” Empir. Softw. Eng., vol. 10, no. 4, pp. 405–435,

2005.
[27] R. Abreu, P. Zoeteweij and A. J. C. van Gemund, "On the Accuracy

of Spectrum-based Fault Localization," Testing: Academic and

Industrial Conference Practice and Research Techniques -
MUTATION (TAICPART-MUTATION 2007), Windsor, UK, 2007,

pp. 89-98, doi: 10.1109/TAIC.PART.2007.13.

[28] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-
based fault localization using PageRank,” in Proceedings of the 26th

ACM SIGSOFT International Symposium on Software Testing and

Analysis,2017,pp. 261-272, https://doi.org/10.1145/3092703.3092731
[29] A. Zakari, S. P. Lee, and I. A. T. Hashem, “A single fault localization

technique based on failed test input,” Array (N. Y.), vol. 3–4, no.

100008, p. 100008, 2019.
[30] X. Ju, J. Qian, Z. Chen, C. Zhao, and J. Qian, “Mulr4FL: Effective

fault localization of evolution software based on multivariate logistic

regression model,” IEEE Access, vol. 8, pp. 207858–207870, 2020.
[31] S. Roychowdhury and S. Khurshid, “Software fault localization using

feature selection,” in Proceedings of the International Workshop on

Machine Learning Technologies in Software Engineering, 2011, pp
11-18, https://doi.org/10.1145/2070821.2070823

[32] T. Shu, T. Ye, Z. Ding, and J. Xia, “Fault localization based on

statement frequency,” Inf. Sci. (Ny), vol. 360, pp. 43–56, 2016.
[33] Q. I. Sarhan and Á. Beszédes, "A Survey of Challenges in Spectrum-

Based Software Fault Localization," in IEEE Access, vol. 10, pp.

10618-10639, 2022, doi: 10.1109/ACCESS.2022.3144079.
[34] H. J. Lee, L. Naish and K. Ramamohanarao, "Effective Software Bug

Localization Using Spectral Frequency Weighting Function," 2010
IEEE 34th Annual Computer Software and Applications Conference,

Seoul, Korea (South), 2010, pp. 218-227, doi:

10.1109/COMPSAC.2010.26.
[35] Lijun Lun, Xin Chi, and Hui Xu, "Coverage Criteria for Component

Path-oriented in Software Architecture," Engineering Letters, vol. 27,

no.1, pp40-52, 2019.
[36] Cherry Oo, and Hnin Min Oo, "Automatic Program Repair of Java

Single Bugs using Two-level Mutation Operators," IAENG

International Journal of Computer Science, vol. 47, no.2, pp223-233,
2020.

[37] Tingting Wu, Yunwei Dong, Zhiwei Dong, Aziz Singa, Xiong Chen,

and Yu Zhang, "Testing Artificial Intelligence System Towards
Safety and Robustness: State of the Art," IAENG International

Journal of Computer Science, vol. 47, no.3, pp449-462, 2020.

[38] Ali M. Alakeel, "Dependency Detection and Repair in Web
Application Tests," IAENG International Journal of Computer

Science, vol. 49, no.2, pp369-384, 2022.

[39] Theodorus E. Setiadi, Akihiko Ohsuga, and Mamoru Maekawa,
“Efficient Execution Path Exploration for Detecting Races in

Concurrent Programs,” IAENG International Journal of Computer

Science, vol. 40, no. 3, pp143-163, 2013.
[40] Sitdhibong Laokok, and Taratip Suwannasart, "An Approach for Test

Case Generation from a Static Call Graph for Object-Oriented

Programming," Lecture Notes in Engineering and Computer Science:

Proceedings of The International MultiConference of Engineers and

Computer Scientists 2017, 15-17 March, 2017, Hong Kong, pp545-

549.

Amol Saxena is a PhD candidate of Department of Computer Sc. &

Engineering, SCSE, Manipal University Jaipur, Jaipur, Rajasthan, India

(303007). He possesses a master's degree in computer science and

engineering, along with a degree of master of computer applications. He is

working as an Assistant Professor at Department of Information

Technology, Poornima College of Engineering, Jaipur, Rajasthan, India

(302022). His research focus is on automated software engineering,

software reliability, software fault localization, software testing &

debugging and data mining. His other areas of interest include databases,

big data analytics, artificial intelligence, software engineering, object

oriented technologies, computer networks and operating systems.

Dr. Roheet Bhatnagar is a Professor of Computer Sc. & Engineering

Department, SCSE, and Director, Directorate of Research, Manipal

University Jaipur, Jaipur, Rajasthan, India (303007). He received PhD in

Computer Sc. & Engineering from Sikkim Manipal University, Sikkim,

India in 2011. He has a total 26 years of experience in the areas of teaching,

research and administration. He is associated with Manipal University

Jaipur since 2012 and with Manipal Group since 2008. His areas of

interests include Database, Data Mining, Big Data Analytics, Soft

Computing, Machine Learning, Software Engineering, GIS, and Remote

Sensing.

He has published or co-authored more than 80 research papers in various

indexed journals and conferences of International repute. Additionally, he

has chaired several technical sessions in various prestigious national and

international conferences and is a reviewer of a number of reputed

international journals.

Dr. Bhatnagar is a senior member of IEEE, life members of Indian Society

of Technical Education and Indian Society of Remote Sensing, and member

of Computer Society of India.

Dr. Devesh Kumar Srivastava is a Professor at Department of

Information Technology, SIT, Manipal University Jaipur, Jaipur, Rajasthan,

India (303007). He received PhD in Software Engineering from
Uttarakhand Technical University, Dehradun, India in 2012. He has a total

23 years of experience in the areas of teaching, research and administration.

He is associated with Manipal University Jaipur since August-2012 where
he was promoted as a Professor in August 2016. His areas of interests

include Software Engineering, Data Mining, Machine Learning and Cloud

Computing.
He has contributed to over 100 research papers published in Scopus/ Web

of Science/ SCI indexed Journals and conferences proceedings.

Furthermore, he has chaired 42 technical sessions in various prominent
national and international conferences. He was invited as keynote speaker

in FDPs and in the conferences. He is a reviewer of several reputed

international journals. He supervised six PhD scholars, many PG/ UG
scholars for their project.

Dr. Srivastava is a professional members of IEEE, IAENG (Software

Engineering) and senior member of ACM.

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

__

