
 

Abstract—Locating software faults during debugging is 

crucial yet challenging. Automated techniques, such as 

spectrum-based fault localization (SBFL), aid developers in 

efficiently localizing faults by analyzing program execution 

information and utilizing statistical approaches to rank 

program entities according to their suspiciousness. SBFL is 

also known as lightweight fault localization because of its 

scalability and minimal computational overhead. While 

essential, there has been limited research on how test suites 

affect fault localization. In this paper, we show how test suites 

impact fault localization and how they can be optimized for 

better results. SBFL techniques have some inherent limitations, 

especially in diagnosing faults within loop bodies or iteration 

statements. Additionally, identical suspiciousness levels can 

result in ties. While SBFL techniques effectively rank faulty 

program entities among the Top-N suspicious entities, they 

might not consistently position the faulty entity within the 

initial few positions. To address these research gaps, this paper 

proposes a hybrid approach that combines test suite 

optimization, statement execution frequency, and fault context 

concepts to enhance the performance of existing SBFL 

techniques in single fault scenarios. We evaluate our approach 

using three popular SBFL methods (Ochiai, Jaccard, and 

DStar) on Siemens benchmarks and four large real-world 

programs (flex, grep, sed, and space) with their test suites. The 

results demonstrate a significant enhancement in fault 

localization performance when applying our proposed 

approach to existing SBFL methods. For example, when 

applied to Ochiai, it reduces examined statements by 62.76% 

and 65.23% on average for the two test suites, respectively. 

Furthermore, it identifies 52% of faults by examining only 1% 

or less of the code and locates 60% of faults by analyzing only 

0.1% or less of the code in Siemens and four large real-world 

programs, respectively. Similar improvements are observed 

when our approach is applied to Jaccard and DStar methods 

on the same test suites. We also show that our results are 

statistically significant, validating that our approach 

substantially improves the performance of existing SBFL 

techniques. 

 

Index Terms—fault context, program spectrum, spectrum-

based fault localization, statement execution frequency, 

suspiciousness, testing and debugging, test suite optimization. 
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I. INTRODUCTION 

oftware is becoming increasingly large and complex as a 

result of its widespread use and adoption. Software plays 

a critical role in various safety-critical systems in industries 

such as healthcare, defense, aviation, nuclear energy and so 

on. However, faults in software are inevitable, and the rapid 

growth and intricate nature of software systems have 

resulted in more faults leading to software failures, resulting 

in substantial losses [1], [2]. Testing and debugging are 

crucial activities in the software development process but 

are generally very costly. They can account for up to 75% of 

the total software development costs [3]. The process of 

testing and debugging involves three steps: first, identifying 

the scenarios in which a program fails, second, locating the 

faults responsible for program failures, and third, fixing the 

faults. The second process is the most difficult, tedious, and 

costly in terms of the developer’s time and effort [4], [5]. In 

software engineering literature this second process is 

popularly known as software fault localization. Fault 

localization can be defined as detecting and identifying the 

locations of faults in software systems. In this process, the 

programs are executed with predefined test cases, and 

execution information is utilized to locate faults. Earlier the 

process of fault localization was carried out manually and 

was known to be a very tedious, time consuming and 

prohibitively expensive, especially in case of large scale and 

complex software systems. The manual fault localization 

also depends on the expertise, experience and judgment of 

the developer who is performing the debugging task. 

Automated fault localization techniques have emerged as a 

solution to the drawbacks of manual fault localization 

methods, as they require minimal or no human intervention 

to locate faults.  

Over the past few decades, researchers have introduced 

numerous automated software fault localization techniques. 

These techniques include spectrum-based methods, 

statistics-based approaches [6], [7], model-based methods 

[8], machine learning-based techniques [9], [10], slice-based 

methods, and program state-based approaches. These 

automated techniques improve software quality, reliability, 

and reduce delivery time.  Spectrum-based fault localization 

(SBFL), according to recent studies, is the most widely used 

and effective technique due to its superior scalability and 

low computational overhead [11] characteristics. Due to 

these reasons SBFL is also referred to as lightweight fault 

localization in the software engineering literature. 

Moreover, SBFL can be used to locate faults with little or no 
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knowledge of the semantics of the program being debugged. 

The objective of this paper is to introduce a framework that 

enhances the precision and efficiency of lightweight 

software fault localization (i.e. SBFL), specifically in a 

single fault scenario. Typically, a program consists of 

various entities, including statements, statement blocks, 

predicates, and methods. However, this study concentrates 

solely on isolating faults in program statements when only 

one fault is present. Therefore, whenever the term program 

entity is used in this paper, it should be interpreted as 

referring to program statements, unless stated otherwise.  

Test suites are essential, as they drive program execution 

and enable the collection of program spectrum information 

for initiating the fault localization process. However, prior 

studies have not given enough emphasis on the adequacy of 

test suites in this context. Our study improves fault 

localization performance by using optimized test suites. 

Current SBFL techniques have limitations in accurately 

diagnosing faults, especially in loops and iterations, as they 

only consider whether a statement is executed or not. 

Additionally, identical suspiciousness levels can result in 

ties. To address these issues, we incorporate statement 

execution frequency information into the SBFL. While 

SBFL techniques effectively rank faulty program entities 

among the Top-N suspicious entities, they might not 

consistently position the faulty entity within the initial few 

positions. To enhance the prioritization of faulty program 

entities, this paper proposes incorporating the concept of 

fault context into SBFL. 

To address the above mentioned limitations of traditional 

SBFL techniques, we propose a hybrid approach that 

combines the concepts of test suite optimization, statement 

execution frequency, and fault context concepts to improve 

the effectiveness of existing SBFL techniques in single fault 

scenarios. In order to evaluate our proposed approach, we 

conducted a thorough empirical study on two benchmark 

test suites: Siemens and large programs (flex, grep, sed, and 

space), comparing its performance with the existing classic 

SBFL techniques. We employ four metrics to assess the 

efficacy of the proposed approach in comparison to the 

traditional SBFL methods. The four metrics utilized are 

Exam Score, Cumulative Number of Statements Examined, 

Top-N, and Wilcoxon Signed-Rank Test. Our results 

demonstrate that the proposed approach outperforms 

existing SBFL methods in most of the cases. Our approach 

on average reduces examined statements by 62.76% for 

Siemens programs and 65.23% for large real-world 

programs when applied to classic Ochiai. It detects 52% of 

the faults in Siemens and 60% of the faults in large real-

world programs by analyzing less than or equal to 1% and 

0.1% of the code, respectively, outperforming existing 

classic Ochiai method. Furthermore, the proposed approach 

achieves better Top-N results as it locates 20% of the faults 

at top-1, 60% of the faults at top-5 positions for Siemens 

programs, similarly 7% of the faults at top-1 and 27% of the 

faults at top-5 positions for large real-world programs. We 

also test our proposed approach on two other SBFL 

techniques, Jaccard and DStar, and find that it significantly 

improves fault localization effectiveness for both the 

techniques. The main contribution of this paper can be 

summarized as follows. 

1. This paper investigates how test suites impact fault 

localization and how they can be optimized for 

improved software fault localization performance. 

2. To address the inherent limitations of existing 

spectrum-based fault localization (SBFL) techniques, 

such as ties in the ranking of statements with the same 

suspiciousness scores and inaccurate diagnoses of faults 

occurring within loop bodies or iteration statements, we 

propose incorporating the concept of statement 

execution frequency into SBFL. 

3. To demonstrate how the combination of fault context 

with spectrum-based fault localization can enhance the 

accuracy of identifying faulty program entities, 

resulting in an improved absolute rank of such entities. 

4. We propose a hybrid approach that combines test suite 

optimization, statement execution frequency, and fault 

context concepts to enhance the effectiveness of 

spectrum-based software fault localization in single 

fault scenarios. We evaluate its effectiveness on the 

Siemens benchmark and four large real-world programs 

(flex, sed, grep, and space). The results demonstrate that 

the proposed approach significantly improves the 

performance of existing SBFL techniques. 

The subsequent sections of the paper are structured as 

follows. Section II highlights the background information 

necessary for a comprehensive understanding of the research 

context. Section II-A introduces the lightweight (or 

spectrum-based) fault localization techniques. Section II-B 

explains test suite optimization process and how optimized 

test suites can be used to improve the performance of 

lightweight fault localization. Section II-C describes how 

statement execution frequency information can be 

incorporated into SBFL formulas to address some of the 

inherent issues associated with SBFL. Section II-D explains 

the concept of fault context, which can be combined with 

SBFL techniques to further improve the absolute rank of 

faulty program entities. Motivational examples are provided 

to illustrate each of the concepts discussed in subsections II-

B, II-C, and II-D. Section III presents our proposed 

approach/framework with the help of a motivational 

example. Section IV presents the empirical study, covering 

research questions, experimental setup, evaluation metrics, 

results, and discussions. The related literature review is 

provided in Section V, and threats to validity is summarized 

in Section VI. Section VII concludes the paper highlighting 

the scope of the future work. 

II. BACKGROUND AND MOTIVATION 

The aim of this paper is to improve the effectiveness and 

precision of conventional spectrum-based fault localization 

(SBFL) methods. This section presents a fundamental 

introduction to SBFL, also referred to as lightweight 

software fault localization (LFL). To gain a better 

understanding of the methodology proposed in this paper, 

we elaborate on how the ideas of test suite optimization, 

statement execution frequency, and fault context can be 

utilized to enhance the accuracy and effectiveness of 

lightweight software fault localization from a single fault 

perspective. Motivational working examples have been used 

to illustrate all these concepts. 
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A. Lightweight Software Fault Localization 

In the domain of fault localization research, spectrum-

based fault localization (SBFL) is frequently termed as 

lightweight software fault localization due to its 

advantageous features of minimal computational overhead 

and strong scalability. In this paper, the terms SBFL and 

lightweight software fault localization (LFL) are utilized 

interchangeably. 

SBFL employs program spectrum information, which is 

dynamically collected when the program under debugging is 

executed with predefined test cases. The program spectrum 

is built from the dynamic coverage information acquired 

from the test execution results of the faulty program and the 

corresponding test results (passed/ failed). A program is said 

to be passed when it gives the expected results, and is 

considered as failed otherwise. A program statement is said 

to be hit when it gets executed in the testing process. This 

statement hit information or statement coverage information 

collected from the execution of a program with several test 

cases is called the statement hit spectra. The correlation 

between the test results (passed/ failed) and statement hit 

spectra is utilized by the SBFL in order to locate the fault.  

SBFL techniques employ formulas based on similarity 

coefficients to determine the suspiciousness of program 

statements, which indicates the likelihood of those 

statements being faulty. These methods operate on the 

fundamental concept that if the execution pattern of a 

statement is similar to that of failed test cases, the statement 

is more likely to be faulty and thus more suspicious. 

Conversely, if the execution pattern of a statement differs 

from the failed test cases' execution pattern, the statement is 

considered less suspicious. These techniques use similarity 

coefficient-based methods to measure the degree of 

similarity between the statement's execution pattern and the 

failed test cases, which is then used to determine the 

statement's suspiciousness. 

A debugging report that contains statements ranked in 

descending order according to their suspiciousness scores is 

generated to perform fault localization. In response to this 

perception, researchers have proposed a number of metrics 

based on similarity coefficients that calculate program 

statement suspiciousness scores. Examples include 

Tarantula [12], Ochiai [11], Jaccard [13], DStar [14], Zoltar-

S [15], [16], Crosstab [17] etc. These metrics, which are 

based on similarity coefficients, are also known as ranking 

metrics or ranking heuristics. In essence, these are statistical 

formulas that compute the suspiciousness of statements in 

the faulty program using program spectrum information. 

We now formally define the process of spectrum-based 

fault localization. Consider a faulty program P, and let S= 

{S1, S2, …, SN} represent its statements and T={T1, T2, …, 

TM}is the test suite, which has M test cases. Fig. 1 shows a 

two dimensional matrix of size (N+1) × M, which represents 

the program spectrum. This program spectrum is the input to 

the SBFL process. An element Eij has a value of 1 if test 

case Ti covers the statement Sj, otherwise it has a value of 0. 

The last row of the matrix is the result vector R, which 

represents the execution result in terms of pass (P) or fail (F) 

of the program P when run with test case Ti, where i=1 to 

M. When test Ti fails, result Ri is 1 (or F), but if Ti passes 

(i.e. gives the expected output), result Ri is 0 (or P) (or vice 

versa). The value of each statement Si's suspiciousness is 

shown in the table's last column. The higher the 

suspiciousness value, the more likely it is that the statement 

is faulty.  

SBFL utilizes the comparison of the statement vector and 

result vector in the matrix shown in Fig. 1 to determine the 

suspiciousness of a given statement. To simplify similarity 

calculations, SBFL defines the statistical variables outlined 

as follows. NCF stands for the test cases count that cover a 

statement and also result in failure, whereas NUF represents 

the count of test cases that fail without covering a statement. 

On the other hand, NCS stands for the test cases count that 

both pass and cover a statement, while NUS represents the 

test cases count that pass but do not cover a statement. 

Furthermore, the counts of test cases that cover and do not 

cover a statement are denoted by NC and NU, respectively. 

NS and NF, on the other hand, refer to the total number of 

passing and failing test cases, respectively. These statistical 

variables have been used to propose several similarity 

coefficient based metrics/formulas by researchers in past 

years. Some of them are given below in Table I. 

 
Fig. 1.  Input to SBFL (Program Spectrum) 

TABLE I 

SPECTRUM-BASED FAULT LOCALIZATION TECHNIQUES 

Sr. 

No. 
Coefficient Formula (Algebraic Form) 

1 Tarantula 

𝑁𝐶𝐹

𝑁𝐹

𝑁𝐶𝐹

𝑁𝐹
+ 

𝑁𝐶𝑆

𝑁S

 

   

2 Jaccard 
𝑁𝐶𝐹

𝑁𝐶𝐹 + 𝑁𝑈𝐹 + 𝑁𝐶𝑆

 

   

3 Ochiai 
𝑁𝐶𝐹

√𝑁F x  (𝑁𝐶𝐹 + 𝑁𝐶𝑆)
 

   

4 DStar† 
(𝑁𝐶𝐹)∗

𝑁𝐶𝑆 + 𝑁𝑈𝐹 

 

   

5 Kulczynski 
𝑁𝐶𝐹

 𝑁𝑈𝐹 + 𝑁𝐶𝑆

 

   

6 Dice 
2𝑁𝐶𝐹

 𝑁𝐶𝐹 + 𝑁𝑈𝐹 + 𝑁𝐶𝑆

 

   

7 Ample 
𝑁𝐶𝐹

 𝑁𝐶𝐹 + 𝑁𝑈𝐹

− 
𝑁𝐶𝑆

 𝑁𝐶𝑆 + 𝑁𝑈𝑆

 

   

8 Anderberg 
𝑁𝐶𝐹

 𝑁𝐶𝐹 + 2(𝑁𝑈𝐹 + 𝑁𝐶𝑆)
 

   

9 Zoltar 

𝑁𝐶𝐹

𝑁𝐶𝐹 +  𝑁𝑈𝐹 + 𝑁𝐶𝑆 +
10000 𝑥 𝑁𝑈𝐹 𝑥 𝑁𝐶𝑆 

𝑁𝐶𝐹

 

† In our experiments, we consider the value of * = 2, as that value is 
thoroughly investigated in the fault localization literature [14]. 
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B. Test Suite Optimization 

Because the program spectrum information is 

dynamically collected by running the faulty program with 

the necessary input supplied through individual test cases of 

a test suite, the accuracy and efficiency of fault localization 

largely depend on the test suite being used in the fault 

localization process. As part of the fault localization 

process, this dynamic program spectrum data is analyzed (in 

our case SBFL). The majority of fault localization studies do 

not much emphasize on test suite sufficiency in terms of its 

capability to increase fault localization effectiveness. 

Investigating the relation between test suites and fault 

localization is therefore important. Past researches show that 

in order to enhance the fault localization efficiency the 

concept of optimized test suites was used by very few 

findings, although many studies have suggested ways to 

enhance fault localization performance by other means [18]–

[22]. The effectiveness of fault localization was examined 

by Yan Lei et al. [19] in relation to the positive or negative 

impact of various test suite components. In this case, a 

positive impact indicates an improvement in the fault 

localization effectiveness, whereas a negative impact 

indicates a reduction in the fault localization accuracy. 

As per their investigation, the accuracy of identifying 

faults in a program is negatively impacted by faulty 

statements that are executed by passing test cases within a 

test suite. Contrarily, faulty program entities (i.e., statements 

in our study) that are not executed by passing test cases have 

a positive effect on the suspiciousness rank of those program 

entities, which in turn enhances fault localization 

performance. The performance of fault localization, 

however, always increases when a test suite includes failing 

test cases. The passing test cases of a test suite are largely 

responsible for the variations in SBFL performance, as they 

occasionally execute the faulty statement (Sf) and 

occasionally do not. The final ranking of Sf is negatively 

affected if passing test cases exercise (execute) the Sf 

because in that case the suspiciousness of Sf is reduced. In 

their work, Yan Lei et al. [19] introduced a measure known 

as Passing Test Discrimination (PTD) to evaluate the 

comparative efficiency of two test suites in enhancing the 

suspiciousness of faulty statements. PTD is calculated as the 

ratio of the number of test cases that pass in a test suite but 

do not execute the faulty statement to the overall count of 

passing test cases. As a result, PTD can be utilized as an 

indicator to assess how well a test suite can detect faults in a 

program. It is recommended to strive for a relatively high 

PTD during the creation of a test suite to enhance fault 

localization accuracy. 

The PTD of a test suite T can be increased by the use of a 

straightforward heuristic explained as follows [23]. Consider 

S as a set of statements that includes all those statements 

executed by all failing test cases of a test suite T. Suppose t 

is a passing test case, and if t executes most of the 

statements in S, then there is a high probability that t will 

execute the faulty statement. So, from T, we may remove a 

test case t if there is a high similarity between the set of 

statements executed by t and S. Therefore, in this way, with 

the application of PTD metric, an existing test suite can be 

optimized, or a new optimized test suite can be created with 

a sufficiently high PTD score and effectively used in the 

fault localization process. 

In the following paragraph we formally explain the above 

heuristic. A passing test case can be removed from the test 

suite if it is likely to execute a statement that is faulty. To 

identify such passing test cases, dynamic statement coverage 

information (program spectrum) is utilized from test cases 

that give failing results. The fundamental idea is that when 

the statement execution coverage of a successful test case 

closely matches that of the unsuccessful test cases (or 

failing) in the test suite, there is a greater likelihood that the 

successful test case will run (or cover) a faulty statement. A 

heuristic as explained below can be employed to determine 

the degree of similarity between passing and failing test 

cases. The minimum suspicious set (MSS) is the collection 

of statements covered by all the failed test cases, and the 

heuristic employs this concept. Due to the fact that the faulty 

statement is responsible for the failure of a test case, it 

makes sense that the MSS contains the faulty statement. 

Now suppose t is a passing test case and S is the set of 

statements executed by t, and if there is a much similarity 

between S and MSS that is |𝑆 ∩ 𝑀𝑆𝑆|/|𝑀𝑆𝑆|  >  𝛼, where 

TABLE II 

ILLUSTRATION OF FAULT LOCALIZATION WITH RANDOM TEST SUITE (TESTSUITE-1) 

Stmt. 

No. 

Program T1 T2 T3 T4 T5 T6 NCF NCS Susp. 

(Ochiai) 

Susp. 

Rank 

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 3 3 0.71 3 

S2 {   char strch[100]; 0 0 0 0 0 0 0 0 0.00 13 

S3     int alpha, digit, ch, i; 0 0 0 0 0 0 0 0 0.00 13 

S4     alpha = digit = ch = i = 0;    1 1 1 1 1 1 3 3 0.71 3 

S5     strcpy(strch,argv[1]); 1 1 1 1 1 1 3 3 0.71 3 

S6     while(strch[i]!='\0') 1 1 1 1 1 1 3 3 0.71 3 

S7     {   if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' && 
strch[i]<='Z')) 

1 1 1 1 1 1 3 3 0.71 3 

S8             alpha++; 0 1 1 1 1 1 3 2 0.77 2 

S9  else if(strch[i]>'0' && strch[i]<='9')  //correct strch[i]>='0' 1 1 1 1 1 1 3 3 0.71 3 

S10             digit++; 0 0 0 1 1 0 2 0 0.82 1 

S11         else 0 0 0 0 0 0 0 0 0.00 13 

S12             ch++; 1 1 1 1 1 1 3 3 0.71 3 

S13         i++;} 1 1 1 1 1 1 3 3 0.71 3 

S14     printf("Alphabets =%d Digits=%d Special characters = %d", 
alpha,digit,ch); 

1 1 1 1 1 1 3 3 0.71 3 

S15 } 1 1 1 1 1 1 3 3 0.71 3 

 Result (Pass=P, Fail=F) P P P F F F       
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𝛼 is a threshold; then t can be removed as we believe that 

there is a certain probability that t will execute the faulty 

statement. As there is no perfect practical value for this 

threshold, conducting experimental studies are necessary to 

determine the appropriate value of 𝛼 for a particular 

practical settings. 

To illustrate the process of test suite optimization, let us 

consider a simple working example. Table II presents a 

program that counts the number of alphabets, digits, and 

special characters in its input, with an operator mutation 

fault seeded at statement S9. The correct statement is also 

provided as a comment at the same place. Six test cases are 

executed, with three (T1, T2, and T3) producing correct 

results (passed test cases), and the remaining three (T4, T5, 

and T6) failing to produce the desired outputs (i.e., failed 

test cases). The statement hit spectra corresponding to the 

execution of these test cases are given from column three to 

column eight. If an entry contains the digit "1", it implies 

that the statement is covered by the corresponding test case, 

whereas a "0" denotes that the statement is not covered by 

the test case. For each statement, the values of NCF and NCS 

are given in columns nine and ten, respectively. According 

to the definition of Ochiai similarity coefficient metric 

(listed in Table I) the suspiciousness scores are computed 

and shown in column eleven. Each statement is ranked in 

descending order of its suspiciousness score in the last 

column. That is, the statement with the highest chance of 

being faulty is ranked first. 

In order to improve the accuracy of fault localization, we 

can utilize test suite optimization. To illustrate this concept, 

we will use a sample program. As mentioned previously in 

this section, the localization of faults can be negatively 

impacted by passing test cases that execute statements 

containing faults. 

The example program is run with two different sets of test 

suites, testsuite-1 and testsuite-2, as shown in Table II and 

Table III, respectively. The first test suite (testsuite-1) used 

in the example shown in Table II is a random one with a 

Passing Test Discrimination (PTD) measure of 0 (i.e. 0/3), 

because in this case all three successful test cases (T1, T2, 

and T3) have executed the faulty statement. The example 

program executed with the second test suite (testsuite-2) in 

Table III, on the other hand, is an optimized test suite with a 

PTD measure of 66.66% (i.e. 2/3) because two of the three 

passing test cases do not execute the faulty statement S9. As 

stated at the beginning of this section, increasing the value 

of PTD makes a test suite more suitable for fault 

localization.  

We now present the idea of test suite optimization in a 

different way, in which we measure the similarity between 

the set of statements executed by passing test cases and 

failing test cases with the help of the minimum suspicious 

set (MSS).  

From the analysis of Table II, it is evident that the passing 

test cases (T1, T2, and T3) cover 83.33%, 91.66%, and 

91.66% of the Minimum Suspicious Set (MSS) of testsuite-

1, respectively. This significant overlap between the 

statements covered by the passing test cases and the MSS 

raises the probability that the faulty statements are executed 

by passing test cases, thereby decreasing the precision of 

fault localization. As a consequence, testsuite-1 (Table II) 

can be regarded as a random test suite (i.e. inefficient for 

fault localization). 

 Successful (passing) test cases T1, T2, and T3 in 

testsuite-2 (Table III) share 75%, 75%, and 91.66% of 

statements with MSS of testsuite-2, respectively. Because 

T1 and T2 (successful or passing test cases) share a smaller 

portion of MSS in test suite-2, they are less likely to execute 

the faulty statement. As a result, testsuite-2 is an optimized 

test suite that will improve fault localization performance. 

Upon examining the last columns of Table II and Table III, 

it is evident that Test Suite 1 necessitates eight searches to 

locate the faulty statement (S9), whereas Test Suite 2 (an 

optimized version) requires only one search. 

The motivational example given above thus clarifies how 

test suite optimization can enhance fault localization 

performance. 

C. Incorporating statement execution frequency information 

into lightweight fault localization 

The existing SBFL techniques (some of them are listed in 

Table I) have limited diagnostic capabilities as they 

represent statement coverage using binary information (1 or 

0). That means if a statement is covered or not covered by a 

TABLE III 

IlLUSTRATION OF FAULT LOCALIZATION WITH OPTIMIZED TEST SUITE (TESTSUITE-2) 
Stmt. 

No. 
Program T1 T2 T3 T4 T5 T6 NCF NCS 

Susp. 

(Ochiai) 

Susp. 

Rank 

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 3 3 0.71 4 

S2 {   char strch[100]; 0 0 0 0 0 0 0 0 0.00 13 

S3     int alpha, digit, ch, i; 0 0 0 0 0 0 0 0 0.00 13 

S4     alpha = digit = ch = i = 0;    1 1 1 1 1 1 3 3 0.71 4 

S5     strcpy(strch,argv[1]); 1 1 1 1 1 1 3 3 0.71 4 

S6     while(strch [i]!='\0') 1 1 1 1 1 1 3 3 0.71 4 

S7     {   if((strch [i]>='a' && strch [i]<='z') || (strch [i]>='A' && 

strch[i]<='Z')) 
1 1 1 1 1 1 3 3 0.71 4 

S8             alpha++; 1 1 1 1 1 1 3 3 0.71 4 

S9         else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 0 0 1 1 1 1 3 1 0.87 1 

S10             digit++; 0 0 0 1 1 0 2 0 0.82 3 

S11         else 0 0 0 0 0 0 0 0 0.00 13 

S12             ch++; 0 0 1 1 1 1 3 1 0.87 1 

S13         i++;} 1 1 1 1 1 1 3 3 0.71 4 

S14     printf("Alphabets =%d Digits=%d Special characters = %d", 

alpha,digit,ch); 
1 1 1 1 1 1 3 3 0.71 4 

S15 } 1 1 1 1 1 1 3 3 0.71 4 

 Result (Pass=P, Fail=F) P P P F F F     
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particular test case is represented by 1 or 0, respectively. 

These methods ignore the information that how many times 

a statement is executed by a test case. Consequently, the 

fault localization accuracies of SBFL methods are limited 

when faults are there in the loop bodies or iteration 

statements. Moreover, identical suspiciousness levels can 

result in ties. 

To improve fault localization effectiveness we will use 

the concept of statement execution frequencies in program 

spectrum information instead of binary execution count. The 

program spectrum information will be collected from the 

execution of respective test cases. This concept is also 

known as spectral frequencies in fault localization studies. 

Statement frequency would impact suspiciousness of a 

statement as it indicates how many times that statement is 

executed by a corresponding test case. We will use the 

sigmoid function to map or normalize this additional 

information of statement execution frequency count to a 

value in the range of [0, 1), means greater than or equal to 0 

and less than 1. Sigmoid function is also known as logistic 

function and has been used in various domains such as 

economics, biology and machine learning. In fault 

localization domain we adapt the definition of the sigmoid 

function given in (1). 

𝐾(𝑛𝑠𝑡) = {   
1

𝑒−𝛼∗ 𝑛𝑠𝑡+1
     𝑖𝑓 𝑛𝑠𝑡 > 0

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

Here, n is the frequency of statement s when executed 

with test case t, α is a constant value. The above function K 

is evaluated for mapping the nonzero frequency counts to 

the range of [0, 1). The function K returns 0, if the statement 

was not executed, that means frequency count is zero. The 

above function can also be referred as statement frequency 

weighting function. 

Fig. 2 shows a simple mapping of the frequency count of 

statements ranging from 0 to 10 for different alpha values. 

We show this mapping for five α values (α = 0.5, 1, 3, 5 and 

25). We can see that with the increase of α value the 

frequency response curve (weighting function) gets sharper. 

The mapping is equivalent to binary function 0 or 1 when 

the alpha (α) value gets very large (i.e. α = 25), and this is 

similar to binary program spectrum information. We now 

show how statement frequency information of test coverage 

when incorporated into SBFL methods can perform better in 

terms of improving the accuracy of pinpointing faults within 

a program as compared to using traditional binary execution 

information. To substantiate this fact we present a working 

example as shown in Table IV, Table V and Table VI. The 

example program counts the number of alphabets, digits and 

special characters in its input. An operator mutation fault 

has been seeded in statement S9. The correct statement 

should be “else if (strch[i]>='0' && strch[i] <='9')”. The 

program is exercised with six test cases T1, T2, T3, T4, T5, 

and T6, out of which the first three are passing and the last 

three are failing test cases. In other words, first three test 

cases (T1, T2 & T3) are giving the correct output, but T4, 

T5, and T6 are not giving the expected output. Table IV 

shows the statement hit spectra in binary form. That means, 

if a statement is executed at least once by a test case then it 

is shown as ‘1’ and otherwise it is shown as ‘0’. Table V 

shows the number of times each statement is executed by a 

corresponding test case. In this case the statement hit spectra 

consists of frequency count of statements executed by a 

corresponding test case. The computation of statement 

suspiciousness in our example program using the frequency 

count information is demonstrated in Table VI. The 

statement frequency weighting function (adapted sigmoid 

function) as given in (1) is used to map the frequency counts 

to the values between 0 and 1 and the mapped values are 

shown in Table VI for each test case T1 to T6. The last rows 

of Table IV and Table VI show program execution results as 

pass (P) or fail (F) of the respective test cases. To compute 

the suspiciousness score we use Ochiai similarity coefficient 

metric as defined in Table I. The second last and last 

columns of Table IV and Table VI show the suspiciousness 

score and rank in descending order of suspiciousness scores 

of each program statement, respectively. That means the 

statements with higher suspiciousness scores are ranked first 

as these statements are more likely to be faulty. We can 

observe from Table V that the statement S6 executes 5 and 6 

times when program is executed with test cases T1 and T2, 

respectively. The corresponding mapped values according to 

the statement weighting function as given in (1), are 0.92 

and 0.95, respectively as shown in Table VI. 

Table IV shows that statements {S1, S4, S5, S6, S7, S9, 

S12, S13, S14, and S15} share identical suspiciousness 

values, making it difficult to pinpoint the likely faulty 

statement. Specifically, it requires eight searches to identify 

the faulty statement S9, as depicted in Table IV. By 

 
Fig. 2.  Comparison between the statement execution frequency count of test executions and their corresponding mapped values 
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integrating statement execution count information into the 

SBFL formula (Table VI), the faulty statement can be 

identified with a 50% improvement, requiring only four 

searches. The reason is that, we are able to further 

differentiate the probability of a statement being faulty 

because differing values are assigned to NCF and NCS 

according to the statement execution counts. We can see that 

the faulty statement S9 has greater NCF value (i.e. 2.32) than 

the NCS value (i.e. 2.19), and therefore has higher 

suspiciousness rank. Therefore, the given working example 

suggests that the concept of statement execution frequency 

information can improve the performance of existing SBFL 

techniques. 

TABLE IV 
SUSPICIOUSNESS CALCULATION USING BINARY INFORMATION FROM TEST EXECUTIONS 

Stmt. 
No. 

Program T1 T2 T3 T4 T5 T6 NCF NCS 
Susp. 

(Ochiai) 
Rank 

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 3 3 0.71 3 

S2 {   char strch[100]; 0 0 0 0 0 0 0 0 0.00 13 

S3     int alp, digit, ch, i; 0 0 0 0 0 0 0 0 0.00 14 

S4     alp = digit = ch = i = 0;    1 1 1 1 1 1 3 3 0.71 4 

S5     strcpy(strch,argv[1]); 1 1 1 1 1 1 3 3 0.71 5 

S6     while(strch[i]!='\0') 1 1 1 1 1 1 3 3 0.71 6 

S7     {   if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' && 

strch[i]<='Z')) 

1 1 1 1 1 1 3 3 0.71 7 

S8             alp++; 0 1 1 1 1 1 3 2 0.77 2 

S9        else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 1 1 1 1 1 1 3 3 0.71 8 

S10             digit++; 0 0 0 1 1 0 2 0 0.82 1 

S11         else 0 0 0 0 0 0 0 0 0.00 15 

S12             ch++; 1 1 1 1 1 1 3 3 0.71 9 

S13         i++;} 1 1 1 1 1 1 3 3 0.71 10 

S14     printf("Alphabets =%d Digits=%d Special characters = 

%d", alp,digit,ch); 
1 1 1 1 1 1 3 3 0.71 11 

S15 } 1 1 1 1 1 1 3 3 0.71 12 

 Result (Pass=P, Fail=F) P P P F F F     

 
TABLE V 

STATEMENT EXECUTION FREQUENCY COUNT INFORMATION FROM TEST EXECUTIONS 

Stmt. No. Program T1 T2 T3 T4 T5 T6 

S1 void main(int argc,char *argv[]) 1 1 1 1 1 1 

S2 {   char strch[100]; 0 0 0 0 0 0 

S3 int alp, digit, ch, i; 0 0 0 0 0 0 

S4 alp = digit = ch = i = 0; 1 1 1 1 1 1 

S5 strcpy(strch,argv[1]); 1 1 1 1 1 1 

S6 while(strch[i]!='\0') 5 6 5 6 8 4 

S7 { if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' && strch[i]<='Z')) 4 5 4 5 7 3 

S8  alp++; 2 3 2 2 3 2 

S9  else if(strch[i]>'0' && strch[i]<='9') //correct strch[i]>='0' 2 2 2 3 4 1 

S10   digit++; 0 2 0 2 2 0 

S11  else 0 0 0 0 0 0 

S12   ch++; 2 0 2 1 2 1 

S13  i++;} 4 5 4 5 7 3 

S14 printf("Alphabets =%d Digits=%d Special characters = %d", 

alp,digit,ch); 
1 1 1 1 1 1 

S15 } 1 1 1 1 1 1 

 TABLE VI 

SUSPICIOUSNESS CALCULATION USING FREQUENCY COUNT INFORMATION FROM TEST EXECUTIONS  

Stmt. 

No. 
Program T1 T2 T3 T4 T5 T6 NCF NCS 

Susp. 

(Ochiai) 
Rank 

S1 void main(int argc,char *argv[]) 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 12 

S2 {   char strch[100]; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13 

S3     int alp, digit, ch, i; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14 

S4     alp = digit = ch = i = 0;    0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 8 

S5     strcpy(strch,argv[1]); 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 9 

S6     while(strch[i]!='\0') 0.92 0.95 0.92 0.95 0.98 0.88 2.82 2.80 0.69 1 

S7     {   if((strch[i]>='a' && strch[i]<='z') || (strch[i]>='A' 
&& strch[i]<='Z')) 

0.88 0.92 0.88 0.92 0.97 0.82 2.71 2.69 0.67 2 

S8             alp++; 0.73 0.82 0.73 0.73 0.82 0.73 2.28 2.28 0.62 5 

S9 else if(strch[i]>'0' && strch[i]<='9')  

//correct strch[i]>='0' 
0.73 0.73 0.73 0.82 0.88 0.62 2.32 2.19 0.63 4 

S10             digit++; 0.00 0.73 0.00 0.73 0.73 0.00 1.46 0.73 0.57 7 

S11         else 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15 

S12             ch++; 0.73 0.00 0.73 0.62 0.73 0.62 1.98 1.46 0.62 6 

S13         i++;} 0.88 0.92 0.88 0.92 0.97 0.82 2.71 2.69 0.67 3 

S14     printf("Alphabets =%d Digits=%d Special 

characters = %d", alp,digit,ch); 
0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 10 

S15 } 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11 

 Result (Pass=P, Fail=F) P P P F F F         
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D. Improving absolute suspiciousness rank of faulty 

statements using fault context information 

Improving accuracy and effectiveness of lightweight 

software fault localization techniques (or SBFL techniques) 

is very important for debugging process. The fault 

localization methods can only be of practical use for 

developers if they have a certain level of accuracy. In order 

to be accurate these methods should identify the faults as 

early as possible while searching the descending order 

suspiciousness rank list.   

According to the literature, SBFL methods in general 

perform well but in some cases SBFL methods are not able 

to locate faults early in the suspiciousness rank list, which 

means sometimes these methods are not so effective in 

locating faults [24]. In their study, Wang Y. et al. [25] 

introduced the notion of fault context to enhance the 

performance of traditional SBFL (or LFL) methods. The 

primary goal was to enhance the ranking (absolute) of faulty 

program entities in the rank list. This was achieved by 

utilizing a technique that calculates the suspiciousness of a 

program entity based on both its individual suspiciousness 

and that of its fault context. The suspiciousness of the 

program entity can be computed using any of the statistical 

lightweight software fault localization methods (examples of 

which are provided in Table I). Following this, the 

suspiciousness of the corresponding program entity's fault 

context is determined and then combined with the program 

entity's suspiciousness to arrive at the final suspiciousness 

score of the program entity. 

The following is a definition of the fault context for a 

program entity. All program entities executed by a particular 

failed test case, excluding the entity itself, are included in 

the fault context of that program entity. In essence, the more 

suspicious a program entity is, the lower the suspiciousness 

of its fault context, resulting in a higher ranking for the 

entity in question. 

We now present a working example as shown in Table 

VII that demonstrates the idea that how traditional 

spectrum-based fault localization techniques can yield 

superior results when combined with the fault context 

approach. We are using a popular SBFL technique Ochiai 

for the calculation of suspiciousness scores of program 

entities (i.e. statements) in this illustration. 

The sample program finds the occurrences of vowels, 

consonants, digits and white spaces in its input. The 

program traverses through each character in the inputted 

string and determines the frequencies of the desired 

characters. 

The conditional statement at statement number S10 

contains a seeded fault because it is written incorrectly as "if 

(line[i] = 'p')". The correct form of the conditional 

statement is “if (line[i] <= 'z')”. 

As we can see in Table VII out of the total six test cases 

T1, T2, T3, T4, T5, and T6, three execute successfully and 

rest of the three have execution results as fail that means do 

not give the expected output. The bottom row shows the 

execution result as pass (P) or fail (F). The statement hit 

spectra is shown from columns three to eight. The entry with 

a ‘1’ means the corresponding statement has been executed 

by the test case and a ‘0’ means statement did not execute. 

In the following table, the NCF and NCS columns represent 

the number of failed and passed test cases, respectively, that 

cover a statement. These notations were previously defined 

in Section II-A. The suspiciousness score for each statement 

is displayed in the eleventh column, with the suspiciousness 

rank shown in descending order in the twelfth column. The 

rank indicates the likelihood of a statement being faulty. The 

statement with the highest suspiciousness score, indicating a 

greater probability of being faulty, is listed first in the rank 

list arranged in descending order. If multiple statements 

have the same suspiciousness score, they will share the same 

rank. This rank list serves as a debugging report for the 

faulty program and aids the developer in the debugging 

process. By examining each statement in the rank list in 

descending order, the developer can identify the faulty 

statement. If two statements have the same rank, the 

developer will examine them in a top-down manner. An 

effective fault localization technique should necessitate as 

few searches as possible from the developer in order to 

identify the faulty statement. Our objective is to enhance the 

fault localization performance by minimizing the 

developer's effort to identify and locate the faulty statement. 

The working example demonstrates how the fault context 

method can be used to improve fault localization 

performance.  

By observing Table VII we can see that statement S16 has 

the highest suspiciousness score (0.82) and therefore has the 

highest rank (i.e. 1) but S16 is not the root fault. The root 

fault is actually statement S10, which has a suspiciousness 

score of 0.77 and a rank of 2. This scenario exemplifies the 

case where traditional SBFL techniques (like Ochiai) 

sometimes fail to give correct results. We now illustrate how 

fault context method improves the accuracy of SBFL 

techniques in such situations. 

After examining the execution trace of failed test case T4, 

as shown in Table VII, we discover that the statement S10 is 

present in the trace. In this scenario, the fault context of S10 

is {S1, S4, S5, S6, S7, S8, S9, S12, S15, S16, S17, S18}. 

The suspiciousness scores of all the statements in the fault 

context of S10 can be added together to determine the 

suspiciousness score of S10’s fault context. Similarly, the 

fault context of S10 in failed executions of test cases T5 and 

T6 are {S1, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14, S15, 

S16, S17, S18} and {S1, S4, S5, S6, S7, S8, S9, S17, S18}, 

respectively. Therefore, there exist three suspiciousness 

scores for S10's fault context. 

As previously discussed in this section, a program entity's 

probability of being faulty increases with its higher 

suspiciousness rank and lower fault context suspiciousness. 

To determine the suspiciousness score of S10's fault context, 

the minimum suspiciousness score among the three scores is 

selected. The following formula is employed to compute the 

score of suspiciousness of S10's fault context. 

𝛾𝑐(S10)=[( minimum ((𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) 

+ 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S12) + 𝛾𝑒 (S15) + 

𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 

𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 ((S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 

(S11) + 𝛾𝑒 (S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 

𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 

𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 

(S17) + 𝛾𝑒 (S18))] 
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𝛾𝑐 (S10) = minimum (8.34, 9.34, 6.43) 

𝛾𝑐 (S10) = 6.43 
Where, 𝛾𝑐(S10) denotes the suspiciousness score of the 

fault context of the statement S10, and 𝛾𝑒 (S1) represents the 

suspiciousness score of the statement S1.  

Similarly, the statement S16 is in execution trace of 

program execution in unsuccessful test cases (i.e. failed) T4 

and T5, and the fault contexts of S16 in these two 

executions are {S1, S4, S5, S6, S7, S8, S9, S10, S12, S15, 

S17, S18} and {S1, S4, S5, S6, S7, S8, S9, S10, S11, S12, 

S13, S14, S15, S17, S18}, respectively. It is important to 

note that because S16 does not get executed in the execution 

coverage of failed test case T6, therefore, T6’s execution 

coverage will not be considered in the computation of S16’s 

fault context. 

The following calculation can be used to determine the 

suspiciousness score of the fault context for S16. 

𝛾𝑐 (S16) = minimum [(𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) 

+ 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 

(S12) + 𝛾𝑒 (S15) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 

(S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 

𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 (S11) + 𝛾𝑒 

(S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 

(S17) + 𝛾𝑒 (S18))] 

𝛾𝑐 (S16) = minimum (8.30, 9.30) 

𝛾𝑐 (S16) = 8.30 

The statement S16 is ranked higher than the root fault S10 

in our example. The statement S16 was influenced by S10, 

and S10 is contained in its fault context. Therefore, it is 

possible that the fault context of S16 has a higher 

suspiciousness score than that of S10. 

Table VIII lists the scores of suspiciousness of all 

program entities (in our case statements), the normalized 

suspiciousness scores of all statement’s fault contexts, and 

the final overall rank of each statement based on the two 

suspiciousness ranks. 

Steps to compute suspiciousness using fault context method 

In this section, we formally explain how fault context 

information can be combined with spectrum-based fault 

localization to improve the absolute suspiciousness rank of 

faulty program entities. 

Consider a faulty program P being debugged and a test 

suite T being represented as follows: 

P = {e1, e2, e3, …,en}, each ei is a program entity (i.e. 

statement in this study). T= {t1, t2, t3, …, tm}, each tj is a test 

case of test suite T. The test suite T is divided into passed 

and failed test cases, which are denoted as TP and TF, 

respectively. In order to collect the program spectra, 

program P is executed using input from both test cases TP 

and TF. Following this, the suspiciousness score of each 

program entity (using any of the SBFL similarity coefficient 

techniques), along with the suspiciousness score of its 

corresponding fault context, is calculated.  

TABLE VIII 

SUSPICIOUSNESS OF STATEMENTS, THEIR FAULT CONTEXTS AND 

IMPROVED SUSPICIOUSNESS RANK (STEP-2 & 3 OF FAULT CONTEXT 

METHOD TO FAULT LOCALIZATION) 

Statement 
No. 

Ochiai Fault 
Context 

Ochiai incorporating 
Fault Context 

𝛾𝑒 Re 𝛾𝑐 Rc Re + Rc Rank (R) 

S1 0.707 4 0.650 3 7 3 

S2 0.000 17 10.000 17 34 17 

S3 0.000 17 10.000 17 34 17 

S4 0.707 4 0.650 3 7 3 

S5 0.707 4 0.650 3 7 3 

S6 0.707 4 0.650 3 7 3 

S7 0.707 4 0.650 3 7 3 

S8 0.775 2 0.643 1 3 1 

S9 0.707 4 0.650 3 7 3 

S10 0.775 2 0.643 1 3 1 

S11 0.333 14 0.978 14 28 14 

S12 0.516 13 0.860 13 26 13 

S13 0.333 14 0.978 14 28 14 

S14 0.333 14 0.978 14 28 14 

S15 0.577 12 0.854 12 24 12 

S16 0.816 1 0.830 11 12 11 

S17 0.707 4 0.650 3 7 3 

S18 0.707 4 0.650 3 7 3 

S19 0.000 17 10.000 17 34 17 

 

TABLE VII 

SUSPICIOUSNESS CALCULATION USING TRADITIONAL OCHIAI METHOD (STEP-1 OF FAULT CONTEXT METHOD TO FAULT LOCALIZATION) 

Stmt. 

No. 
Program 

T

1 

T

2 

T

3 

T

4 

T

5 

T

6 
NCF NCS 

Susp. 

(Ochiai) 
Rank 

S1 int main(int argc, char *argv[]) { 1 1 1 1 1 1 3 3 0.71 4 

S2 char line[150]; 0 0 0 0 0 0 0 0 0.00 17 

S3 int vowels, consonant, digit, space; 0 0 0 0 0 0 0 0 0.00 17 

S4 vowels = consonant = digit = space = 0; 1 1 1 1 1 1 3 3 0.71 4 

S5 strcpy(line,argv[1]); 1 1 1 1 1 1 3 3 0.71 4 

S6 for (int i = 0; line[i] != '\0'; ++i) { 1 1 1 1 1 1 3 3 0.71 4 

S7 if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' ||line[i] == 'o' || 

line[i] == 'u') 

1 1 1 1 1 1 3 3 0.71 4 

S8  ++ vowels; 1 0 1 1 1 1 3 2 0.77 2 

S9 else if (line[i] >= 'a'){ 1 1 1 1 1 1 3 3 0.71 4 

S10 if(line[i] <= 'p') //correct if(line[i] <= 'z') 1 1 0 1 1 1 3 2 0.77 2 

S11 ++consonant;} 1 1 0 0 1 0 1 2 0.33 14 

S12 else if (line[i] >= '0'){  1 1 1 1 1 0 2 3 0.52 13 

S13 if(line[i] <= '9') 1 1 0 0 1 0 1 2 0.33 14 

S14 ++digit;} 1 1 0 0 1 0 1 2 0.33 14 

S15 else if (line[i] == ' ') 0 1 1 1 1 0 2 2 0.58 12 

S16 ++space;} 0 0 0 1 1 0 2 0 0.82 1 

S17 printf("Vowels: %d\nConsonants: %d\nDigits: %d\nWhite 

spaces: %d", vowels, consonant, digit, space); 
1 1 1 1 1 1 3 3 0.71 4 

S18 return 0; 1 1 1 1 1 1 3 3 0.71 4 

S19 } 0 0 0 0 0 0 0 0 0.00 17 

 Result (Pass=P, Fail=F) P P P F F F         
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The final suspiciousness rank for each program entity is 

generated based on the ranks of the two suspiciousness 

scores. The resulting rank list reflects the likelihood of each 

program entity being faulty, where the most suspicious 

entity is assigned a rank of 1, followed by the next 

suspicious entity with a rank of 2, and so on. A programmer 

can examine each program entity (i.e., program statement) 

one by one according to its suspiciousness rank in order to 

locate the faulty statement. 

The fault context approach to fault localization has the 

following major steps. 

i. Suspiciousness computation for the program entities 

In this step suspiciousness is computed using a spectrum-

based similarity coefficient metric as defined in Table I. The 

program is executed with the given test suite T and run time 

program spectra is collected for the passing (TP) and failing 

(TF) test cases. The program spectra has two components, 

the coverage data for each program entity (i.e. whether a 

statement executed or not) and the result vector, which 

indicates whether the program passed or failed according to 

the given input. In this example we use Ochiai similarity 

coefficient metric as an SBFL tool to compute the 

suspiciousness of statements. The metric is defined below in 

(2) and the notations NCF, NCS and NF are explained in 

Section II-A. 

𝛾𝑒
𝑂𝑐ℎ𝑖𝑎𝑖(𝑗) =

𝑁𝐶𝐹

√𝑁𝐹 𝑥  (𝑁𝐶𝐹+ 𝑁𝐶𝑆)
 (2) 

Where 𝛾
𝑒
(𝑗) stands for the suspiciousness score of a 

program entity j using Ochiai metric. 

ii. Suspiciousness computation for fault contexts 

This step involves providing a formal definition of the 

fault context. Let eci = {e1, …, ej, …, ek} denotes the set of 

covered entities for a failed test case execution ti. For a 

given entity ej, the fault context is defined as the collection 

of all statements that are included in the failed test execution 

ti, excluding the entity ej itself. The following expression 

given in (3) can be used to denote the fault context of ej. 

𝐹𝑐(𝑒𝑗 , 𝑡𝑖) = 𝑒𝑐𝑖  / 𝑒𝑗 (3) 

To determine the suspiciousness score of the fault context 

of statement ej, we need to add up the suspiciousness scores 

of all statements eci covered during the execution of test 

case ti, while excluding the statement ej itself. Formula 

given in (4) provides the formal expression for calculating 

the suspiciousness score of the fault context of entity ej. 

𝛾
𝑐
(𝑒𝑗, 𝑡𝑖) = ∑ 𝛾

𝑒
(𝐹𝑐(𝑒𝑗, 𝑡𝑖)(𝑒𝑘)) (4) 

Where, 𝐹𝑐(𝑒𝑗, 𝑡𝑖) is the fault context of entity ej in test 

execution ti. The fault context for entity ej in test execution ti 

is defined as the collection of all entities that are covered by 

the failed test execution ti, excluding the entity ej itself. The 

notation ek represents the kth entity in this set. The value of k 

will range from 1 to n, where n is the total number of 

entities in the fault context. The function  𝛾𝑒 returns the 

suspiciousness score of the entity passed to it as per the 

SBFL metric defined in (2). Hence, the suspiciousness score 

of the fault context of entity ej will be calculated by 

summing up suspiciousness scores of all entities present in 

the fault context of program entity ej. 

We must determine which fault context for the program 

entity ej in TF is the smallest, if ej has multiple fault 

contexts. The definition of ej's fault context and its 

suspiciousness are provided below in (5) and (6), 

respectively. 

𝐹𝑐(𝑒𝑗) = {𝑒𝑐𝑖/𝑒𝑗| 𝑖 ∈  𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑒𝑠𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑡} (5) 

𝛾𝑐  (𝑒𝑗) = minimum{𝛾𝑐  (𝑒𝑗, 𝑡𝑖  )| i ∈

 failed test executions set} (6) 

iii. Generation of new fault ranking list 

The first step computes the suspiciousness scores for 

program entities, and the second step calculates the 

suspiciousness score for each program entity’s fault context. 

In the third step, a new improved fault rank list is 

generated as per the following explanation. Firstly, two fault 

rank lists are created, Re and Rc, where, Re ranks the 

program entities in descending order based on their 

suspiciousness scores (i.e. 𝛾𝑒), while Rc ranks the program 

entities in ascending order based on the suspiciousness 

scores of their fault contexts (i.e. 𝛾𝑐). Finally, a new 

improved rank list, R, is created by combining the rank lists 

Re and Rc as follows. Consider that ei and ej are two entities 

that are probably suspicious, with ei having ranks 𝑅𝑒
𝑖  and 𝑅𝑐

𝑖  

and ej having ranks 𝑅𝑒
𝑗
 and 𝑅𝑐

𝑗
. If 𝑅𝑒

𝑖  + 𝑅𝑐
𝑖  <= 𝑅𝑒

𝑗
 + 𝑅𝑐

𝑗
, then 

ei will be given a higher rank than ej in the new fault rank 

list. Assuming e is a program entity, its rank in the newly 

generated ranking list will be determined by its 

suspiciousness score 𝛾e (e) and the suspiciousness score of 

its fault context 𝛾𝑐 (e), where a higher 𝛾𝑒 (e) and lower 𝛾𝑐 (e) 

will result in a higher overall suspiciousness rank for the 

entity e. It is important to emphasize that, a program entity 

is more likely to have a higher potential suspiciousness rank 

(root cause of fault) if its own suspiciousness score is 

greater and the suspiciousness score of its fault context is 

lower. Conversely, if the suspiciousness score of a program 

entity’s fault context is higher, then lower will be the 

suspiciousness score of that entity, and therefore, that entity 

cannot be the root fault. 

Table VII indicates that the conventional approach for 

fault localization requires three searches to identify the 

faulty statement S10. In contrast, the new fault context-

based approach enables developers to locate the faulty 

statement by searching only two statements, as shown in 

Table VIII. Consequently, the developer's effort is reduced 

by 33.33% due to the improvement in the absolute rank of 

faulty statement. Here, we are measuring the effectiveness 

of fault context based approach in terms of improvement 

relative to the traditional SBFL metric Ochiai. 

Before moving to the next section, we now summarize the 

background information given in Section-II. Section-II 

outlined three techniques aimed at enhancing the efficiency 

and efficacy of spectrum-based fault localization (SBFL). 

Test suites have a pivotal role in testing and debugging since 

they are responsible for driving program execution. In 

Section II-B, we see how optimized test suites can be 

selected or generated using Passing Tests Discrimination 

based method. The working example given in Section II-B 

illustrates that the use of optimized test suites improves the 

performance of existing SBFL methods. Section II-C 

explains how the concept of statement frequency is 

incorporated in suspiciousness formula instead of binary 

coverage information to improve the effectiveness of 

software fault localization. Section II-D elaborates on the 

notion of fault context, which can be employed to enhance 
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the absolute suspiciousness ranking of faulty statements (i.e. 

program entities) by comprehending the underlying cause of 

failure. 

The next section presents our proposed hybrid approach 

(a fault localization framework for lightweight fault 

localization or SBFL) that combines the concepts of test 

suite optimization, statement execution frequency and fault 

context, to further improve the accuracy and performance of 

existing SBFL techniques in a single fault scenario. In this 

study, we employ the proposed approach to enhance the 

performance of existing classical SBFL techniques. It is 

important to emphasize that our approach can be applied to 

any SBFL technique to improve its performance. 

III. PROPOSED APPROACH 

A. Framework 

This section presents a formal description of our proposed 

framework that integrates test suite optimization, statement 

execution frequency, and fault context to enhance the 

accuracy and performance of spectrum-based software fault 

localization in a single fault perspective. The framework, 

illustrated in Fig. 3, comprises several steps, which are 

presented in algorithmic form in Table IX. 

B. Motivational Example 

The following section provides a practical demonstration 

of the working of our proposed framework, showing how 

program entities (i.e., statements in this study) can be ranked 

efficiently based on their suspiciousness in descending order 

to identify the faulty statement. Fig. 3 depicts the process 

flow of our proposed framework/ approach. Through this 

example, we aim to demonstrate the effectiveness of our 

proposed approach in improving the performance (improved 

suspiciousness ranks of faulty program entities) of existing 

SBFL techniques. We illustrate that how our proposed 

approach, when applied to the classic Ochiai method, 

improves its fault localization performance.  

For illustration purpose we consider the same program 

that has been used earlier in Section II-D, which finds the 

occurrences of vowels, consonants, digits and white spaces 

in its input. Throughout in this study we focus on fault 

localization in a single fault context, therefore our example 

uses the program that has a single seeded fault.  

We first perform fault localization using the traditional 

Ochiai technique as shown in Table X. The statement S10 

has an artificially seeded fault and its correct form is also 

given in the comments.  

Table X presents the program's execution outcomes using 

a test suite that comprises three passing (T1, T2, and T3) 

and three failing test cases (T4, T5, and T6). The third 

through eighth columns show the execution result or 

statement coverage information. The NCF and NCS values are 

presented in columns nine and ten, respectively, where NCF 

denotes the number of failing test cases that cover a 

statement and NCS represents the number of passing test 

cases that cover a statement. In accordance with the 

definition of the Ochiai similarity coefficient-based metric, 

as described in subsection II-A, the suspiciousness value of 

each statement is calculated and displayed in the eleventh 

column. In the last column, each statement is ranked in 

decreasing order according to how suspicious it is. As can 

be observed, using the conventional Ochiai method, it would 

require eight searches to identify the faulty statement (i.e., 

S10). 

In order to illustrate the performance of our proposed 

framework, we now perform fault localization on the same 

example program using the proposed framework. Table XI 

and Table XII show the step by step execution of different 

phases of the proposed fault localization approach. 

As per the step-1 of the proposed framework, we use 

optimized test suite for the fault localization. As explained 

in Section II-B a test suite’s effectiveness depends on its 

Passing Test Discrimination (PTD) measure. PTD is defined 

as ratio of total count of passing test cases not executing the 

faulty statement over the total number of passing test cases 

in a test suite.  

TABLE IX 

MAJOR STEPS (ALGORITHM) OF THE PROPOSED LIGHTWEIGHT FAULT LOCALIZATION APPROACH 

(i) Step-1: Test Suite Optimization 

This step creates or selects effective and reduced set of test cases (test suite) using Passing Test Discrimination-based method.  

(ii) Step-2: Computation of statement execution frequency and normalization 

Execution count of each statement is calculated with respect to each test case. A frequency weighting function (i.e.an adapted sigmoid function) 

is used to map the statement execution frequency into a normalized real value in the range of 0 and 1 [0, 1), as specified in (1). 

(iii) Step-3: Improving absolute suspiciousness rank of faulty statements using fault context information 

A new fault ranking list is produced in this stage, which considers both the suspiciousness score of a program entity and the suspiciousness 

score its fault context.  

(a) Suspiciousness computation for program entities and  their fault contexts 

i. This step utilizes the program spectrum information obtained from the Step-2, to compute the suspiciousness of each statement using 

one of the SBFL similarity coefficient metric (e.g. Ochiai, Jaccard, DStar, etc.) as per the normalized frequency count instead of a 

binary coverage information (0 or 1).  

ii. Fault contexts for each program entity is generated in each failed execution. 

iii. The suspiciousness score of each program entity’s fault context is then calculated according to the definition of suspiciousness of a 

fault context as explained in Section II-D. If a program entity (i.e., a program statement) has multiple fault contexts, then the 

minimum value among the different suspiciousness scores of the entity’s fault contexts is selected. 

(b) Upon completing step iii (a), we obtain the suspiciousness scores for each program entity and suspiciousness scores of their corresponding 

fault contexts. Utilizing these two suspiciousness scores, we generate two distinct lists of fault rankings, denoted as Re and Rc. Re ranks the 

program entities in descending order based on their suspiciousness scores (i.e. 𝛾𝑒), while Rc ranks the program entities in ascending order 

based on the suspiciousness scores of their fault contexts (i.e. 𝛾𝑐). 

(iv) Step-4: Finally, a new improved rank list, R, is created by combining the rank lists Re and Rc as follows. Consider that ei and ej are two entities 

that are probably suspicious, with ei having ranks 𝑅𝑒
𝑖  and 𝑅𝑐

𝑖  and ej having ranks 𝑅𝑒
𝑗
 and 𝑅𝑐

𝑗
. If 𝑅𝑒

𝑖  + 𝑅𝑐
𝑖  <= 𝑅𝑒

𝑗
 + 𝑅𝑐

𝑗
, then ei is ranked higher than 

ej in the new fault ranking list. A developer can then start examining the statements one by one as per the new fault rank list to locate the faulty 
statement. 
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Fig. 3.  Process flow of the proposed approach/ framework. 

TABLE X  
FAULT LOCALIZATION USING TRADITIONAL OCHIAI METHOD 

Stmt. 

No. 
Program 

T

1 

T

2 

T

3 

T

4 

T

5 

T

6 
NCF NCS 

Suspiciousness 

(Ochiai) 

Suspiciousness 

Rank 

S1 int main(int argc, char *argv[]) { 1 1 1 1 1 1 3 3 0.71 2 

S2 char line[150]; 0 0 0 0 0 0 0 0 0.00 16 

S3 int vowels, consonant, digit, space; 0 0 0 0 0 0 0 0 0.00 16 

S4 vowels = consonant = digit = space = 0; 1 1 1 1 1 1 3 3 0.71 2 

S5 strcpy(line,argv[1]); 1 1 1 1 1 1 3 3 0.71 2 

S6 for (int i = 0; line[i] != '\0'; ++i) { 1 1 1 1 1 1 3 3 0.71 2 

S7 if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' ||line[i] 

== 'o' || line[i] == 'u') 

1 1 1 1 1 1 3 3 0.71 2 

S8  ++ vowels; 1 0 1 0 0 1 1 2 0.33 13 

S9 else if (line[i] >= 'a'){ 1 1 1 1 1 1 3 3 0.71 2 

S10 if(line[i] <= 'p')  

//correct if(line[i] <= 'z') 
1 1 1 1 1 1 3 3 0.71 2 

S11 ++consonant;} 1 1 1 0 0 0 0 3 0.00 16 

S12 else if (line[i] >= '0'){  1 1 1 1 0 1 2 3 0.52 12 

S13 if(line[i] <= '9') 1 1 0 1 0 0 1 2 0.33 13 

S14 ++digit;} 1 1 0 1 0 0 1 2 0.33 13 

S15 else if (line[i] == ' ') 0 1 1 1 0 1 2 2 0.58 11 

S16 ++space;} 0 0 0 1 0 1 2 0 0.82 1 

S17 printf("Vowels: %d\nConsonants: %d\nDigits: 

%d\nWhite spaces: %d", vowels, consonant, digit, 
space); 

1 1 1 1 1 1 3 3 0.71 2 

S18 return 0; 1 1 1 1 1 1 3 3 0.71 2 

S19 } 0 0 0 0 0 0 0 0 0.00 16 

 Result (Pass=P, Fail=F) P P P F F F         
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In Table X, the program being debugged is executed by a 

random test suite, which has PTD score of 0, as all passing 

test cases execute the faulty statement S10. Whereas, the test 

suite used in Table XI is an optimized test suite with a PTD 

score of 33.33% (i.e. 1/3). We can see that passing test case 

T3 does not execute the faulty statement S10. 

As per step-2 of our proposed framework, we refrain from 

using binary information (0 or 1) to indicate whether a 

program statement is executed by a test case or not. Instead, 

we use statement coverage count (execution frequency) for 

each statement covered by a test case, as depicted in Table 

XI. We further normalize the statement execution 

frequencies within the [0, 1) range by employing the 

sigmoid function (with α =0.5) as described in (1) of Section 

II-C. As illustrated in Table XI, the test suite comprises six 

test cases, with three passing and the remaining three failing. 

Now, we compute the suspiciousness score of each 

program statement according to the step-3 of the proposed 

framework (see Table IX). First, we compute the 

suspiciousness score of each program statement using 

Ochiai SBFL technique as defined in Table I of Section II-

A. The suspiciousness score of each statement is given in 

column number eleven of Table XI. Then fault context of 

each statement is generated in each failed execution. By 

observing Table XI we can see that statement S16 has the 

highest suspiciousness score (0.70) and therefore has the 

highest rank (i.e. 1), but S16 is not the root fault. The root 

fault is actually statement S10, which has a suspiciousness 

score of 0.69 and has a rank of 2. In this scenario, even if we 

have used a statement execution frequency count instead of 

binary information to represent the statement coverage 

information, the faulty statement is still not ranked at the 

highest position in the rank list. 

We now demonstrate how fault context method further 

improves the absolute suspiciousness rank of a faulty 

statement in such situations. 

By observing execution trace of failed test case T4 as 

shown in Table XI, we find that the statement S10 is in the 

execution trace of T4, and in this situation the fault context 

of S10 is {S1, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14, 

S15, S16, S17, S18}. The suspiciousness score of S10’s 

fault context can be expressed as the sum of the 

suspiciousness scores of  all statements in the S10’s fault 

context i.e. {S1, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14, 

S15, S16, S17, S18}. Similarly, the fault contexts of S10 in 

failed executions of test cases T5 and T6 are {S1, S4, S5, 

S6, S7, S8, S9, S11, S12, S13, S14, S15, S16, S17, S18} and 

{S1, S4, S5, S6, S7, S8, S9, S17, S18}, respectively. We can 

note that the fault context in test executions T4 and T5 are 

same. We can define the suspiciousness score for S10's fault 

context as the total of suspiciousness scores of every 

statement present within S10’s fault context. Therefore, we 

can say that for statement S10, there exist three 

suspiciousness scores in its fault context for each failed test 

case T4, T5 and T6 where S10 executes. As already 

explained in this section, a program entity is likely to be 

faulty if its rank, which is based on the descending order of 

its suspiciousness, is higher and its fault context’s 

suspiciousness is lower. Hence, we choose the least among 

the three suspiciousness scores associated with the fault 

context of S10. The below given formula finds the 

suspiciousness score of S10’s fault context. 

𝛾𝑐 (S10) = minimum [(𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 

(S6) + 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S11) + 𝛾𝑒 (S12) + 𝛾𝑒 

(S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 

(S18)), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 𝛾𝑒 

(S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S11) + 𝛾𝑒 (S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 

𝛾𝑒 (S15) + 𝛾𝑒 (S16) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18)), (𝛾𝑒 (S1) + 𝛾𝑒 

(S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 ((S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 

(S17) + 𝛾𝑒 (S18))] 

𝛾𝑐 (S10) = minimum (8.94, 8.94, 5.42) 

𝛾𝑐 (S10) = 5.42 

TABLE XI 

LIGHTWEIGHT SOFTWARE FAULT LOCALIZATION USING THE PROPOSED APPROACH (STEPS 1 & 2 OF THE PROPOSED APPROACH AS SHOWN IN TABLE IX) 

Stmt. 

No. 
Program T1 T2 T3 T4 T5 T6 NCF NCS 

Susp. 

(Ochiai) 

Susp. 

Rank 

S1 int main(int argc, char *argv[]) { 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11 

S2 char line[150]; 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 17 

S3 int vowels, consonant, digit, space; 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 17 

S4 vowels = consonant = digit = space = 0; 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11 

S5 strcpy(line,argv[1]); 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11 

S6 for (int i = 0; line[i] != '\0'; ++i) { 0.92 0.88 0.88 1.00 0.99 0.82 2.8 2.69 0.69 3 

S7 if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' 
||line[i] == 'o' || line[i] == 'u') 

0.88 0.82 0.82 0.99 0.98 0.73 2.71 2.52 0.68 5 

S8  ++ vowels; 0.73 0.73 0.62 0.73 0.62 0.62 1.98 2.08 0.57 10 

S9 else if (line[i] >= 'a'){ 0.73 0.62 0.73 0.98 0.97 0.62 2.58 2.08 0.69 4 

S10 if(line[i] <= 'p')  

//correct if(line[i] <= 'z') 
0.62 0.62 0.00 0.88 0.73 0.62 2.23 1.24 0.69 2 

S11 ++consonant;} 0.62 0.62 0.00 0.62 0.62 0.00 1.24 1.24 0.46 16 

S12 else if (line[i] >= '0'){  0.62 0.00 0.73 0.88 0.92 0.00 1.8 1.35 0.59 8 

S13 if(line[i] <= '9') 0.62 0.00 0.00 0.73 0.82 0.00 1.55 0.62 0.61 6 

S14 ++digit;} 0.62 0.00 0.00 0.73 0.82 0.00 1.55 0.62 0.61 6 

S15 else if (line[i] == ' ') 0.00 0.00 0.73 0.73 0.73 0.00 1.46 0.73 0.57 9 

S16 ++space;} 0.00 0.00 0.00 0.73 0.73 0.00 1.46 0 0.70 1 

S17 printf("Vowels: %d\nConsonants: %d\nDigits: 
%d\nWhite spaces: %d", vowels, consonant, 

digit, space); 

0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11 

S18 return 0; 0.62 0.62 0.62 0.62 0.62 0.62 1.87 1.87 0.56 11 

S19 } 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 17 

  Result (Pass=P, Fail=F) P P P F F F         
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Where, 𝛾𝑐(S10) denotes the suspiciousness score of the 

fault context of the statement S10 and 𝛾𝑒 (S1) represents the 

suspiciousness score of the statement S1 (computed using 

Ochiai method). Here, it should be noted that the 

suspiciousness scores of S10’s fault context are same in 

failed executions of test cases T4 and T5 (i.e. 8.94).  

Likewise, statement S16 is present in the execution trace 

of failed test cases T4 and T5, both having the same fault 

context {S1, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, 

S14, S15, S17, S18}. However, since S16 is not covered in 

the execution of failed test case T6, its execution trace is 

excluded when calculating the fault context of S16. We can 

compute the suspiciousness score of S16's fault context 

using the following formula. 

𝛾𝑐 (S16) = minimum [(𝛾𝑒  (S1) + 𝛾𝑒  (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) 

+ 𝛾𝑒 (S7) + 𝛾𝑒 (S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 (S11) + 𝛾𝑒 

(S12) + 𝛾𝑒 (S13) + 𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 (S17) + 𝛾𝑒 

(S18), (𝛾𝑒 (S1) + 𝛾𝑒 (S4) + 𝛾𝑒 (S5) + 𝛾𝑒 (S6) + 𝛾𝑒 (S7) + 𝛾𝑒 

(S8) + 𝛾𝑒 (S9) + 𝛾𝑒 (S10) + 𝛾𝑒 (S11) + 𝛾𝑒 (S12) + 𝛾𝑒 (S13) + 

𝛾𝑒 (S14) + 𝛾𝑒 (S15) + 𝛾𝑒 (S17) + 𝛾𝑒 (S18))]  

𝛾𝑐 (S16) = minimum (8.94, 8.94) 

𝛾𝑐 (S16) = 8.94 

The statement S16 is ranked higher than the root fault S10 

in our example. The statement S16 was influenced by S10, 

and S10 is contained in its fault context. Therefore, the score 

of suspiciousness of S16's fault context may be higher than 

that of S10's. 

Table XII presents a summary of the suspiciousness 

scores of all program statements, the normalized 

suspiciousness scores of all statements' fault contexts, and 

the final overall rank of each statement based on the two 

suspiciousness ranks. We have normalized the 

suspiciousness scores of all statement’s fault contexts as 

shown in column four (𝛾𝑐) of Table XII. 

The final ranks of statements’ suspiciousness is shown in 

column 7 of Table XII. We can see that the faulty statement 

(S10) can now be directly identified as it has the top rank of 

1. If we compare our proposed approach with traditional 

SBFL method (Ochiai, Jaccard and Dstar in this study), we 

find that the traditional approach (see Table X) took eight 

searches to locate the faulty statement whereas the proposed 

approach directly identified the faulty statement in one 

search. Therefore, in this example, applying our proposed 

approach to the traditional SBFL method, Ochiai, resulted in 

an 87.5% improvement in fault identification accuracy. 

IV. EMPIRICAL STUDY 

This section highlights the research questions of the 

study, programs used as subjects for the experiments, the 

process of data collection, evaluation metrics, evaluation 

criteria for the experimental process, and results and 

analysis.  

The objective of this study is to improve the performance 

and efficacy of spectrum-based (or lightweight) fault 

localization techniques in a single-fault scenario. To 

substantiate this claim, we conducted a thorough 

experimental study using the standard Siemens benchmark 

suite and some large real-world subject programs taken from 

the software-artifact infrastructure repository (SIR) 

(http://sir.unl.edu/portal/index.php) [26]. We perform an 

empirical evaluation to investigate how the proposed 

approach enhances the performance of existing SBFL 

methods. In this research study, we apply the proposed 

approach to three existing SBFL methods, namely Ochiai, 

Jaccard, and DStar, and analyze the resulting performance 

improvements. 

A. Research Questions 

The research questions that we aim to answer through our 

empirical study are as follows: 

RQ1: Can test suites be optimized to improve the 

performance of existing spectrum-based fault localization 

techniques?  

RQ2: How does the concept of statement execution 

frequency information improve fault localization 

performance when it is incorporated into the suspiciousness 

formula of SBFL techniques instead of binary information 

of execution count? 

RQ3: Is it possible to improve the absolute suspiciousness 

ranking of faulty program entities by understanding the root 

cause of failure using fault context? 

RQ4: Is the proposed framework/approach, which combines 

the concepts of statement execution frequency, test suite 

optimization, and fault context, effective in further 

enhancing the performance of spectrum-based software fault 

localization in a single fault context? 

The concepts related to first three research questions have 

already been explained in Section II that presents the 

background and motivation of our proposed approach. 

However, in the following paragraphs, we provide explicit 

answers to all four research questions by referring to each 

related concepts. The answers to the first and the fourth 

research questions are given in greater detail in Results and 

Analysis section (i.e. Section IV-C). 

We have evaluated our proposed approach on subject 

programs as listed in Table XIII. We have downloaded all 

subject programs along with standard test suites from the 

software-artifact infrastructure repository (SIR) 

(http://sir.unl.edu/portal/index.php) [26]. For our empirical 

study, we have used a total of 40 different faulty versions, 

TABLE XII 

SUSPICIOUSNESS OF STATEMENTS, THEIR FAULT CONTEXTS AND 

IMPROVED SUSPICIOUSNESS RANK (STEP 3 & 4 OF THE PROPOSED 

APPROACH AS SHOWN IN TABLE IX) 

Stmt. 

No. 

Ochiai Fault Context Ochiai Incorporating 

Fault Context 

𝛾𝑒 Re 𝛾𝑐 Rc Re + Rc Rank (R) 

S1 0.56 11 0.56 6 17 7 

S2 0.00 17 10.00 17 34 17 

S3 0.00 17 10.00 17 34 17 

S4 0.56 11 0.56 6 17 7 

S5 0.56 11 0.56 6 17 7 

S6 0.69 3 0.54 2 5 2 

S7 0.68 5 0.54 4 9 4 

S8 0.57 10 0.55 5 15 6 

S9 0.69 4 0.54 3 7 3 

S10 0.69 2 0.54 1 3 1 

S11 0.46 16 0.92 16 32 16 

S12 0.59 8 0.90 14 22 14 

S13 0.61 6 0.90 12 18 12 

S14 0.61 6 0.90 12 18 12 

S15 0.57 9 0.91 15 24 15 

S16 0.70 1 0.89 11 12 5 

S17 0.56 11 0.56 6 17 7 

S18 0.56 11 0.56 6 17 7 

S19 0.00 17 10.00 17 34 17 
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out of which 25 faulty versions we have taken from the 

Siemens test suites, and 15 faulty versions we have taken 

from large real-world programs (see Table XIII). 

In response to the first research question (RQ1), we 

optimized the test suites using Passing Test Discrimination 

(PTD) method, which has been explained in detail in the 

subsection II-B. The motivational example shown in Table 

II uses a random test suite (testsuite-1) for testing, and in 

this case, it requires eight searches to locate the faulty 

statement. Whereas, the example shown in Table III uses an 

optimized test suite (testsuite-2), which requires only one 

search to locate the fault.  

The primary aim of the PTD metric is to enhance the 

efficiency of a test suite by preventing the execution of 

faulty statements by passing test cases. Such execution can 

adversely impact the accuracy of localization of faults. 

Therefore, a test suite with a high PTD value is deemed 

optimal, indicating that a greater proportion of passing test 

cases do not execute faulty statements.  

When comparing the PTD scores of the two test suites in 

the motivational examples provided in Tables II and III of 

Section II-B, we observe that the optimized test suite 

(testsuite-2) achieves a PTD score of 66.66%. This is 

because two out of three passing test cases do not execute 

the faulty statement (i.e., 2/3). On the other hand, the 

original test suite (testsuite-1) has a PTD score of 0% since 

all test cases that produce the expected output (i.e., passing) 

execute the faulty statement S9. As a result, testsuite-2 is 

considered to be an optimized test suite that provides 

improved fault localization results. 

In order to optimize an existing test suite, we eliminate 

those passing test cases that are likely to execute the faulty 

statement. The minimum suspicious set (MSS) notion is 

utilized to recognize the potential test cases for removal 

from the original test suite. To increase a test suite's PTD 

score, we can add new passing test cases whose execution 

covers a smaller percentage of statements in MSS, reducing 

the possibility of executing the faulty statement. In this way 

we select or create the optimized test suites. We have 

provided a detailed explanation of test suite optimization in 

Section II-B. In the proposed fault localization approach we 

use the concept of optimized test suites as shown in Fig. 3. 

With regard to the second research question (RQ2), we 

use the concept of statement execution frequency 

information (instead of binary information) in 

suspiciousness calculation formula of spectrum-based fault 

localization. As explained in Section II-C, existing SBFL 

techniques have limited diagnostic capabilities particularly 

when faults occur in loop bodies or iteration statements. 

There is one more limitation with SBFL techniques that 

statements with same suspiciousness scores result in ties in 

the ranking [1]. These limitations can be addressed if we 

incorporate statement execution frequency information 

instead of binary coverage information (0 or 1) in the 

suspiciousness calculation formula of existing SBFL 

techniques. The motivational examples given in Section II-C 

(Table IV, Table V, and Table VI) clearly show that, when 

we incorporate statement execution frequency information 

in the suspiciousness formula, the fault localization 

performance improves by 50% (from rank 8 to rank 4). 

Therefore, our proposed approach solves the inherent 

problems that exist with SBFL as discussed above, by 

incorporating the concept of statement execution frequency 

information in the suspiciousness calculation formula of 

existing SBFL techniques as shown in Fig. 3.  

The following paragraph answers the third research 

question (RQ3). As outlined in Section II-D, SBFL 

techniques generally perform well, but there are instances 

where they are unable to identify faults early in the 

suspiciousness rank list. To address this limitation and 

further enhance the absolute rank of faulty program entities, 

we incorporate the concept of fault context into existing 

SBFL techniques. This approach involves computing the 

suspiciousness of a program entity by combining its own 

suspiciousness score with that of its fault context, as 

explained in Section II-D. The practical example provided in 

the section demonstrates how utilizing fault context can lead 

to further improvement in the performance of existing SBFL 

techniques. In Section II-D, we provided a motivational 

example that demonstrates how the fault context-based 

method can enhance the accuracy of fault localization 

compared to traditional SBFL techniques such as Ochiai, 

Jaccard etc. Specifically, as explained in the example given 

in Section II-D, the fault context-based method improved 

the fault localization accuracy by 33.33%. To enhance the 

absolute rank of program entities responsible for the failure 

of the program, our proposed framework (depicted in Fig. 3) 

make use of the concept of fault context. 

In response to the fourth research question (RQ4), we 

propose a hybrid framework that effectively enhances the 

performance of existing SBFL techniques in a single fault 

perspective. We have conducted rigorous experimentation to 

measure the efficiency of our proposed approach. We have 

evaluated the proposed approach using four different 

measures, namely, Exam score, Cumulative Number of 

Statements Examined, Top-N, and Wilcoxon signed-rank 

test. Section IV-C contains a detailed presentation of the 

experimental results. Therefore, by analyzing these results, 

we are able to answer the fourth research question. 

B. Experimental Setup 

In order to apply our proposed approach, we have created 

a prototype tool. The suspiciousness score and other results 

are computed by this automated tool, which we have 

developed in Python 3.7.3, for use in our experimentation. 

i. Subject Programs 

To evaluate our proposed approach, we have performed 

extensive experimentation work in which we have utilized 

the popular seven Siemens test suite subject programs and 

four large real-world programs, as described in Table XIII. 

Out of four large real-world programs, three are UNIX 

utilities, namely flex, sed, grep, and the fourth one is ‘space’ 

program, which is an interpreter for array definition 

language (ADL). All subject programs were obtained from 

the software-artifact infrastructure repository (SIR) 

(http://sir.unl.edu/portal/index.php) [26]. As per the software 

engineering literature, these subject programs have been 

widely utilized in fault localization experimentation [12], 

[14], [27]. In contrast to UNIX utilities, which contain both 

real-world and seeded errors, Siemens applications contain 

only a single seeded fault. In our experimentation study, we 

have utilized only single fault versions of all the subject 

programs. 
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ii. Data Collection Process 

In our experimentation work, various faulty versions of 

subject programs are used, as shown in Table XIII. With all 

of the available test inputs, we executed each faulty version. 

For the purpose of determining whether the outcome was 

successful or unsuccessful, we then compared the test 

execution output of each faulty version to its corresponding 

fault-free original version. The test input is marked as 

failing if the output of a version that has a fault differs from 

the output of its fault-free counterpart. But, if the output of a 

faulty version is identical to that of its faulty-free 

counterpart, the test input is deemed successful. 

On a Windows 10 computer with an Intel® Core i5 

processor running at 2.7 GHz and 8 GB of RAM, a Linux 

environment was installed and used for all experiments. The 

programs were compiled using GCC 11.3.0, and the code 

coverage data for each test execution was collected using 

GCOV 11.3.0 [https://gcc.gnu.org/onlinedocs/gcc/Gcov.html]. 

iii. Evaluation metrics and criteria 

In order to evaluate the effectiveness of a specific fault 

localization technique, it is necessary to utilize appropriate 

metrics. Within this section, we will examine the various 

evaluation metrics employed to measure the efficacy of our 

proposed approach in comparison to traditional SBFL 

methods. This study employs four metrics to evaluate the 

proposed approach, specifically the Exam score, Cumulative 

Number of Statements Examined, Top-N, and Wilcoxon 

Signed-Rank Test, in order to assess its performance against 

the classic SBFL methods. 

a) Exam Score 

Choosing an appropriate metric is essential when 

evaluating the efficacy of a single fault localization 

technique. Among the most frequently used metrics in the 

fault localization literature [11], [12], [27], [29], is the Exam 

Score. This metric is a subset of the original Score metric 

[12], which represents the proportion of code that does not 

require inspection to locate a fault. In contrast, the Exam 

Score is a more straightforward metric that refers to the 

percentage of code that needs to be inspected to identify the 

initial faulty statement in a program being debugged. The 

EXAM score metric has two variants: the relative and the 

absolute variant. The relative variant takes into account the 

size of the program being debugged, i.e., the total number of 

statements. In contrast, the absolute variant, which is also a 

form of the EXAM score metric, calculates the number of 

statements that need to be inspected to detect the first faulty 

instruction. The formula for the EXAM score metric is 

presented below in (7). 

Exam Score =
Rank of Fault

Overall Statement Count of the Program
× 100% (7) 

A higher level of performance of the fault localization 

method is indicated by a lower Exam Score because it 

necessitates the inspection of a smaller fraction of the code 

to identify the faulty statements. In this study, we utilize the 

Exam Score metric to compare the proposed approach with 

traditional SBFL methods. The objective is to evaluate the 

effectiveness of the proposed approach compared to the 

existing SBFL techniques. The proposed approach enhances 

the absolute suspiciousness ranking of the faulty program 

entities in the fault rank list. The improvement in the 

proposed approach can be defined using the formula given 

in (8). 

Improvement (𝐴, B) =  
𝐴−𝐵

𝐴
× 100%  (8) 

In the above formula, A and B represent the definitive 

rank (i.e. absolute rank) produced by the traditional SBFL 

method and the proposed approach, respectively. 

b) Cumulative Number of Statements Examined 

The cumulative number of statements examined (CSE) is 

a valuable evaluation tool used to estimate the effectiveness 

of a fault localization technique. It reflects the total number 

of program statements scrutinized by the technique in 

question during the fault localization process. The basic idea 

behind CSE is that a good fault localization technique 

should examine as few statements as possible to locate the 

fault accurately. Therefore, the lower the CSE value, the 

more efficient the technique is considered to be. 

CSE is a cumulative metric, which means that it counts 

all the statements examined by the technique up to a certain 

point in the debugging process, and not just the statements 

examined in a single iteration. This allows for a fair 

comparison of different fault localization techniques, even if 

they use different strategies for examining program 

statements. 

As the fault localization technique is applied, the number 

of program statements examined is counted. A program 

statement is considered examined if it is executed or 

evaluated in some way during the fault localization process. 

The cumulative number of statements examined is 

calculated as the sum of the statements examined up to the 

point where the fault was successfully localized across all 

faulty versions considered in the experimentation. This 

value is used as a measure of the efficiency of the fault 

localization technique. 

Suppose there is a program with N faulty versions, and 

two fault localization techniques, S and T. Let S(i) and T(i) 

represent the number of statements that need to be inspected 

by techniques S and T, respectively, to locate all the faults in 

the ith faulty version. If it is observed that technique S 

requires fewer statements to be examined than technique T, 

as depicted in (9), then it can be concluded that technique S 

is more effective than technique T in identifying all the 

faults in the faulty versions. 

TABLE XIII 

SUBJECT PROGRAMS USED IN EMPIRICAL RESEARCH 

Program 
Line of 
Code 

Faulty versions 

used in the 

Experimentation 

Brief Description 

Siemens programs  

print_tokens 565 v5, v7 Lexical analyzer 

print_tokens2 510 v4, v5, v6, v7 Lexical analyzer 
tcas 173 v1, v2, v3, v4, v5 Altitude separation 

tot_info 406 v2, v4, v5, v7 Information 

measure 
replace 562 v1, v3, v4, v6, v7 Pattern recognition 

schedule 412 v2, v3, v4 Priority scheduler 

schedule2 307 v6, v7 Priority scheduler 
Large real-world programs  

flex 13,892 v1, v2, v3, v4 Lexical analyzer 

generator 
sed 12,062 v2, v3 Textual manipulator 

grep 12,653 v1, v2 Pattern searcher 

space 9,126 v5, v14, v15, v18, 
v20, v21, v23 

ADL interpreter 
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∑ 𝑆(𝑖) < 𝑁
𝑖=1 ∑ 𝑇 (𝑖)𝑁

𝑖=1   (9) 

c) Top-N 

The metric known as Top-N refers to the percentage of 

faults detected by a fault localization technique within the 

top-n positions of the ranked list [28]. Here, N in Top-N 

denotes the position like N =1, 5, 10. The smaller value of N 

is considered to be more stringent. For example, N=5 

requires that all faults (in different versions of a subject 

program) should be ranked in top 5 positions in the ranked 

list. The fault localization literature frequently makes use of 

the Top-N metric. In our study, we use the top-N metric to 

compare the performance of the conventional SBFL 

techniques and our proposed approach. 

d) Wilcoxon Signed-Rank Test  

The Wilcoxon signed-rank test is a statistical technique 

that is frequently employed to compare two paired samples 

and evaluate the difference between them. It is a non-

parametric test, which implies that it does not assume any 

particular distribution of the data. This makes it a useful 

alternative to parametric tests, like the paired t-test, when 

normality assumptions are not met. The test works by 

comparing the ranks of the differences between paired 

observations, rather than the actual values themselves. This 

approach makes it particularly useful when dealing with 

data that is not normally distributed or contains outliers [14]. 

The Wilcoxon signed-rank test can be utilized in fault 

localization to compare the efficacy of various techniques 

used to locate faults on a single set of faults. By comparing 

the performance of various fault localization techniques on 

the same set of faults, their effectiveness can be assessed. To 

do this, the techniques are applied to the set of faults, and 

the number of statements that each technique examines to 

locate the first faulty statement is recorded. These numbers 

can then be used to rank the performance of the techniques. 

The Wilcoxon signed-rank test can then be applied to 

determine whether any differences in the rankings are 

statistically significant or just due to chance. This allows for 

a more robust evaluation of the effectiveness of different 

fault localization techniques and can help identify which 

techniques are most effective for a given software system. 

In this research work, we conducted experiments to 

demonstrate that our proposed approach significantly 

improves the performance of existing SBFL techniques. We 

began by calculating the total number of statements that a 

programmer would need to analyze to locate the first faulty 

statement, and found that our proposed approach was more 

efficient than Ochiai and other conventional SBFL 

approaches. We then evaluated the two-sided alternative 

hypothesis that the existing SBFL methods like Ochiai (or 

Jaccard, DStar etc.) must examine an equal or greater 

number of statements than our proposed approach to achieve 

similar results. 

The null hypothesis used in this study is as follows.  

H0: The existing SBFL technique requires examining the 

same or fewer statements than the proposed approach. 

In the event that the null hypothesis is rejected, the 

alternative hypothesis will be accepted. According to the 

alternative hypothesis, the proposed approach necessitates 

examining fewer statements than the compared classical 

SBFL technique, indicating its superior efficiency. 

C. Results and Analysis 

This section presents a comprehensive analysis of the 

results of the experimental study to validate our proposed 

approach/ framework. We use four evaluation metrics 

namely EXAM score, cumulative number of statements 

examined (CSE),  Top-N, and Wilcoxon Signed-Rank Test, 

as explained above in Section IV-B (iii), to evaluate the 

performance and efficiency of the proposed approach as 

against the classic SBFL techniques. 

i. Improving fault localization performance using test suite 

optimization 

In response to the first research question (RQ1), this 

section further illustrates that as per the proposed approach, 

how we have used the concept of test suite optimization (see 

Section II-B for details) to improve the effectiveness of 

locating faults within a program in our experimentation 

work. In Section II-B, it is explained how the PTD score of 

a test suite can influence the accuracy of identifying faults in 

a program in both positive and negative ways. To be precise, 

a test suite with a higher PTD score can enhance the 

efficiency of fault localization by refining the placement of 

faulty program units (e.g., statements) in the suspicious 

ranking list. The said ranking list is arranged in descending 

order based on the suspiciousness score of program entities, 

and the enhancement signifies that the faulty statement is 

more likely to be positioned at a higher rank in the list, thus 

facilitating its localization.  

 To increase the PTD score of a test suite T, we utilize a 

heuristic discussed in Section II-B. This heuristic involves 

eliminating from T those passing test cases, denoted as t, 

which exhibit a greater likelihood of executing a faulty 

statement. The heuristic is explained as follows. Here, S is 

the set of statements executed by t, MSS is the minimum 

suspiciousness set and 𝛼 is the threshold value.  

|𝑆∩𝑀𝑆𝑆|/|𝑀𝑆𝑆|> 𝛼  

The test case t can be removed from the test suite T, if 𝛼 

is greater than a certain threshold. There is no standard value 

for 𝛼 in practice as it is a matter of investigation on different 

experimental settings. It is understood that when passing test 

cases execute a significant number of statements within the 

MSS, there is a higher likelihood that they will execute the 

faulty statement, resulting in poorer accuracy in identifying 

faults during the debugging process of a program. 

Conversely, if the passing test cases execute only a small 

number of statements within the MSS, the test suite is 

considered optimized, and this approach can lead to 

improvement in the accuracy of identifying faults in a 

program. 

As previously stated, our experiments involved six test 

cases, three of which are passing test cases while the other 

three are failing that means do not give the expected output. 

The passing test cases executed specific percentage of 

statements within the MSS, and this information is presented 

in Table XIV for every subject program being utilized in our 

experiments. We can observe that certain passing test cases 

cover only a small number of statements in the MSS, 

making it less likely for those specific passing test cases to 

execute the statement that is a faulty one. In this way we 

optimize test suites for our proposed fault localization 

process (see Section II-B for details). Table XIV shows the 
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portion of MSS covered by the execution of each passing 

test case (T1, T2 & T3) in percentage. We can note that the 

passing test cases (T1, T2 & T3) of the optimized test suite 

for version V5 of ‘print_tokens’ subject program are 

covering 55.09%, 53.89% and 86.83% of statements in 

MSS, respectively. It is worth mentioning that in this 

scenario, T1 and T2 provide coverage to a limited portion of 

the MSS. Consequently, the probability of these passing test 

cases executing the faulty statement, as per the heuristic 

explained earlier, is relatively low. Similarly, the version 

V14 of ‘space’ subject program is covering 45.86%, 38.73% 

and 70.63% of statements in MSS, respectively. Now, 

suppose that in this case (V14 of ‘space’ program) passing 

test cases T1 and T2 do not execute the faulty statement as 

they are covering very less portion of the MSS in the test 

suite. These test cases exhibit coverage over a minimal 

section of the MSS. As a result, the PTD (Passing Test 

Discrimination) score for the test suite computes to 66.66%, 

specifically denoting that two out of three passing test cases 

do not execute the faulty statement. 

ii. Performance evaluation of the proposed approach based 

on EXAM Score  

In this subsection, we apply the proposed approach to 

three existing SBFL methods, namely Ochiai, Jaccard, and 

DStar, and evaluate the resulting performance improvements 

with respect to the EXAM score metric. The primary 

objective of our proposed approach is to enhance the 

performance of existing SBFL techniques. When we apply 

the proposed approach to the existing SBFL techniques, we 

denote them by appending an asterisk symbol ('*') to their 

respective original names. For instance, our proposed 

approach for the baseline Ochiai method is denoted as 

Ochiai*, and similarly, we use Jaccard* and DStar* denote 

the proposed approaches for the baseline methods Jaccard 

and DStar, respectively. In other words, our improved 

version of the baseline Ochiai method is denoted as Ochiai*, 

while Jaccard* and DStar* represent the improved versions 

of the baseline methods Jaccard and DStar, respectively. 

Table XV and Table XVI show a comparative analysis of 

the effectiveness between the proposed approach (Ochiai*) 

and the classic Ochiai method on Siemens programs and 

large real-world subject programs, respectively. The subject 

program, faulty version, and line of code (LOC) are 

displayed in the first three columns of Table XV and Table 

XVI, respectively. The performance of baseline method 

(classic Ochiai) in absolute and relative variants of EXAM 

score metric is shown in column 4 and 5, respectively. The 

absolute version of the EXAM score metric indicates the 

cost of finding the first fault by counting the number of 

program entities (in our study, statements) examined. On the 

other hand, the relative version of the metric takes into 

consideration the program's size and expresses the required 

effort as a percentage of the code examined to locate the 

fault. 

The line of code need to be examined (developer’s effort) 

using traditional Ochiai method in order to locate fault in 

terms of absolute measure is shown in column 4, and 

developer’s effort in terms of relative measure of EXAM 

score is shown in column 5. Similarly, the performance of 

the proposed approach (Ochiai*) in absolute and relative 

variants of EXAM score metric is shown in column 6 and 7, 

respectively. Columns 8 and 9 of Table XV and Table XVI 

illustrate how the traditional Ochiai method and the 

proposed approach differ in terms of the absolute and 

relative measures of EXAM score. The improvement 

achieved by the proposed approach over the classic Ochiai 

method in terms of relative changes in the EXAM score 

values is summarized in column 10 of both the tables. 

By observing row 1 of Table XV, we can note that in 

order to locate fault in ‘print_tokens’ program the traditional 

Ochiai method requires 16 statements to be examined (i.e. in 

relative terms it requires 2.83% of total code to be 

inspected), whereas our proposed approach in this particular 

case is able to locate the fault directly in one search with an 

improvement of 93.75%. Likewise, if we observe row 7 of 

Table XVI (‘sed’ UNIX utility program, version V2), we 

find that 31 statements need to be searched (0.26% of total 

code) by the classic Ochiai technique and only 3 statements 

need to be searched (0.02%) by our proposed approach, with 

an improvement of 90.32%. Similarly version 21 of ‘space’ 

program (row 12 of Table XVI) requires 95 statements to be 

checked (1.04% of code) by the classic Ochiai, while, only 9 

statements are required to be examined (0.10% of code) by 

our proposed approach, with an improvement of 90.53% as 

shown in the last column of Table XVI. 

TABLE XIV 
PASSING TEST CASES (T1, T2 & T3) OF OPTIMIZED TEST SUITES 

COVERING A SPECIFIC PERCENTAGE OF STATEMENTS IN MSS 

Subject Program Version T1 T2 T3 

Siemens Programs 
print_tokens V5 55.09 53.89 86.83 

print_tokens V7 56.59 87.60 62.02 

print_tokens2 V4 46.49 76.76 47.03 
print_tokens2 V5 67.40 60.77 77.35 

print_tokens2 V6 48.86 67.05 86.36 

print_tokens2 V7 69.82 50.89 66.86 
replace V1 41.26 87.38 41.26 

replace V3 75.61 33.17 92.68 

replace V4 61.17 30.10 82.52 
replace V6 40.19 35.41 29.67 

replace V7 50.00 71.79 71.79 

schedule V2 29.80 29.80 82.78 

schedule V3 86.75 86.09 57.62 

schedule V4 67.55 86.09 85.43 

schedule2 V6 43.61 80.45 69.92 
schedule2 V7 43.38 79.41 60.29 

tcas V1 96.23 86.79 56.60 

tcas V2 56.60 56.60 96.23 
tcas V3 3.92 3.92 86.27 

tcas V4 56.60 94.34 94.34 

tcas V5 3.51 52.63 52.63 
tot_info V2 73.08 47.12 47.12 

tot_info V4 76.11 65.49 38.94 

tot_info V5 55.56 84.26 34.26 
tot_info V7 77.19 40.35 42.98 

Large real-world programs 

flex V1 62.22 47.40 43.32 
flex V2 58.27 44.45 41.78 

flex V3 56.12 42.68 36.47 

flex V4 59.46 40.77 38.92 
grep V1 68.90 63.89 64.23 

grep V2 70.85 80.15 77.30 

sed V2 95.09 94.57 87.17 
sed V3 93.94 62.66 39.03 

space V14 45.86 38.73 70.63 

space V15 68.21 66.58 40.72 
space V18 81.69 76.42 48.39 

space V20 76.24 58.71 78.25 

space V21 80.60 38.36 76.41 
space V23 76.67 28.46 29.00 

space V5 73.61 73.61 81.22 
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The average improvement achieved by the proposed 

approach (Ochiai*) over the classic Ochiai method in terms 

of relative EXAM score is shown in the last row of Table 

XV (for Siemens subject programs) and Table XVI (for 

large real-world subject programs) . We can note that there 

is an overall improvement of 62.76% on Siemens suite 

programs and 65.23% on large real-world programs. 

TABLE XV 

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON SIEMENS PROGRAMS BY THE PROPOSED APPROACH (OCHIAI*) 

Subject 

Program  

Version LOC Line of Code Examined Difference Improvement 

% Ochiai  EXAM Score 

% (Ochiai) 

Using Proposed 

Approach (Ochiai*) 

EXAM Score 

% (Ochiai*) 

LOC 

Examined 

EXAM 

Score % 

print_tokens V7 565 16 2.83 1 0.18 -15 -2.65 93.75 

print_tokens V5 565 15 2.65 5 0.88 -10 -1.77 66.67 

print_tokens2 V6 510 6 1.18 1 0.20 -5 -0.98 83.33 
print_tokens2 V7 510 7 1.37 2 0.39 -5 -0.98 71.43 

print_tokens2 V5 510 8 1.57 2 0.39 -6 -1.18 75.00 

print_tokens2 V4 510 8 1.57 4 0.78 -4 -0.78 50.00 
replace V6 562 28 4.98 1 0.18 -27 -4.80 96.43 

replace V7 562 13 2.31 4 0.71 -9 -1.60 69.23 

replace V1 562 22 3.91 4 0.71 -18 -3.20 81.82 
replace V4 562 28 4.98 17 3.02 -11 -1.96 39.29 

replace V3 562 76 13.52 36 6.41 -40 -7.12 52.63 

schedule V3 412 5 1.21 1 0.24 -4 -0.97 80.00 

schedule V2 412 19 4.61 6 1.46 -13 -3.16 68.42 

schedule V4 412 15 3.64 9 2.18 -6 -1.46 40.00 

schedule2 V6 307 17 5.54 3 0.98 -14 -4.56 82.35 
schedule2 V7 307 92 29.97 46 14.98 -46 -14.98 50.00 

tcas V4 173 2 1.16 1 0.58 -1 -0.58 50.00 

tcas V1 173 13 7.51 3 1.73 -10 -5.78 76.92 
tcas V2 173 16 9.25 3 1.73 -13 -7.51 81.25 

tcas V3 173 27 15.61 19 10.98 -8 -4.62 29.63 

tcas V5 173 30 17.34 24 13.87 -6 -3.47 20.00 
tot_info V7 406 9 2.22 2 0.49 -7 -1.72 77.78 

tot_info V2 406 35 8.62 10 2.46 -25 -6.16 71.43 

tot_info V4 406 15 3.69 12 2.96 -3 -0.74 20.00 
tot_info V5 406 24 5.91 14 3.45 -10 -2.46 41.67 

Average     21.84 6.29 9.20 2.88 -12.64 -3.41 62.76 

 
TABLE XVI 

IMPROVEMENT IN PERFORMANCE OF FAULT LOCALIZATION ON LARGE REAL-WORLD PROGRAMS BY THE PROPOSED APPROACH (OCHIAI*) 

Subject 

Program  

Version LOC Line of Code Examined Difference Improvement 

% Ochiai  EXAM Score 

% (Ochiai) 

Using Proposed 

Approach (Ochiai*) 

EXAM Score 

% (Ochiai*) 

LOC 

Examined 

EXAM 

Score % 

flex V3 13892 23 0.17 9 0.06 -14 -0.10 60.87 
flex V1 13892 38 0.27 17 0.12 -21 -0.15 55.26 

flex V2 13892 52 0.37 29 0.21 -23 -0.17 44.23 

flex V4 13892 58 0.42 32 0.23 -26 -0.19 44.83 
grep V1 12653 33 0.26 1 0.01 -32 -0.25 96.97 

grep V2 12653 20 0.16 17 0.13 -3 -0.02 15.00 

sed V2 12062 31 0.26 3 0.02 -28 -0.23 90.32 
sed V3 12062 38 0.32 5 0.04 -33 -0.27 86.84 

space V23 9126 23 0.25 2 0.02 -21 -0.23 91.30 

space V20 9126 147 1.61 7 0.08 -140 -1.53 95.24 
space V18 9126 50 0.55 8 0.09 -42 -0.46 84.00 

space V21 9126 95 1.04 9 0.10 -86 -0.94 90.53 

space V5 9126 19 0.21 9 0.10 -10 -0.11 52.63 
space V15 9126 29 0.32 16 0.18 -13 -0.14 44.83 

space V14 9126 207 2.27 154 1.69 -53 -0.58 25.60 

Average   57.53 0.56 21.20 0.21 -36.33 -0.36 65.23 
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Fig. 4.  Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai* on 

Siemens suite subject programs: (a) print_tokens (b) print_tokens2. 
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(e) 

Fig. 5.  Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai*on Siemens 

suite subject programs: (a) replace (b) schedule (c) schedule2 (d) tcas (e) tot_info. 
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Fig. 6.  Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai* on large 

real-world subject programs: (a) flex (b) grep. 
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Furthermore, in order to better demonstrate the 

improvement achieved by our proposed approach compared 

to the existing SBFL techniques, we employ the EXAM 

score to assess its effectiveness in a more insightful manner. 

To illustrate this, we graphically depict the effectiveness of 

Ochiai* in comparison to classic Ochiai on the faulty 

versions of Siemens programs (Fig. 4 & Fig. 5) and the four 

large real-world programs (Fig. 6 & Fig. 7), respectively. 

The y axis represents the developer’s effort in terms of 

percentage of code examined (relative EXAM score) and the 

x axis signifies the faulty version of the subject program 

being debugged. Upon analyzing Fig. 4(b), it becomes 

evident that in the case of version v6 of the ‘print_tokens2’ 

program, the proposed approach significantly reduces the 

effort required to locate the fault. For example, while 1.18% 

of the code needs to be searched using Ochiai metric, the 

proposed approach (Ochiai*) only requires tracing through 

0.20% of the code. Likewise, when examining the ‘grep’ 

UNIX utility (version v1) in Fig. 6(b), the Ochiai method 

necessitates checking 0.26% of the code (33 LOC), while 

our proposed approach (referred to as Ochiai*) only requires 

searching through a mere 0.01% of the code (1 LOC). 

We now present the results of applying our proposed fault 

localization approach to the widely-used Jaccard and DStar 

SBFL methods. This enhancement of Jaccard and DStar are 

referred to as Jaccard* and DStar*, respectively. Table XVII 

and Table XVIII compare the improvement achieved by 

Jaccard* over classic Jaccard on Siemens programs and 

large real-world programs, respectively. As a specific case, 

for example, the version V7 of the subject program ‘replace’ 

(row 8 in Table XVII) requires only 5 statements to be 

inspected for locating a fault by the Jaccard*, whereas 15 

statements are required to be checked if we use simple 

Jaccard method. 
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Fig. 7.  Comparison of fault localization performance using EXAM score between the traditional Ochiai and the proposed approach Ochiai* on large 

real-world subject programs: (a) sed (b) space. 

TABLE XVII 

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON SIEMENS PROGRAMS BY THE PROPOSED APPROACH (JACCARD*) 

Subject 
Program 

Version LOC 

Line of Code Examined Difference 
Improvement 

% 
Using 

Jaccard  

EXAM Score 

% (Jaccard) 

Using Proposed 

Approach (Jaccard*) 

EXAM Score 

% (Jaccard*) 

Code 

Examined 

EXAM 

Score % 

print_tokens V7 565 16 2.83 1 0.18 -15 -2.65 93.75 
print_tokens V5 565 15 2.65 6 1.06 -9 -1.59 60.00 

print_tokens2 V6 510 13 2.55 2 0.39 -11 -2.16 84.62 

print_tokens2 V4 510 8 1.57 4 0.78 -4 -0.78 50.00 
print_tokens2 V7 510 18 3.53 4 0.78 -14 -2.75 77.78 

print_tokens2 V5 510 6 1.18 6 1.18 0 0.00 0.00 

replace V1 562 12 2.14 4 0.71 -8 -1.42 66.67 
replace V7 562 15 2.67 5 0.89 -10 -1.78 66.67 

replace V6 562 28 4.98 11 1.96 -17 -3.02 60.71 

replace V4 562 28 4.98 17 3.02 -11 -1.96 39.29 
replace V3 562 96 17.08 39 6.94 -57 -10.14 59.38 

schedule V3 412 2 0.49 1 0.24 -1 -0.24 50.00 

schedule V2 412 10 2.43 6 1.46 -4 -0.97 40.00 
schedule V4 412 15 3.64 9 2.18 -6 -1.46 40.00 

schedule2 V6 307 17 5.54 3 0.98 -14 -4.56 82.35 

schedule2 V7 307 81 26.38 48 15.64 -33 -10.75 40.74 
tcas V2 173 6 3.47 4 2.31 -2 -1.16 33.33 

tcas V4 173 10 5.78 5 2.89 -5 -2.89 50.00 

tcas V1 173 20 11.56 8 4.62 -12 -6.94 60.00 
tcas V3 173 27 15.61 13 7.51 -14 -8.09 51.85 

tcas V5 173 30 17.34 24 13.87 -6 -3.47 20.00 
tot_info V7 406 9 2.22 2 0.49 -7 -1.72 77.78 

tot_info V5 406 10 2.46 6 1.48 -4 -0.99 40.00 

tot_info V4 406 15 3.69 7 1.72 -8 -1.97 53.33 
tot_info V2 406 35 8.62 24 5.91 -11 -2.71 31.43 

Average     21.68 6.22 10.36 3.17 -11.32 -3.05 53.19 
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Thus, in this case the Jaccard* has achieved an 

improvement of 66.67% in fault localization result over the 

classic Jaccard method. Similarly, if we observe Table 

XVIII, we find that in case of ‘sed’ UNIX program (row 8, 

version v3), there is an improvement of 88.89% in fault 

localization results in favor of Jaccard*. 

It can be observed that the Jaccard* method demonstrates 

a significant enhancement, with an overall average 

improvement of 53.19% on Siemens suite programs and 

65.66% on large real-world subject programs compared to 

the traditional Jaccard approach, as depicted in the last row 

of Table XVII and Table XVIII, respectively. 

Fig. 8 to Fig. 11 graphically highlight the effectiveness of 

Jaccard* in comparison to the classic Jaccard method for the 

faulty versions of each subject program in the Siemens suite 

and in the large real-world programs, respectively. In Fig. 8 

(a), we observe that for version v7 of the ‘print_tokens’ 

subject, the classic Jaccard method necessitates checking 

2.83% of the code, whereas the proposed approach 

(Jaccard*) only requires 0.18% of the code to be checked. 

Similarly, for version v5 of print_tokens, Jaccard* examines 

just 1.06% of the code compared to Jaccard, which needs 

2.65% of the code to be examined. Based on the observation 

of Fig. 9 (c) for ‘schedule2’ program (version v6), it is 

evident that the Jaccard method requires 5.54% of the code 

to be searched in order to locate the fault, whereas Jaccard* 

only needs 0.98% of the code to be inspected for the same 

purpose. Moving on to version v7 of ‘schedule2’ program, 

Jaccard* demonstrates higher efficiency, as it requires only 

15.64% of the code to be checked compared to Jaccard, 

which needs 37.46% of the code to be searched to identify 

the faulty statement. Similarly, if we observe other graphs 

shown in Fig. 8 and Fig. 9, it is evident that Jaccard* 

(proposed approach) outperforms the traditional Jaccard in 

most of the cases. 

In the same way as shown in Fig. 10 (a), the ‘flex’ 

program (version V3) requires 0.20% (28 LOC) and 0.08% 

(11 LOC) of the code to be examined by Jaccard and 

Jaccard*, respectively. Likewise, when examining 'grep' 

UNIX utility for version v1 in Fig. 10 (b), we observe that 

the Jaccard method entails checking 0.26% of the code (33 

LOC), whereas Jaccard* only needs to search through a 

mere 0.03% of the code (4 LOC). Also, in Fig. 11 (b), when 

analyzing 'space' program (version v20), Jaccard proves to 

be less efficient, as it necessitates the examination of 1.61% 

of the code (147 LOC) to locate the faulty statement. In 

contrast, Jaccard* outperforms it, as it only needs to search 

0.30% of the code (27 LOC) to achieve the same result. 

Similarly, for the 'space' program (version v23), the classic 

Jaccard method necessitates inspecting 0.25% of the code 

(23 LOC), while Jaccard* requires only 0.08% of the code 

(7 LOC) to be searched to identify the fault. 

TABLE XVIII 

IMPROVEMENT IN PERFORMANCE OF FAULT LOCALIZATION ON LARGE REAL-WORLD PROGRAMS BY THE PROPOSED APPROACH (JACCARD*) 

Subject 

Program 
Version LOC 

Line of Code Examined Difference 
Improvement 

% 
Using 

Jaccard 

EXAM Score 

% (Jaccard) 

Using Proposed 

Approach (Jaccard*) 

EXAM Score 

% (Jaccard*) 

Code 

Examined 

EXAM 

Score % 

flex V3 13892 28 0.20 11 0.08 -17 -0.12 60.71 

flex V2 13892 45 0.32 20 0.14 -25 -0.18 55.56 
flex V1 13892 49 0.35 27 0.19 -22 -0.16 44.90 

flex V4 13892 63 0.45 27 0.19 -36 -0.26 57.14 

grep V1 12653 33 0.26 4 0.03 -29 -0.23 87.88 
grep V2 12653 28 0.22 17 0.13 -11 -0.09 39.29 

sed V2 12062 13 0.11 2 0.02 -11 -0.09 84.62 

sed V3 12062 18 0.15 2 0.02 -16 -0.13 88.89 
space V23 9126 23 0.25 7 0.08 -16 -0.18 69.57 

space V18 9126 50 0.55 8 0.09 -42 -0.46 84.00 

space V5 9126 23 0.25 9 0.10 -14 -0.15 60.87 
space V20 9126 147 1.61 27 0.30 -120 -1.31 81.63 

space V15 9126 57 0.62 29 0.32 -28 -0.31 49.12 

space V21 9126 145 1.59 49 0.54 -96 -1.05 66.21 
space V14 9126 235 2.58 107 1.17 -128 -1.40 54.47 

Average   63.80 0.63 23.07 0.23 -40.73 -0.41 65.66 
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Fig. 8.  Comparison of fault localization performance using EXAM score between the traditional Jaccard and the proposed approach Jaccard* on 

Siemens suite subject programs: (a) print_tokens (b) print_tokens2. 
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(e) 

Fig. 9.  Comparison of fault localization performance using EXAM score between the classic Jaccard and the proposed approach Jaccard* on Siemens 
suite subject programs: (a) replace (b) schedule (c) schedule2 (d) tcas (e) tot_info. 
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Fig. 10.  Comparison of fault localization performance using EXAM score between the traditional Jaccard and the proposed approach Jaccard* on 

large real-world subject programs: (a) flex (b) grep. 
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Fig. 11.  Comparison of fault localization performance using EXAM score between the classic Jaccard and the proposed approach Jaccard* on large 

real-world subject programs: (a) sed (b) space. 

TABLE XIX 

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON SIEMENS PROGRAMS BY THE PROPOSED APPROACH (DSTAR*) 

Subject 
Program 

Version LOC 

Line of Code Examined Difference 
Improvement 

% 
Using 

DStar 

EXAM Score 

% (DStar) 

Using  Proposed 

Approach (DStar*) 

EXAM Score 

% (DStar*) 

Code 

Examined 

EXAM 

Score % 

print_tokens V7 565 16 2.83 1 0.18 -15 -2.65 93.75 

print_tokens V5 565 12 2.12 5 0.88 -7 -1.24 58.33 

print_tokens2 V7 510 8 1.57 2 0.39 -6 -1.18 75.00 
print_tokens2 V4 510 6 1.18 4 0.78 -2 -0.39 33.33 

print_tokens2 V5 510 20 3.92 14 2.75 -6 -1.18 30.00 

print_tokens2 V6 510 23 4.51 16 3.14 -7 -1.37 30.43 
replace V1 562 11 1.96 3 0.53 -8 -1.42 72.73 

replace V7 562 4 0.71 4 0.71 0 0.00 0.00 

replace V6 562 13 2.31 9 1.60 -4 -0.71 30.77 
replace V4 562 28 4.98 17 3.02 -11 -1.96 39.29 

replace V3 562 82 14.59 41 7.30 -41 -7.30 50.00 

schedule V3 412 14 3.40 1 0.24 -13 -3.16 92.86 
schedule V2 412 14 3.40 6 1.46 -8 -1.94 57.14 

schedule V4 412 9 2.18 7 1.70 -2 -0.49 22.22 

schedule2 V6 307 7 2.28 3 0.98 -4 -1.30 57.14 
schedule2 V7 307 28 9.12 18 5.86 -10 -3.26 35.71 

tcas V1 173 21 12.14 4 2.31 -17 -9.83 80.95 

tcas V2 173 15 8.67 4 2.31 -11 -6.36 73.33 
tcas V4 173 29 16.76 6 3.47 -23 -13.29 79.31 

tcas V5 173 24 13.87 8 4.62 -16 -9.25 66.67 

tcas V3 173 27 15.61 20 11.56 -7 -4.05 25.93 
tot_info V7 406 7 1.72 2 0.49 -5 -1.23 71.43 

tot_info V5 406 14 3.45 8 1.97 -6 -1.48 42.86 

tot_info V2 406 35 8.62 10 2.46 -25 -6.16 71.43 
tot_info V4 406 38 9.36 12 2.96 -26 -6.40 68.42 

Average     20.20 6.05 9.00 2.55 -11.20 -3.50 54.36 

 

TABLE XX 

IMPROVEMENT IN THE PERFORMANCE OF FAULT LOCALIZATION ON LARGE REAL-WORLD PROGRAMS BY THE PROPOSED APPROACH (DSTAR*) 

Subject 

Program  

Version LOC Line of Code Examined Difference Improvement 

% Using 

Dstar 

EXAM Score 

% (Dstar) 

Using Proposed 

Approach (DStar*) 

EXAM Score 

% (DStar*) 

Code 

Examined 

EXAM 

Score % 

flex V3 13892 24 0.17 7 0.05 -17 -0.12 70.83 
flex V1 13892 34 0.24 18 0.13 -16 -0.12 47.06 
flex V2 13892 51 0.37 13 0.09 -38 -0.27 74.51 

flex V4 13892 55 0.40 24 0.17 -31 -0.22 56.36 

grep V1 12653 28 0.22 1 0.01 -27 -0.21 96.43 
grep V2 12653 156 1.23 67 0.53 -89 -0.70 57.05 

sed V3 12062 30 0.25 2 0.02 -28 -0.23 93.33 

sed V2 12062 20 0.17 11 0.09 -9 -0.07 45.00 
space V23 9126 15 0.16 2 0.02 -13 -0.14 86.67 

space V20 9126 57 0.62 6 0.07 -51 -0.56 89.47 

space V18 9126 74 0.81 8 0.09 -66 -0.72 89.19 
space V5 9126 68 0.75 17 0.19 -51 -0.56 75.00 

space V14 9126 34 0.37 19 0.21 -15 -0.16 44.12 

space V21 9126 83 0.91 29 0.32 -54 -0.59 65.06 
space V15 9126 187 2.05 104 1.14 -83 -0.91 44.39 

Average   61.07 0.58 21.87 0.21 -39.20 -0.37 68.96 
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Table XIX and Table XX shown above compare the 

improvement achieved by DStar* over classic DStar. In the 

case of the 'tcas' program (version v5) given in row 20 of 

Table XIX, the traditional DStar method requires searching 

through 24 statements (13.87% of the code), whereas 

DStar* only needs to check 8 statements (4.62% of the 

code) to identify the faulty statement. The last column 

shows that there is an improvement of 66.67% in terms of 

reduction in the developer’s effort in searching for the fault. 

For the 'space' program (version v18) as shown in Table 

XX, DStar examines 74 statements (0.81% of the code), 

while DStar* only needs to search 8 statements (0.09% of 

the code) to find the fault, reducing the developer's effort by 

89.19%. It is noteworthy that the DStar* method attains a 

notable improvement, achieving an overall average 

improvement of 54.36% on Siemens suite programs and 

68.96% on large real-world programs compared to the 

conventional DStar, as evidenced in the last rows of Table 

XIX and Table XX, respectively. 

We will now graphically compare the performance of 

DStar* and classic DStar on Siemens programs (see Fig. 12, 

and Fig. 13) and large real-world programs (see Fig. 14), 

respectively. For the 'schedule' program (version v3) in Fig. 

12 (d), DStar checks 3.40% of the code (14 LOC) to find the 

fault, whereas DStar* inspects only 0.24% of the code  

(1 LOC) to locate the fault. For the tot_info program 

(version v7) in Fig. 13, DStar identifies faults by checking 

1.72% of the code (7 LOC), whereas DStar* achieves the 

same with just 0.49% of the code (2 LOC) inspected. 

Similarly, for the 'flex' program (version v3) as shown in 

Fig. 14 (a), classic DStar searches through 0.17% of the 

code (24 LOC) to find the fault, while DStar* examines only 

0.05% of the code (7 LOC) to identify the faulty statement. 

Similar results can be observed from the other graphs shown 

in Fig. 12, Fig. 13, and Fig. 14.  
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Fig. 12.  Comparison of fault localization performance using EXAM score between the traditional DStar and the proposed approach DStar* on 

Siemens suite subject programs: (a) print_tokens (b) print_tokens2 (c) replace (d) schedule (e) schedule2 (f) tcas. 
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Our results confirm improved fault localization with 

Jaccard* and DStar*, reinforcing the efficacy of our 

proposed approach/ framework.  

In the following sections we present a comprehensive 

evaluation of our proposed approach's overall performance 

using three SBFL techniques Ochiai, Jaccard, and DStar. 

We assess their effectiveness based on the EXAM score, 

considering both Siemens programs and large real-world 

subject programs. Our proposed approach enhances the 

performance of classic SBFL techniques, resulting in 

improved versions labeled as Ochiai*, Jaccard*, and DStar*, 

as explained before. In Fig. 15, we compare the performance 

of Ochiai with that of Ochiai*, while Fig. 16 presents a 

comparison between Jaccard and Jaccard* and Fig. 17 

displays the comparative analysis of DStar and DStar*. Fig. 

15 (a) shows that Ochiai* can identify 52% of the faults in 

the faulty versions of the Siemens test suite subject 

programs by inspecting only 1% or less of the code. In 

contrast, the Ochiai method is unable to locate any fault by 

examining the same 1% or less of the code. Moreover, the 

Ochiai* can identify 64% of the faults in the faulty versions 

of the Siemens test suite by inspecting 2% or less of the 

code, whereas the traditional Ochiai method can only 

identify 24% of the faults. 
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Fig. 13.  Comparison of fault localization performance using EXAM score between the classic DStar and the proposed approach DStar* on Siemens suite 
subject program: tot_info. 
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Fig. 14.  Comparison of fault localization performance using EXAM score between the classic DStar and the proposed approach DStar* on large real-

world subject programs: (a) flex (b) grep (c) sed (d) space. 

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 835-870

 
______________________________________________________________________________________ 



Now, as shown in Fig. 15 (b), we examine the fault 

localization performance of our proposed approach 

(Ochiai*) against the classic Ochiai method on the faulty 

versions of the large real-world subject programs. It can be 

noted that Ochiai* can locate 60% of the faults by 

inspecting less than or equal to 0.1% of the code, whereas 

the traditional Ochiai method is unable to locate any of the 

fault by examining the same percentage of the code (i.e. 

0.1%). Similarly, 93.33% of the faults can be located by 

examining 0.5% of the code by Ochiai*, whereas, only 

73.33% of the faults can be located by examining the same 

0.5% of the code by the traditional Ochiai method. 
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Fig. 15.  Comparison of overall effectiveness using Exam Scores between classic Ochiai and the proposed approach Ochiai* (a) on Siemens test suite 

programs (b) on large real-world subject programs. 
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Fig. 16.  Comparison of overall effectiveness using Exam Scores between classic Jaccard and the proposed approach Jaccard* (a) on Siemens test suite 

programs (b) on large real-world subject programs. 
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Fig. 17.  Comparison of overall effectiveness using Exam Scores between classic DStar and the proposed approach DStar* (a) on Siemens test suite 

programs (b) on large real-world subject programs. 
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Fig.16 shows a comparison between the overall 

effectiveness score of Jaccard* and the classic SBFL 

method Jaccard, in terms of EXAM score on both the 

Siemens test suite programs and the large real-world 

programs. By observing the curves in Fig. 16 (a), we can 

examine that the Jaccard* can locate 36% of the faults by 

examining less than or equal to 1% of the code with respect 

to the Siemens programs, whereas Jaccard can only locate 

4% of the faults in this case. In the same way Jaccard* can 

locate 60% of the faults by inspecting less than or equal to 

2% of the code, as against of this traditional Jaccard can 

only locate 12% of the faults on Siemens programs.  

In Fig. 16 (b) we analyze the fault localization 

performance of Jaccard* in comparison to the classic 

Jaccard, using the faulty versions of the large real-world 

programs. By examining just 0.1% of the code, Jaccard* 

successfully identifies 47% of the faults, while the Jaccard 

method fails to locate any of the faults. Furthermore, when 

examining 0.5% of the lines of code, Jaccard* locates an 

impressive 87% of the faults, whereas the Jaccard method 

can only detect 67% of the faults.  

In Fig. 17, we present a comparison of the overall 

effectiveness score between DStar* and the baseline SBFL 

method DStar. This evaluation is based on the EXAM score 

for both the Siemens test suite programs and the large real-

world subject programs. By looking at the curves in Fig. 17 

(a) it is clear that DStar* can locate 52% of the faults with 

respect to the Siemens programs by examining less than or 

equal to 2% of the code, in comparison to this classic DStar 

can only locate 20% of the faults. In the same way, Fig. 17 

(b) shows that by examining 0.1% of the code, DStar* can 

locate 53% of the faults while the classic DStar method fails 

to locate any of the faults on large real-world programs. 

Similarly, by examining 0.5% of the code the DStar* can 

locate 87% of the faults while DStar is only able to locate 

60% of the faults on large real-world subject programs. 

The graphs depicted in Fig. 15, Fig. 16 and Fig. 17 clearly 

show that the proposed approach has a significant 

improvement over the baseline SBFL methods in terms of 

percentage of code examined (EXAM score) on all faulty 

versions in Siemens programs and in large real-world 

programs used in the experimentation. That means the 

proposed approach requires significantly less number of 

statements to be examined by the developer in order to 

locate faults. 

Moreover, our proposed methodology has the ability to 

identify faults by examining a considerably smaller portion 

of code when compared to traditional approaches. This 

makes our framework a valuable tool for developers 

engaged in the development of real-world software 

applications. 

Fig. 18 and Fig. 19 show comparison of improvement 

achieved by the three lightweight fault localization 

techniques after applying the proposed approach. The 

comparison is shown separately for Siemens subject 

programs and large real-world programs in Fig. 18 and Fig. 

19, respectively. We can observe that Ochiai* is better in 

case of Siemens subject programs, whereas, DStar* is 

slightly better than the other two methods on large real-

world subject programs. 

iii. Assessing the efficiency of the proposed approach by 

using the Cumulative Number of Statements Examined 

metric 

The Cumulative Number of Statements Examined (CSE) 

metric serves as a valuable tool for assessing the efficiency 

and effectiveness of fault localization approaches. It can 

assist researchers and developers in selecting the most 

suitable technique for their specific debugging needs. 

Fig. 19.  Comparison of the improvement achieved by the proposed 

approach (Ochiai *, Jaccard* and DStar*) on large real-world subject 

programs. 

 
Fig. 18.  Comparison of the improvement achieved by the proposed 

approach (Ochiai *, Jaccard* and DStar*) on Siemens programs. 
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In Table XXI and Table XXII, we present a comparative 

analysis of cumulative number of statements examined for 

fault localization. This assessment contrasts the performance 

of three classical SBFL methods, i.e., Ochiai, Jaccard, and 

DStar, before and after applying our proposed approach to 

Siemens programs and large real-world programs 

individually. Notably, our proposed approach enhances the 

efficiency of these classical SBFL techniques, and we 

denote their improved variants as Ochiai*, Jaccard*, and 

DStar*. 

It is important to note that, the figures presented in Table 

XXI and Table XXII indicate the total number of statements 

that each fault localization method needs to examine to 

locate faults in all faulty versions of every subject program 

used in this study. The details of these subject programs and 

their different faulty versions (with single faults) used in the 

study is given in Table XIII. We have conducted 

experiments on a total of 40 faulty versions out of which 25 

faulty versions are from standard benchmark seven Siemens 

programs and 15 faulty versions are from four large real-

world programs- flex, grep, sed and space. 

By observing Table XXI and Table XXII we can note 

that, for each program, the cumulative number of statements 

examined by the proposed approach is much smaller than 

the baseline methods Ochiai, Jaccard and DStar. In the case 

of the print_tokens program (see Table XXI), the Ochiai 

method requires examination of 31 statements to find the 

fault, while Ochiai* requires only 6 statements to be 

checked, reducing the examined statements by 25. In the 

same way, Jaccard requires 31 statements and DStar needs 

28 statements, while Jaccard* and DStar* requires only 7 

and 6 statements, respectively to locate the faults in 

print_tokens program. Analogously, it can be noted by 

examining Table XXII that the large real-world (UNIX 

utility) program ‘grep’ requires a total of 53 statements to be 

examined by the Ochiai method as against the total 18 

statements required by our proposed approach Ochiai*. So, 

in this case 35 less number of statements need to be 

examined due to our proposed approach. Similarly, 61 

statements are required by Jaccard and 184 statements by 

DStar in comparison to 21 and 68 statements by Jaccard* 

and DStar*, respectively. This highlights a significant 

decrease in the count of inspected statements when 

employing the proposed approach, thereby reducing the 

developer’s effort. 

 

TABLE XXI 
CUMULATIVE NUMBER OF STATEMENTS EXAMINED TO LOCATE FAULTS FOR EACH SUBJECT PROGRAM IN SIEMENS SUITE 

Approach/ Subject 

Program 
print_tokens print_tokens2 replace schedule schedule2 tcas tot_info 

Ochiai 31 29 167 39 109 88 83 
Ochiai* 6 9 62 16 49 50 38 

Jaccard  31 45 179 27 132 93 69 

Jaccard* 7 16 76 16 51 54 39 
DStar 28 57 138 37 35 116 94 

DStar* 6 36 74 14 21 42 32 

 

TABLE XXII 

CUMULATIVE NUMBER OF STATEMENTS EXAMINED TO LOCATE 

FAULTS IN LARGE REAL-WORLD SUBJECT PROGRAMS 

Approach/ Subject 
Program 

flex grep sed space 

Ochiai 171 53 69 570 

Ochiai* 87 18 8 205 
Jaccard  185 61 31 680 

Jaccard* 85 21 4 236 

DStar 164 184 50 518 

DStar* 62 68 13 185 

 

TABLE XXIII 

OVERALL CUMULATIVE NUMBER OF STATEMENTS EXAMINED TO 

LOCATE FAULTS ACROSS ALL FAULTY VERSIONS OF SUBJECT 

PROGRAMS USED IN THE EXPERIMENTAL STUDY 

Approach/ Subject 

Program 

Siemens Programs Large Real-World 

Programs 

Ochiai 546 863 
Ochiai* 230 318 

Jaccard  576 957 

Jaccard* 259 346 
DStar 505 916 

DStar* 225 328 

 

 
Fig. 20.  Cumulative number of statements examined to locate faults across all faulty versions of Siemens test suite subject programs used in the 

experimental study. 
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Table XXIII provides an overall comparison between our 

proposed approach and the traditional SBFL methods. As 

previously mentioned, we performed experiments on 25 

faulty versions of Siemens programs and 15 faulty versions 

of large real-world programs. Each version considered in 

our experimentation had a single fault. We can see that 546 

statements need to be examined by Ochiai in order to locate 

faults in all 25 faulty versions of Siemens programs whereas 

the Ochiai* required only 230 statement to be examined in 

this case. Similarly, 863 statements need to be examined by 

the Ochiai method in order to locate faults in all 15 faulty 

versions of large real-world programs, whereas the Ochiai* 

requires only 318 statements to be examined. In the same 

way, we see that Jaccard needs 576 statements, while 

Jaccard* only requires 259 statements to be checked on 

Siemens programs, and 957 statements need to be examined 

on large real-world programs, as opposed to that 346 

statements required by Jaccard*. If we compare the 

performance of DStar and DStar* we find the similar the 

trend. For Siemens programs and large real-world programs, 

DStar requires 505 and 916 statements to be checked, while 

DStar* requires 225 and 328 statements to be inspected to 

locate faults, respectively. 

To enhance legibility and comprehension, we present a 

graphical comparison of the performance of the proposed 

approach with the traditional Ochiai, Jaccard and DStar 

methods using the Cumulative Number of Statements 

Examined metric on Siemens programs and large real-world 

programs in Fig. 20 and Fig. 21, respectively. Additionally, 

Fig. 22 provides an overall analysis of the performance 

between the proposed approach and the classic methods 

Ochiai, Jaccard and DStar, measured in terms of the 

cumulative number of statements examined metric, across 

all subject programs used in our experimental study (i.e. 

Siemens programs and large real-world programs). 

iv. Assessing the efficiency of the proposed approach by 

using the Top-N metric  

Table XXIV and Table XXV present fault localization 

results comparing the proposed approach with traditional 

SBFL techniques (i.e., Ochiai, Jaccard, and DStar) by means 

of the Top-N evaluation metric on Siemens programs and 

large real-world subject programs, respectively. 

We use five metrics (Top-1, Top-5, Top-10, Top-15, and 

Top-20) to verify the effectiveness of our proposed 

approach against the traditional SBFL methods. 

According to Table XXIV, the percentage of faults 

effectively located by the proposed approach Ochiai* on the 

Siemens test suite programs at the Top-1, Top-5, Top-10, 

and Top-15 positions are 20%, 60%, 72%, and 80%, 

respectively. As opposed to that, the percentages of faults 

located by the classic Ochiai method at the same positions 

are 0%, 8%, 28%, and 48%, respectively. In the same way, 

Jaccard* locates 8%, 44%, 72%, and 80% of the faults at the 

Top-1, Top-5, Top-10, and Top-15 positions, respectively, 

while Jaccard can locate only 0%, 4%, 32%, and 56% of the 

faults, respectively. Similar to Jaccard*, DStar* is able to 

locate 8%, 44%, 72%, and 80% of the faults at the Top-1, 

Top-5, Top-10, and Top-15 positions, respectively, while 

classic DStar is unable to locate any of the faults at the Top-

1 position, and it can locate only 4%, 24%, and 52% of the 

faults at the Top-5, Top-10, and Top-15 positions, 

respectively. 

Fig. 21.  Cumulative number of statements examined to locate faults across all faulty versions of large real-world subject programs used in the 

experimental study. 
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Fig. 22.  Overall cumulative number of statements examined to locate 

faults across all faulty versions of subject programs (Siemens and large 

real-world programs) utilized in the experimental study. 
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Table XXV illustrates a comparison between the 

proposed approach and the classical SBFL methods on large 

real-world programs using the Top-N metric. The 

percentages of faults identified by the Ochiai* at the Top-1, 

Top-5, Top-10, and Top-15 positions, are 7%, 27%, 60%, 

and 60%, respectively. Conversely, the classic Ochiai 

method failed to locate any of the faults at these positions, 

as indicated in Table XXV. 

If we compare Jaccard* with Jaccard, we find that at the 

Top-1 position, both methods are unable to find any of the 

faults. However, at the Top-5, Top-10, and Top-15 

positions, the Jaccard* can locate 20%, 40%, and 47% of the 

faults, respectively. As compared to that, Jaccard is still 

unable to locate any of the faults at the Top-5 and Top-10 

positions, and is only able to locate 7% of the faults at the 

Top-15 position. As indicated in Table XXV, DStar and 

Jaccard exhibit nearly identical performances. Both methods 

fail to identify any faults at the Top-1, Top-5, and Top-10 

positions. At the Top-15 position, both methods can only 

detect 7% of the faults. At the Top-1, Top-5, Top-10, and 

Top-15 positions, DStar* can locate 7%, 20%, 40%, and 

53% of the faults, respectively. 

To visually depict the comparison, we include graphical 

representations of the performance of the proposed approach 

against the classical SBFL methods (Ochiai, Jaccard, and 

DStar) using the Top-N metric. Fig. 23 and Fig. 24 illustrate 

this comparison on Siemens programs and large real-world 

programs, respectively.  

It can be observed in more intuitive way by seeing Fig. 23 

and Fig. 24 that our proposed approach outperforms the 

baseline SBFL methods in locating faults. In other words, 

applying the proposed approach to existing SBFL methods 

enhances their performance. 

TABLE XXIV 
COMPARISON OF THE PERFORMANCE BETWEEN THE PROPOSED 

APPROACH AND THE TRADITIONAL SBFL METHODS IN TERMS OF TOP-N 

METRIC ON SIEMENS PROGRAMS 

Approach Percentage of faults identified for each Top-N metric 
Top-1 Top-5 Top-10 Top-15 Top-20 Other 

Ochiai 0% 8% 28% 48% 64% 36% 

Ochiai* 20% 60% 72% 80% 88% 12% 

Jaccard  0% 4% 32% 56% 72% 28% 
Jaccard* 8% 44% 72% 80% 84% 16% 

DStar 0% 4% 24% 52% 60% 40% 

DStar* 8% 44% 72% 80% 96% 4% 

 

TABLE XXV 

COMPARISON OF THE PERFORMANCE BETWEEN THE PROPOSED 

APPROACH AND THE TRADITIONAL SBFL METHODS IN TERMS OF TOP-

N METRIC ON LARGE REAL-WORLD PROGRAMS 

Approach Percentage of faults identified for each Top-N metric 

Top-1 Top-5 Top-10 Top-15 Top-20 Other 

Ochiai 0% 0% 0% 0% 13% 87% 

Ochiai* 7% 27% 60% 60% 80% 20% 

Jaccard  0% 0% 0% 7% 13% 87% 
Jaccard* 0% 20% 40% 47% 60% 40% 

DStar 0% 0% 0% 7% 13% 87% 

DStar* 7% 20% 40% 53% 73% 27% 

 

 
Fig. 23.  Comparison of performance between conventional SBFL techniques and the proposed approach using the Top-N metric on Siemens programs. 
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Fig. 24.  Comparison of performance between conventional SBFL techniques and the proposed approach using the Top-N metric on large real-world 

subject programs. 
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v. Assessing the efficiency of the proposed approach by 

using Wilcoxon Signed-Rank Test 

Fault localization research often involves the comparison 

of different techniques to determine which one is more 

effective at identifying the root cause of a fault. The 

Wilcoxon signed-rank test is a statistical test commonly 

used in fault localization research to compare the 

effectiveness of different techniques. This test is particularly 

useful for comparing two related samples, such as two fault 

localization techniques applied to the same set of programs. 

The Wilcoxon signed-rank test involves ranking the 

differences between pairs of observations and determining 

whether the median difference is statistically significant. By 

using this test, fault localization researchers can evaluate the 

effectiveness of different techniques in a statistically sound 

manner, and make confident conclusions about the relative 

performance of each technique. 

To reinforce our experimental results, we utilized the 

Wilcoxon signed-rank test as part of our evaluation 

methodology. This statistical test has extensive usage in 

comparing the efficacy of various methods and has been a 

conventional practice in earlier studies concerning fault 

localization. By adopting this approach, we can establish the 

validity of our conclusions through statistical analysis. 

To assess the statistical significance of the difference 

between the traditional SBFL methods when employed with 

and without our proposed approach, we employ the 

Wilcoxon-Signed-Rank Test. This non-parametric statistical 

hypothesis test is used to examine the differences between 

pairs of measurements. 

We conducted Wilcoxon-Signed-Rank tests, utilizing the 

ranks of faulty statements as pairs of measurements denoted 

as L(x) and M(y). Each test involved a two-tailed p-value 

assessment at a significance level (α level) of 0.01. 

Specifically, for L(x), we utilized the ranked list of faulty 

statements generated through the proposed approach 

(Ochiai*, Jaccard*, and DStar*) across all faulty versions of 

the subject programs from our experiments, as listed in 

Table XIII. For M(y), we used the ranked list of faulty 

statements obtained without using the proposed approach 

i.e. ranks calculated through the original SBFL methods 

(e.g. Ochiai, Jaccard, and DStar) on the same set of faulty 

program versions. 

If the p-value is less than 0.01, then, in accordance with 

the alternative hypothesis (H1), we accept that the 

suspiciousness ranks obtained using our proposed approach 

tend to be significantly smaller than those obtained without 

the proposed approach (i.e. obtained through traditional 

SBFL). This indicates that our proposed approach 

demonstrates superior effectiveness in comparison to the 

traditional SBFL methods. Conversely, if the p-value is 

greater than or equal to 0.01, in accordance with the null 

hypothesis (H0), we accept that the ranks obtained using our 

proposed approach do not significantly differ from those of 

the traditional SBFL methods, implying that the proposed 

approach does not outperform the established baseline SBFL 

methods. 

Table XXVI shows the Wilcoxon-Signed-Rank Test 

results on this relationship, where the cells show the p 

values of Wilcoxon-Signed-Rank Tests. The results show 

that when existing SBFL methods use our proposed 

approach the ranks of the faulty statements are significantly 

smaller than those of baseline SBFL methods not using the 

proposed approach. Therefore, the alternative hypothesis is 

accepted at a confidence level of 99.99%., indicating that 

the proposed approach is more effective than the compared 

techniques (existing SBFL methods) in terms of examining 

fewer statements to detect faults. The ‘Conclusion’ column 

in Table XXVI indicates, that the improved versions of 

SBFL methods (Ochiai*, Jaccard*, DStar*), obtained by 

applying our proposed approach to the original SBFL 

method, exhibit better performance compared to the 

traditional SBFL methods. 

In summary, the findings obtained through the Wilcoxon 

signed-rank test provide strong evidence that the proposed 

approach outperforms the compared techniques on the faulty 

versions of the subject programs in the Siemens test suite 

and the large real-world programs as listed in Table XIII. 

Our findings align with our previous conclusion that the 

proposed approach outperforms the traditional SBFL 

techniques in terms of efficiency, as evidenced by several 

metrics such as cumulative number of statements examined, 

Top-N, and Exam scores. 

vi. Space and time complexity 

In this section, we analyze the space and time complexity 

of our proposed approach. The input to our fault localization 

approach will be a program spectrum, which is a matrix of N 

× T, where N is the number of program entities (i.e., 

program statements) and T is the number of test cases. 

According to the same problem settings used in Section II-

D, test suite T consists of passing (TP) and failing (TF) test 

cases.  

The space complexity is largely dependent on the space 

requirement to store the program spectrum matrix and the 

program execution result vector, which can be specified as 

O (N × T) and O (T), respectively.  

The time complexity can be determined by analyzing the 

time required for optimizing the test suite and computing the 

suspiciousness score for each program statement and the 

suspiciousness score of its fault context.  

The test suite optimization requires primarily the 

calculation of the minimum suspiciousness set (MSS) and 

finding how closely it matches with the statement execution 

coverage of each passing test case (TP) in the test suite (T). 

Therefore, execution coverage of each statement against 

each passing and failing test case is required. Thus, the time 

complexity for the test suite optimization phase can be 

TABLE XXVI 

WILCOXON SIGNED RANK TEST RESULTS OF THE THREE FAULT 

LOCALIZATION TECHNIQUES USING THE PROPOSED APPROACH AND 

WITHOUT USING THE PROPOSED APPROACH 

Comparison Subjects 2-tailed test 

(p values) 

Conclusion 

Ochiai vs 
Ochiai* 

Siemens suite 1.29E-05 Better 
Large real-world 

programs 

7.25E-04 Better 

Jaccard vs 
Jaccard* 

Siemens suite 1.92E-05 Better 
Large real-world 

programs 

7.23E-04 Better 

Dstar vs 
Dstar* 

Siemens suite 1.92E-05 Better 
Large real-world 

programs 

7.23E-04 Better 
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expressed as O (N × T).  

Furthermore, for our fault localization approach, the time 

complexity mainly depends on the computation time 

required for both the suspiciousness score of each program 

entity (O (N × T)), and the suspiciousness score of its fault 

context (O (N × T) + O (N × TF)), and subsequently the time 

required to generate the ordered list of suspiciousness ranks 

(O (N × log (N))). 

vii. Overall observations 

It can be concluded that our proposed approach, which 

incorporates test suite optimization, statement execution 

frequency, and fault context, significantly improves the 

accuracy of fault localization when applied to existing SBFL 

methods. This hypothesis is validated by the experimental 

results that compare the performance of our proposed 

approach to the traditional SBFL methods. In this study we 

have compared the performance of the proposed approach 

with three traditional SBFL methods namely Ochiai, Jaccard 

and DStar. 

We employed four widely used metrics to assess the 

performance of our proposed approach in comparison to the 

traditional SBFL methods, Ochiai, Jaccard and DStar. Our 

findings indicate that our approach/ framework outperforms 

existing SBFL methods. That means, the results illustrate a 

notable improvement in fault localization performance when 

integrating our proposed approach with existing SBFL 

methods. 

Subsections II-B, II-C, and II-D demonstrate that the 

concepts of test suite optimization, statement execution 

frequency, and fault context, respectively, can overcome 

certain inherent limitations of SBFL when applied 

individually to existing SBFL methods.  

Our hybrid approach, as explained in Section III, 

capitalizes on these concepts by integrating them to enhance 

the efficiency and accuracy of SBFL from a single fault 

perspective. The experimental outcomes validate the 

superiority of our proposed approach over the current 

baseline SBFL methods. Ochiai* demonstrates an average 

enhancement of 62.76% in terms of EXAM score on 

Siemens suite subjects, while Jaccard* and DStar* show 

average improvements of 53.19% and 54.36%, respectively. 

Likewise, for large real-world subject programs, the average 

improvements are 65.23% for Ochiai*, 65.66% for Jaccard*, 

and 68.96% for DStar*. 

V. RELATED WORK 

In the following section, we will explore the existing 

literature on spectrum-based fault localization. This area has 

been widely researched and experimented in software 

engineering, and many literature reviews have provided an 

overview of the current advanced research in this field. In 

recent years, numerous studies have been carried out to 

enhance the accuracy and effectiveness of SBFL (spectrum-

based fault localization). 

In their study, Wong et al. [1] presented a comprehensive 

survey of various techniques relevant to software fault 

localization. The authors addressed relevant issues and 

concerns that are significant to this field, providing readers 

with necessary background knowledge and enabling the 

application of fault localization techniques that are efficient 

and scalable in terms of time and space complexity. Their 

study thoroughly examines different issues and concerns 

associated with various software fault localization 

techniques. 

Lei et al. [19] found that there is no significant correlation 

between the size of the test suite and the accuracy of fault 

localization in a program under testing and debugging. 

Furthermore, they analyzed how different segments of test 

suites can positively or negatively affect fault localization 

performance.  

In their work, Perez et al. [20] introduced a new metric 

called DDU that aims to enhance adequacy measurements 

by evaluating the diagnosability of a test suite. The term 

diagnosability refers to the effectiveness of utilizing 

spectrum-based fault localization to identify faults in the 

code when test failures occur. The authors claim that a 

diverse test suite that exercises multiple combinations of 

components is more comprehensive than one that solely 

aims to maximize code coverage. 

In their study, Inozemtseva et al. [21] demonstrated that 

there is a weak correlation between the coverage of a test 

suite and the effectiveness of fault detection. Their analysis 

indicated that the relationship between test suite coverage 

and its effectiveness is only moderate to low. 

In their work, Xuan et al. [22] introduced a new idea 

called "spectrum-driven test case purification" to enhance 

fault localization. The primary objective of this approach is 

to divide the current test cases into smaller subsets, known 

as purified test cases, and refine the test oracles to better 

identify faults. By integrating this technique with an existing 

fault localization method (such as Tarantula), the program 

statements can be ranked more accurately. 

In their research, Zakari et al. [29] presented a fault 

localization approach called FLCN-S, which employs 

complex network theory to enhance the effectiveness of 

localizing faults in single-fault programs. This technique 

evaluates and prioritizes potentially faulty program 

statements by assessing their anomalous behavior and 

proximity to one another during failed test executions, using 

two network centrality measures (degree centrality and 

closeness centrality). 

Ju et al. [30] created a fault localization framework that 

uses a multivariate logistic regression model. The model 

incorporates both static and dynamic features collected from 

the program being debugged. 

Roychowdhury et al. [31] discovered in their study that 

the principles of machine learning's feature selection can be 

effectively utilized in fault localization. Their experiments 

showed that the lines of code with the most varied feature 

information can pinpoint the most dubious statements. 

In their study, Shu et al. [32] introduced FLSF, which 

improves upon traditional fault localization techniques by 

considering statement execution frequency, resulting in 

greater reliability and effectiveness compared to Tarantula, 

particularly for faults within loop bodies or iteration 

statements, as per their experiments. 

In their study, Sarhan et al. [33] introduced a novel SBFL 

formula that tackles the challenge of ties by giving weight to 

the significant number of failing test cases and the low 

number of passing ones for a specific code element. This 

approach enables straightforward handling of common tie 
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scenarios. Empirical findings indicate that the suggested 

formula outperforms three extensively researched SBFL 

formulas in terms of average ranking. 

To improve the performance of bug localization, Lee et 

al. [34] integrated supplementary data into SBFL. They 

leveraged the statement execution count data obtained from 

program execution and transformed it into program 

spectrum properties using a weighted function. By 

evaluating different SBFL techniques, they discovered that 

incorporating this information resulted in a substantial 

enhancement in bug localization performance in comparison 

to the conventional approach, which only considers whether 

a statement was executed or not during the test execution 

(i.e., binary information). 

Lun et al. [35] conducted research in the field of software 

architecture testing, a critical aspect for ensuring software 

quality and dependability. They indicated that achieving 

component path coverage stands as a significant benchmark 

for evaluating the adequacy of software architecture testing. 

They introduced two distinct criteria for component path 

coverage, one based on node coverage and the other on edge 

coverage. These coverage criteria were found to be effective 

in detecting various types of faults within software systems. 

The researchers proposed two algorithms for quantifying the 

component path coverage rates based on these criteria. 

Enhanced interaction among components resulted in higher 

path coverage, thus improving the diagnostic capability of 

the test suite for identifying faults. Empirical findings from 

their study highlighted that the proposed component path 

coverage criteria offer a robust framework for practical 

software architecture testing and lay a strong foundation for 

future research in this domain. 

Oo et al. [36] suggested a mutation-based testing 

technique to fix object-oriented program errors. This method 

identifies the correct repair code within the search space 

using the faulty statement's type and the MuJava mutation 

system. Initially, program faults are detected by assessing 

the suspiciousness of statements. A two-level mutation 

system modifies the code, and similar candidates to the 

faulty statement type are collected. An ordered list of 

potential patches is tested one by one using a test suite until 

a valid fix is found. The approach was evaluated using the 

Defects4J dataset. 

In their survey paper, Wu et al. [37] outlined the process 

flow for testing the artificially intelligent systems. Their 

study offers an extensive overview of methods used to 

isolate faulty behavior in intelligent systems. It summarizes 

techniques related to testing coverage metrics, test data 

generation, testing approaches, formal verification methods, 

and widely used datasets. 

Alakeel [38] presented an automated approach to detect 

and fix test dependencies in web application test suites. The 

technique employs data flow analysis to identify noticeable 

test dependencies responsible for test failures and 

subsequently automates the repair process for the issues 

arising from these dependencies. 

Setiadi et al. [39] introduced an algorithm designed to test 

concurrent programs efficiently by minimizing the number 

of test cases for fault identification. This is achieved by 

generating test cases through the analysis of execution 

traces, incorporating different interleaving. Redundant test 

cases are pruned while maintaining fault detection accuracy. 

The algorithm makes use of branch structures and data flows 

extracted from execution traces to isolate only those 

interleaving that impact branch outcomes. The effectiveness 

of the proposed approach was assessed using a suite of 

JAVA-based concurrent programs. 

Integration testing is significant in identifying errors that 

emerge between class interfaces. Given the potentially 

numerous interfaces within object-oriented software's 

individual classes, conducting testing can prove costly. 

Laokok et al. [40] introduced an approach to generate test 

cases for integration testing by analyzing the static call 

graph. This technique ensures that the produced test cases 

traverse all branches within the static call graph at least 

once. By extracting data from the source code and 

constructing a static call graph that encompasses all class 

interfaces, the test cases achieve complete coverage, 

encompassing branch scenarios. 

VI. THREATS TO VALIDITY 

The potential bias of the experimenters poses an internal 

validity threat to our proposed approach. To collect program 

execution traces, we used manually instrumented programs 

and ran them with the instrumentation. However, there is a 

risk of bias due to experimenter negligence, such as the 

inadvertent skipping or misplacement of certain program 

blocks during the instrumentation process. 

The presence of external validity threats concerns the 

extent to which the experimental findings can be applied to 

subjects beyond the subject programs utilized in the study. 

In response to such threats we have conducted 

experimentation on widely used standard benchmark 

Siemens test suite programs and on some real-world 

programs which are quite larger in size.  

We recognize that there is no empirical study that can be 

completely flawless, and that there may be complex 

programs and bugs that were not included in our 

experiments. In our future work, we intend to expand the 

scope of our subjects. 

The issue of construct validity threats pertains to whether 

the performance metrics employed in empirical studies 

accurately depict the real-life scenario. The first threat 

relates to the suitability of evaluation metrics used in the 

empirical study. Considering this threat, our study employs 

four widely recognized metrics, namely Exam score, 

Cumulative Number of Statements Examined, Top-N, and 

Wilcoxon signed-rank test, to evaluate the effectiveness of 

our proposed approach in comparison to the traditional 

SBFL approaches. To compare our proposed approach with 

the classical SBFL methods, we used the EXAM score 

metric to calculate the improvement in the absolute rank of 

faulty program entities. Furthermore, we examined the 

suitability of the baseline approach in terms of stability and 

efficiency, considering the potential threat posed by its use 

as a comparison point for our proposed approach. Although 

we have used three popular and most studied approaches i.e. 

Ochiai, Jaccard and DStar as a benchmark for comparison 

with the proposed approach, in future we also intend to use 

other similarity coefficient metrics for a more 

comprehensive comparative analysis. 
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VII. CONCLUSION 

In this paper, we have introduced a hybrid approach that 

aims to improve the accuracy and efficiency of spectrum-

based software fault localization in single fault scenarios. 

The approach consists of the following major steps. Firstly, 

the test suite to be used in the fault localization process is 

optimized using passing test discrimination based approach. 

In the second step, the execution count of each statement is 

calculated with respect to each test case in the test suite. A 

frequency weighting function, specifically an adapted 

sigmoid function, is used to transform the statement 

execution frequency count to a normalized real value within 

the range of 0 and 1. Then, in the third step, the 

suspiciousness of each statement is calculated using one of 

the SBFL similarity coefficient metric (e.g., Ochiai, Jaccard, 

DStar, etc.). Here, the SBFL formula utilizes the normalized 

frequency count, instead of the binary coverage information 

(0 or 1) for the calculation of suspiciousness scores. Next, 

fault context for each program statement is generated in 

each failed execution, and then its suspiciousness score is 

calculated. Finally, a new improved fault rank list is 

generated based on the suspiciousness of a statement and its 

fault context. 

The study conducted an empirical analysis on two 

standard benchmarks, namely the Siemens test suite and 

large real-world subject programs (flex, grep, sed, and 

space). The experimental results revealed that the proposed 

approach/ framework outperforms the traditional SBFL 

techniques in single fault perspective. The experimental 

results validate the effectiveness of our proposed approach 

compared to the existing baseline SBFL methods. 

Specifically, the Ochiai* technique demonstrates an average 

improvement of 62.76% in terms of EXAM score across 

Siemens suite subjects. Similarly, the Jaccard* and DStar* 

methods exhibit average improvements of 53.19% and 

54.36%, respectively. Likewise, when examining large real-

world programs, the average improvements are 65.23% for 

Ochiai*, 65.66% for Jaccard*, and 68.96% for DStar*. 

Here, the term ‘improvement’, refers to the average 

reduction in the number of examined statements 

(developer's effort) by the specified percentage. For 

example, the Ochiai* method achieving a 62.76% 

improvement implies that developers, on average, need to 

examine 62.76% fewer statements to locate faults across the 

faulty versions of Siemens programs utilized in the 

experimental study. 

Our approach considerably reduces the developer’s effort 

in locating the faults, for example, our approach when 

applied to classic Ochiai (denoted as Ochiai*), identifies 

52% of the faults in Siemens and 60% of the faults in large 

real-world programs by examining less than or equal to 1% 

and 0.1% of the code, respectively. In contrast, the classic 

Ochiai method is unable to locate any of the faults by 

examining the same percentages of codes. 

Furthermore, in terms of the Top-N evaluation metric, 

applying our approach to existing Ochiai, Jaccard, and 

DStar methods on Siemens programs leads to fault 

identification percentages of 60%, 44%, and 44%, 

respectively within the Top-5 positions. In contrast, without 

applying our approach, these methods only manage to locate 

8%, 4%, and 4% of faults in the same scenario. Similarly, 

for large real-world programs, our approach applied to 

existing Ochiai, Jaccard, and DStar methods results in fault 

identification percentages of 27%, 20%, and 20%, 

respectively within the Top-5 positions. In contrast, without 

applying our approach, these traditional SBFL methods fail 

to identify any faults at the Top-5 position. 

We also performed statistical tests (Wilcoxon signed-rank 

test) to justify the significance of the improved fault 

localization performance achieved with our proposed 

approach, in comparison to traditional SBFL techniques. 

These results indicate that our proposed approach achieves a 

substantial improvement over the classical SBFL 

approaches, and therefore can effectively improve the 

performance and accuracy of existing SBFL techniques. 

Our research outcomes provide a new perspective on fault 

localization and open up interesting directions for future 

exploration. In future work, we intend to extend our 

approach to locate multiple faults. Additionally, we plan to 

investigate the efficacy of our technique on diverse subject 

programs written in various programming languages, such 

as Java and Python, in order to provide further evidence for 

our assertions. Further research is also necessary to establish 

a fault-context structure that facilitates a deeper 

comprehension of the underlying cause of failure, ultimately 

enhancing the accuracy of fault ranking. 
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