
  

Abstract— We suggest an analytical method to calculate explicit 
component based software reuse. Our method is based on three 
dimensional Vector Measure of software size which we have 
derived in terms of the functionality and problem complexity by 
extending the work of Hastings and Sajeev. Our calculated 
analytical results are in close agreement with expected results. 

We try here to confirm reuse by predicting reuse in terms of reuse 
benefit by satisfying all the properties defined by Devanbu et al. 
Present method is available early in the life cycle of a project.  
 
Present technique is useful in understanding components 
composition environment including the software development life 
cycle and the deployability.  Present reuse calculation also 
overcomes many difficulties faced by software developers.  
 
Index Terms— Reuse, Vector Reuse Measure, Reuse Benefit,    
                          Three Dimensional Model 

 
 

1. Introduction 
 
Problems of reuse in large systems (James (1996), Objected 
Oriented Systems (Hitz (1995)), complex systems etc. has been 
studied by many workers. However, none of these workers 
comprehensively outlined theoretical or experimental models 
to calculate, observe or validate the reuse measure across the 
entire life cycle or during the early phase of the life cycle. 
 
Measurement becomes difficult at the higher reuse rate 
especially in the large and the Object Oriented Systems. So far 
reusability has not been treated as an independent measurable 
quantity which can resolve the problem of component 
relationship in a given composition environment. We know that 
most of the existing reuse metrics can measure the code.  
However measuring code cannot predict the amount of reuse at 
the early stage of system life cycle. Measuring components 
interaction is a great problem at system, project or domain level 
and it becomes quite tedious task to measure the system’s 
performance. Question here is that, can we propose a model 
which could account all possible coupling of components at all 
levels of system developments where the reusability will have a  
 

 
 

direct bearing on the systems performance? Yes, we are trying 
to dig the answer in the present work which is based on the 
extended work of Hastings and Sajeev (2001) and which has 
already successfully provided calculation of efforts in several 
projects. We will also involve the extended reuse benefit 
properties of Devanbu et al. (1996) (from two to three 
dimensional) to further support our argument. 
 
2. Related Research & Problems 
 
Devanbu et al. (1996) evaluated analytically and empirically 
“how well several published software reuse metrics measure 
the “time, money and quality”, benefits of software reuse.”  
Frakes and Terry (1996) surveyed the metrics and models of 
software reuse and reusability and reviewed the six types of 
metrics and models namely cost benefit models, maturity 
assessment models, amount of reuse metrics, failure modes 
models, reusability assessment models and reuse library 
metrics. However, most of these models fail to address the 
issues of explicit relationships of reusability with the domain 
properties, functions and the integration relation problems. 
These models could not differentiate between the domain reuse 
and project reuse also. 
 
Above discussions suggest that we do not have a mathematical 
formulation or logic which helps us in uniformly selecting, 
deploying and integrating the components for the reuse. We 
also do not have a technique to classify and manage the 
components in the different type of systems.  
 
Review of past theories and discussions suggest that reusability 
should be treated explicitly which should have a direct relation 
with the entire efforts at all stages in building a software so that 
we can deal problem of reusability at all stages. Our knowledge 
about components and its availability in day to day tasks has 
become so wide that every day we find ourselves in a new 
environment. Practically speaking reuse is now not domain 
specific or project specific rather it has become time or 
temporal specific. Reuse has now become a relative term as 
compared to what we have and what we can do? Day to day 
enhancement of knowledge and applications has certainly 
created a situation where we have to say that “reuse is a time 
oriented concept”. 
 
In this work we suggest a technique for the measurement of 
reuse in components based systems. Present measure is based 
on three dimensional Vector Measure of software size which 
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we have derived in terms of the reusability, functionality and 
problem complexity by extending the work of Hastings and 
Sajeev (2001) which is based on Operators and Operands. 
Present method which is based on the Vector Reuse Measure 
(VRM) specifications is not only available early in the life 
cycle of a project to overcome difficulties met by inexperienced 
software developers, but also helps us in selecting components 
for the reuse by Customers based-on the properties mentioned 
herewith.  
 
3. Vector Size Measure and Reusability 
 
The Vector Size Measure (VSM) (Hastings and Sajeev 2001) 
can measure software size from requirements specifications. To 
estimate early in the lifecycle, we need the measurement of size 
based on the specification. This helps us to estimate effort early 
during the cycle. VSM is a software size vector measured in 
terms of functionality and problem complexity. VSM is based 
on specifications which are formally expressed as Abstract 
Data Types (ADT). 
 
On the basis of two fundamental software size attributes, i.e. 
functionality and problem complexity, Hastings and Sajeev 
(2001) represented software size as the two-dimensional vector 
which has both magnitude and direction. Given that we have 
three fundamental software size attributes in the new model, 
i.e., functionality, problem complexity and reusability, we can 
represent software size as a three dimensional vector which has 
both magnitude and direction (Figure 1). This representation 
allows us to understand and transform software size 
measurements using well-defined mathematical functions. 
 
Consider a three dimensional picture (Figure 1) where the 
ADT’s are defined along the axis of X, Y and Z as 
functionality, problem complexity and reusability respectively. 
Three dimensional model is the extension to the Fenton’s 
(1991) suggestion that software size, S, is a function, f S , of 
length, functionality, and problem complexity, such that: S ::  =  
f S  (l, f, c o ) where l represents the total number of entities in a 
system, f represents the number of functions a system provides, 
and c o represents the underlying problem complexity. 

According to the work of Hastings and Sajeev (2001), length is 
a derived attribute, thus they considered S ::  =  f S  ( f, c o ). We, 
in the present work, extend this as follows:    

  S ::  =  f S  ( f, c o , r Se  ) where r Se  is the reusability.  

As mentioned in the Figure 1, (By using the plane vector 
algebra (Ayres 1972)) magnitude, m, may be defined in terms 
of the reusability as: m = Real Part +Imaginary Part = if + jc - ¡k 
re, where i, j and k are the unit vectors along the x, y and z axis 
respectively and ¡ = √- 1 and 
 m = √ (f2 + c2 - r Se

2)  [OP]          (1) 

Direction is defined as theta = tan-1 (c / √((f2 - r Se
2)). 

However, we are more interested in the ratio between problem 
complexity and so called effective functionality, i.e., the 
gradient, g, to indicate the relative dimensions of a software 
system, where:  
 
g = sqrt (c^2 – reS^2)/f        (2)            
                                                  
Gradient is a ratio of problem complexity and effective 
functionality (in terms of the reusability) which tells us about 
the relative dimensions of systems, i.e., the characteristics of 
software systems.  
 
Vector Representation 
 
As discussed above the size has been extended in the present 
work to include the percentage value of reusability (r Se ) as: m 

=  (f2 + c0
2 -  reS

2)              (3)   where f, 

c o  and r Se  are the vector quantities, and the direction as 

[tangent of] theta  = g = sqrt (c^2 - r Se ^2)/f . This represents 
the relative dimensions of a software system (note that f > 0) 
which suggest that presence of reusability reduces the effective 
value of the gradient. If the reusability is zero then equation (3) 
reduces into the Hastings and Sajeev (2001) formula. The 
square of the reusability in this formula will not be affected by 
positive or negative sign of the reusability. 
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                                                                    Figure 1: Software Size as a vector in terms of three dimensional
                     Representation .

 
 
 
 
 



 
 

 

 

Let Zk be the size of Component k where Zk is a vector quantity. 
Note that Zk is greater than 0 except for a null specification. 
Given a system, S consisting of q components we can measure 
its size as: 

∑
=

=
q

k
kS ZZ

1             (4) 
  

We now define Expanded Size of a system S as: 

∑
=

=
q

k
kkS ZnX

1            (5)  
Where nk is the number of times Component k's public 
functions (and attributes, if any) are used in other components. 
This definition of expanded size is similar to that of Devanbu 
and Karstu (1994). The only difference is that present method 
measure the expanded size from specifications, where as 
Devanbu and Karstu's measured it from code. We can also 
define that Cost is proportional to Size, that is: 

 
   C  ∝  SZ               (6) 
Using equation (6), one can predict the variation in cost with 
the size. Present reuse measure is based on Vector Reuse 
Measure (VRM) specifications, which is available early in the 
life cycle of a Project.  
 
4. A Measure for Reuse 
 
Here we define a reusability measure called Vector Reuse 
Measure (VRM). Reuse is possible in two ways: One is the 
number of times a component is used by other components, and 
the other is the amount of change that is made to a component 
before it is reused. 
 
It should be noted that a component which is set to be 
developed as part of a system ‘S’ is considered internal to ‘S’ 
while a component that is already available, but is set to be used 
in System S is considered an external component and its 
reusability will be different than the reusability of an internal 
component. Since in the present work, size is directly related 
with the functionality, complexity and reusability on equal 
footing, therefore, it is easy to realize reuse equally in terms of 
functionality and complexity. 

5. Reusability and Adaptability of components 

Two components k and k’ are close provided their 
specifications are modified in such a way that: 

kk

k

ZZ
Z

δ+
=∧   =     ∧ k   +  δZk                      (7) 

Where δZk  is a very small quantity which is a difference of the 
specifications of Components k and k'. Similarly we can also 
define the reusabilities of two components k and k’ as: 

          reS1    = reS2  + δrk                               (8) 

Where δrk is the difference of reusabilitites of Components k 
and k’ and it may be expressed as δrk =   k – k’   (9) 
Having defined reuse of a component, we can measure 
reusability of a system S as: 

∑
=

∧=
p

k
kkkSe Znr

1

                                         (10) 

Where Zk  is the size of the components and nk  is the number of 
times component k’s public functions (and attributes if any) are 
used in other components.  
 
6. Vector Size Measure in Three Dimensions and Reuse  
    Benefit Estimation 
 
Magnitude m may be expressed in three dimensions as 

m =  (f2 + c0
2 – reS2)                     (11)    and 

 
 g = sqrt (c^2 – reS^2)/f                       (12a)  
Where r Se  is the reusability, g is the gradient, f is the 

functionality and c o  is the problem complexity of the system.  

If (r Se /f)  is small then g = (c0/f )      (12b) 
which correspond to the two dimensional result. Therefore, 
using equations (3) and (10), we get  

m =  ( 2f  + c 2
o  -  r 2

eS )  =  

( 2f  + c 2
o  - (∑

=

∧
p

k
kkk Zn

1
)2       (13) 

 If we know the f, c o and m then we can calculate the 

reusability (r Se ) from the equation (13) or if we know the f, c o  
then we can calculate the different values of m as the reusability 
(r Se ) varies. In the present work we take the Reuse Benefit 
(Devanbu et al. (1996)) as: 

Reusable Benefit   =  

)(
)()()(

reusewithoutSC
reusewithSCreusewithoutSCSRb

−
=

                          
 
                                                                                      (14) 
 
Where as mentioned in the equation (6), C is proportional to 
size. 

 
Frakes and Terry (1996) proposed cost and productivity 

model for software reuse. According to them the relative cost of 
software development (C) may be expressed as:  

 
C = [ (b’-1) R ] + 1                                                  (15)    or      

 



 
 

 

 

 (C-1)   =   [ (b’-1) R ]                                               (16)                                                                 
 

Where R is the type of reuse level (company’s overall reuse 
rate) and b’ is the cost relative to that for all new code, of 
incorporating the reuse code into the new product. (b’ =1 for all 
new code). Using equation (15), we can also calculate the reuse 
benefit by using the equation (6). Thus equation (15) and 
equation (14) may be expressed as: 

C’=
)(

)()(
reusewithoutSC

reusewithSCreusewithoutSC −
= )(SRb  

 
=                 [(b’-1)R]                                             (17) 
 
 
Hastings and Sajeev (2001) have derived an expression for 

the estimated effort by considering a two dimensional model of 
problem complexity and functionality as: 

E  = a mb gz                                               (18) 

Where m is the measured magnitude of a software 
specification and g is the measured gradient; a, b and z are 
coefficients. In the present work we have derived a three 
dimensional formula for the magnitude m (equation 11) and 
gradient (equation 12b). Equation (18) can furnish the 
estimated effort for software using the three dimensional model 
involving reusability, problem complexity and functionality if 
we replace m and g in equation (18) by equations (11) and 
(12b) as: 

En  =    a  ( ( 2f  + c 2
o  -  r 2

eS ) )b  g1
z  = a m1 g1

z    

                                                                      (19) 

Clearly the difference of equations (18) and (19), gives us the 
reusable size as: 

EReus= C(S with reuse) = [a mb gz  - a m1 g1
z] 

                                                                                (20)                
The ratio of equations (20) and (18) will give us the reuse 

benefit as: 
 

C’ = EReus / E                                                  (21)                                                                                                                                        

Where a = 0.7113  , z = 1.1585  and  b = 1.0244 (Hastings & 
Sajeev 2001) are constants, m1 = ( ( 2f  + c 2

o  -  r 2
eS ) ) is 

the reusable magnitude and  g = sqrt (c^2 - r Se ^2)/f while g  
and m are respectively the original gradient and  the original 
magnitude of the system respectively. Equation (21) can 

calculate the reuse benefit provided we know f and c o for a 

given res.  This can be compared with equation (17) since we 
define that Cost as proportional to Size (equation 6), that is:    
 
  C  ∝  SZ  .     

                                                                                                                      
We have predicted theoretically reuse benefit values in two 
projects discussed by Hastings and Sajeev (2001) by using 
equation (21) (by substituting f, c and assumed reusabilities); 
this is then compared to that of Frakes and Terry (1996) 
formula for same reusability values  (using equation 17) (see 
Tables I and II). A close agreement between them has been 
obtained.  In our present formulation we can prove all the eight 
properties of reuse benefit as defined by Devanbu et al. (1996).   
 
7. Reuse Benefit Properties for three dimensional model by  
    extending the work of Devanbu et al. (1996): 
 

Property 1: 1)(0, <≤∀ SRS b   ,   that is reuse benefit 
always lies between zero and one. 

Using equations (13) and (14), we can write 
 
Rb(S) = ( ( 2f  + c 2

o  ) - ( 2f  + c 2
o  - r 2

eS ) )/ ( 2f  + 

c 2
o  )     

 
or  Rb (S) =  [(1 -  { ( 2f  + c 2

o  - reS
2) )/ ( 2f  + c 2

o  )}]  
the second term of this equation is always less than 1 since ∀S,    
0  ≤   reS  < 1   where reS is given by equation (10) 
 
Therefore,                  0 ≤    Rb(S)   <   1        (22) 
 
Therefore, this proves property 1. From equations (5) and (13) 
we can find out the reuse benefit for the expanded size. Clearly 
the numerator of equation (13) is always less than one or 
greater (or equal) to zero depending upon the type of 
components being reused and therefore reuse benefits satisfies 
the property 1.  

Property 2:
 

)()()()(|, 212121 SRSRbutSFunctionSFunctionSS bb ≠=∃
 

That is, it is possible to have two systems with the same 
functionality but different reuse benefits. 
 
 Let Rb (S 1  ) be the Reuse Benefit of a System S 1  consisting of 
two components of which the second component is reused three 
times while Rb (S 2 ) is the Reuse Benefit consisting of same two 
components but replacing one use of the second component by 
a component which has the same functional and behaviour 
specification. In this case clearly reusabilites (reS1 and reS2) are 
different, and, therefore, reS1 #  reS2, while complexities and 
functionality in both the systems are same. 
 
Using equations (13) and (14), we can express for Rb (S1)    
 



 
 

 

 

Rb (S1)   =  [( ( 2f  + c 2
o  ) -  ( 2f  + c 2

o  - reS1
2) )/ 

( 2f  + c 2
o  )]   

 
or  Rb (S1) =   [(1 -  { ( 2f  + c 2

o  - reS1
2) )/ ( 2f  + c 2

o  )}] 
                                                                                (23) 
 
Similarly for Rb (S 2 ) (where the second component is reused 
three times) we have 
 
Rb (S 2 ) = [(1 -  { ( 2f  + c 2

o  - reS2
2) )/ ( 2f  + c 2

o  )}]  
                                                                               (24) 
 
Since reS1

2   #   reS2
2   and therefore equation (23) is not equal to 

equation (24) which proves property 2. 
 
Property 3: ∀S⏐ R b (S 1 ) >0, ∃ S 1 Function(S 1 ) = 

Function(S 2 ) and R b (S 1 ) > R b (S 2 ) 
That is, for any system S, it is possible to develop another 
system, S 1  with the same functionality such that the reuse 

benefit of S1  is less than that of S. 
 
Let Rb (S 1 ) be the reuse benefit of System S. Rb (S1) > 0 means 
there is at least one component, k which is reused.  Replace one 
use of a particular component with a new component with the 
same functional behaviour to create S 2  (It is an external 
component used once. similar to property (2)), otherwise, we 
can also replace one use of k with a new component with the 
same functionality and behaviour specifications (like property 
2) to create S 2 , If we look at the numerators of R b (S 1 ) 

(Equation 23) and R b (S 2 ) (Equation 24), we can see that the 

numerator of R b (S 2 ) is less as compared to the numerator of 
Rb (S1) because reS2 is less than reS1, which makes the numerator 
of second term of equation (24) greater and hence the total 
value of Rb  (S2) becomes less (since as discussed above we 
have replaced one used component with a new component to 
create S2, therefore, reS1 is greater than  reS2 and therefore 
equation (23) is greater than equation (24) or Rb (S1)  >  Rb (S 2 ) 
which proves property 3.  
 
This property helps us to maximize reusability without 
changing the functionality. 

Property 4: )()(|, 1−>∀ n
cb

n
cb SRSRcS                                                            

That is, for any system S that reuses a component c, the reuse 
benefit of using the component n times is more than that of 
reusing it n-1 times. Using equation (14) and (13) (since we 
define that Cost is proportional to Size (equation 6)), we can 
express for reuse benefit for using n times component is 
 

 
)( n

cb SR  =       [ ( 2f  + c 2
o  ) - ( 2f  + c 2

o  - (re ( cS − ) + 

n c c∧ Z c )2 ] /  [ ( 2f  + c 2
o  )] 

 
or  )( n

cb SR  =   [1 -  { ( 2f  + c 2
o  - (re ( cS − ) + n c c∧ Z c )2 /  

( ( 2f  + c 2
o  )}]                   (25) 

 
Similarly for )( 1−n

cb SR  
 

)( 1−n
cb SR  = [1 -  { ( 2f  + c 2

o  -  (re ( cS − )  +  (n c  - 

1) c∧ Z c )2 /  ( ( 2f  + c 2
o  )}]   (26) 

 
Where in equation (26) the number of times Component c has 
been reduced by 1. We can note from equations (25) and (26) 
that:  
 
(r cS −  + n c c∧ Z c ) > (r cS −  + (n c  - 1) c∧ Z c ) which makes 
the numerator of equation (25) greater that the numerator of 
equation (26), and therefore, 
 

)( n
cb SR   >  )( 1−n

cb SR  Which proves the property 4. 
 
Using equations (5), (7) and (11) it also suggests us that how 
many components are there in the expended size? 

Property 5: 

 )()( −− >> Cbcb SRShen R Cost(c) t if Cost(C)  

Where  )( −
cb SR  is the reuse benefit of a system which is a 

perturbation of S by removing one use of component c. 
Similarly, )( −

Cb SR  for Component C. According to this 
property if c is a less expensive component compared to C then 
the reuse benefit after removing one use of c will be greater 
than the reuse benefit after removing one use of C or we can say 
that it is beneficial to reuse higher cost components than lower 
cost components. 
 
we can demonstrate property 5 mathematically by using 
equations (13) and (14) (since we define that Cost is 
proportional to Size (equation 6)). As we can note that property 
5 is about reusing the two components, c and C, of different 
costs, therefore, it is suitable to assume that they are used 
verbatim, which means that c∧   =  C∧  = 1. Thus we can write 

(using equations (13) and (14) as: 
Rb  (S c ) =   [ ( 2f  + c 2

o  ) – { ( 2f  + c 2
o  - (re ( cS − ) + 

n c Z c )2  } ] /  [ ( 2f  + c 2
o  )] 

 



 
 

 

 

Rb (S
−
c ) = [ ( 2f  + c 2

o  ) –{ ( 2f  + c 2
o  - (re (S-C) + (n c  - 

1) Zc)
2)}] /[ ( 2f  + c 2

o  )]                                   (27) 
 
Similarly for Rb (SC)   
 
Rb(SC)  =  [ ( 2f  + c 2

o  ) – { ( 2f  + c 2
o  - (re (S-C) +nC 

ZC)2 }] /  [ ( 2f  + c 2
o  )] 

 
Rb (S

−
C ) =  [ ( 2f  + c 2

o  ) - ( 2f  + c 2
o  - 

 ((re (S-C) + (nC – 1) ZC)2 ] /  [ ( 2f  + c 2
o  )]         (28) 

 
Since we know that Cost is the function of size, so Cost(C) is 
proportional to ZC, and similarly Cost(c) is proportional to Zc . 
Since C is a high cost component compared to c therefore it is 

straight forward to say that ZC > Z c  . 
 
Let us assume that RS-c-C is the reusability of System S 
excluding the reusability of Component c and C. Thus we can 
express the numerator of Equation (27) as: 
 
[ ( 2f  + c 2

o  ) –{ ( 2f  + c 2
o  - (re (S-C) + (n c  - 1)Zc)

2)}]  
 
= [ ( 2f  + c 2

o  ) –{ ( 2f  + c 2
o  - (re (S-c-C) + (n c  - 1)Zc  + 

nC  ZC)2 )}]   
 
= [ ( 2f  + c 2

o  ) –{ ( 2f  + c 2
o  - (re (S-c-C) + (n c  - 1)Zc  + 

(nC   - 1) ZC  + ZC )2 )}]                                         (29) 
 
Similarly we can express the numerator of Equation (28) as: 
 
[ ( 2f  + c 2

o  ) –{ ( 2f  + c 2
o  - (re (S-c-C) + (nC - 1)ZC  + 

(nc   - 1) Zc  + Zc )2 )}]                                           (30) 
 
Comparing Equation (27) and (28), 
 

bR ( S −
c )  > bR ( −

CS )   if  Z C  > Z c  which demonstrated the 
property 5. 
 

Property 6: )()( cbcb SRSR e >   

where ecS  is a system with an external component ce and Sc is 
a system with ce replaced by an internal component c of 
equivalent functionality. The property states that the reuse 
benefit out of using an external component is higher than that of 
using an internal component of same functionality. Internal 
component is said to be reused after using it once. It means that 
first time use of internal component is not counted towards 
reuse. 

 
Let us assume that ecS be the System S which reuses an 

external (pre-existing) component ce , therefore, its reusability 
is   re ( cS − e ).  Using equation (13) and (14), we can express its 
reuse benefit (external component ce ) as : 
 

Rb ( ecS ) =  [1 -  { ( 2f  + c 2
o  - (re ( cS − e ) + nc

e ec∧ Z c e)2 /  

( ( 2f  + c 2
o  )}]           (31)             

Where (re ( cS − e ) is the reusability of the system with the 
external component and f is the functionality. 
 
If we assume that Sc is the system with the same functionality as 
S in which uses of all external component ce is replaced by an 
internal component c. Using Definition 1, we can say that 
number of reuses of internal component c is one less as 
compared to the number of reuses of the external component ce  

. Therefore, we can express the reuse benefit of Sc as: 
 

Rb (Sc) =   [1 -  { ( 2f  + c 2
o  - (re ( cS − ) + (nc

e – 1) c∧  Z c )2 

/  ( ( 2f  + c 2
o  )}]       (32)    

 
Note that rest of the reuse is not affected by this perturbation, (re 

( cS − e ) and  re ( cS − )   should be the same and as we know that ce 

and c has the same specification therefore, ec∧ Z c e is the same 

as ∧ c Zc . So we can express Equation (32) as: 
 
Rb (Sc) =   [1 -  { ( 2f  + c 2

o  - (re ( cS − e ) + (nc
e – 1) c∧ e 

Z c e)2 /  ( ( 2f  + c 2
o  )}]   (33)    

 
Thus comparing equations (31) and (32), we can express as: 
 

)()( cbcb SRSR e > , which proves the property 6. 

Property 7:  )',()( 1,,
e

cbcb cSRSR nene −≥  

where nec
S , is a system S where an external component ce is 

used n times. c'e is an external component identical in 
functionality to ce. According to this property it is not more 
beneficial to use an external component ce (n-1) times plus 
another equivalent external component c'e once as compared to 
use it ce n-times. Using equations (13) and (14) (since we define 
that Cost is proportional to Size (equation 6)) we can 

necS ,  as 

 



 
 

 

 

)( n
cb SR  =   [1 -  { ( 2f  + c 2

o  - (re ( cS − e) + n ec∧ Z c e)2 /  

( ( 2f  + c 2
o  )}]             (34) 

 
Similarly for )',( 1,

e
cb cSR ne −  we have   

 
)',( 1,

e
cb cSR ne − =  [1- { ( 2f  + c 2

o  - (re ( cS − e) + (n – 1) 

ec∧  Z c e + ∧ c
e'  Zc

e'   )2 /  ( ( 2f  + c 2
o  )}] 

                                          (35)                                                                                                                                                                         
 
We can assume here that the two components are used 
verbatim, and thus their Λ's should be 1. Since ce and c e'  are 
equivalent, their specifications should be the same. Therefore, 

Z c e = Zc'
e. Substituting these in Equation (34) and Equation 

(35), we get: 

)()( ,1,, ieSRSR ccbcb nenen −≥
  

Hence it proves the property 7.  
 
We can also see from this fact that according to Devanbu et al. 
(1996) in the second case there is “incorporation of new code 
which involves the needles additional work to identify, procure 
and validate the component; therefore, the added extra 
component should not increase the benefit from reuse.” 

Property 8:   )()()( φSRSRSR bcbcb mv >>  

where cv, cm and φ are components of equivalent functionality. 
cv is reused verbatim, cm is a component which is a 
modification of another component and φ is custom developed. 
According to this property the reuse benefit is highest for 
verbatim reuse, followed by modified reuse followed by 
custom development. 
 
Here we have a component c which is being used three different 
times with three different ways by implementing of a systems S 
differently. In first case a verbatim reuse of a component which 
is represented by cv, secondly use the modified reuse of an 
another component which is represented by cm and finally use 
the custom developed internal component and is represented by 
φ . This property is not concerned to the number of reuses. 
Using equations (13) and (14), we can write for verbatim reuse 
as: 
 

)( vcb SR =  [ ( 2f  + c 2
o  ) - ( 2f  + c 2

o  - (re ( cS − ) + 

n c∧ v   Zc v )2 ] /  [ ( 2f  + c 2
o  )]  (36) 

 
similarly for modified reuse         
 

)( mcb SR = [ ( 2f  + c 2
o  ) - ( 2f  + c 2

o  - (re ( cS − ) + 

n c∧ q  Zc
m)2 ] /  [ ( 2f  + c 2

o  )]    (37) 
 
and for custom reuse                                            
 
 =)( φSRb  [ ( 2f  + c 2

o  ) - ( 2f  + c 2
o  - (re ( cS − ))2 ] /  

[ ( 2f  + c 2
o  )]                              (38) 

                              
Note that functionality of three components are the same, so f1  =   
f2  =  f3  , Zc

m = Zc
v and Λc

v = 1.  Since cv is used verbatim and Λc
q 

is less than 1 since cq is a modified component. Therefore, we 
can say that 
 

)()()( φSRSRSR bcbcb mv >>  
 
Our successful validation of Devanbu (1996) properties under 
the three dimensional reuse techniques further supports our 
model. In addition, they are also helpful in many ways such as: 
 
(a) These properties help us in selecting components for the 
reuse by customers.  Customer may be given choices to opt the 
given components from the available systems. (b) A system 
developer or customer can identify the properties which has 
been successful in past in his or her environments. Based on 
these properties he or she may select classes and objects for his 
or her recent project. (c) Based on the properties, customers can 
check and verify at each stage of software development about 
the behavior of reuse. (d) Externally available reusable 
components or sub-systems may be selected once the trends in 
the applications have been identified. (e) Types of the 
components through the reuse properties may help us in 
identifying the components or classes which are useful or 
creating hindrance in the reuse. Because it can be judged 
whether coupling between components (due to an external or 
internal components) are increasing or decreasing the systems 
size? (f) Present model confines the searching and retrieval of 
components within the space of ‘Functionality, Complexity and 
Reusability’. Use of properties further classifies the 
components according to our requirements. Therefore, search 
space is not only reduced, but it becomes easy to customize our 
applications. (g) As mentioned by Price et al. (1997), in design 
perspective in a health care system, that “related class 
hierarchies encourage the designers to group their components 
into reusable portions at the earliest stages in the design 
process”, suggests that it is possible to find such hierarchies 
where we have the classes like Person, Patient, Physician, 
Business, Record etc. as a general classes and which can be 
further reused in the various small systems. 
 
It is possible to classify these general classes on the basis of the 
properties mentioned in the three dimensional space which can 
be grouped into our desired reusable classes and can be further 
used in our future systems. Classes based on these properties 
can be suitably grouped for the future reuse in the other 



 
 

 

 

systems. If we know about the characterization of classes based 
on these properties early in the initial design phase, then we can 
prevent the undesired coupling between these classes. From our 
point of view an application is a specific combination of 
complexity, functionality, and reusability. We can achieve a 
balanced solution based on our requirements and needs. 
 

8. Component Reuse Benefit and Composition  
       Environment 

     
Component based development (CBD) has been growing 
considerably among developers, vendors and Information 
Technology organizations. Reuse of software may be 
considered as the most effective means for improvement of 
productivity in software development projects. 
 
Reuse of software generally thought as to increase productivity, 
improve product reliability and lower overall costs. Four 
process steps may be used in reusing an artifact (Dusink  et al. 
(1995)) they are (i) find (ii) select (iii) understand; (iv) adopt. 
 
Devanbu et al. (1996) evaluated analytically and empirically 
“how well several published software reuse metrics measure 
the “time, money and quality”, benefits of software reuse.” 
They assessed several existing software reuse metrics using 
these properties. Devanbu’s work not only reflects the 
applications of their different analytic properties while it also 
raised some practical issues. 
 
Reuse Benefit may be optimized during the composition and 
deployability of software (components) if we use the above 
mentioned properties. It is also possible to obtain desired 
deployable software if we follow the one or more properties 
according to our requirements. 
 
Composing applications out of reusable and pre-existing 
software components is an important question in creating 
applications. Through software components we can make a 
clear distinction between available components and the 
applications from these components. We need the particular 
type of component to compose an application. 
 
If we have the multiple applications which share the particular 
type of components or if we upgrade an application then it 
becomes quite obvious to use the above properties to optimize 
and integrate the required application.  If we know the exact 
functionality and complexity during each phase of the SDLC 
(by using these properties) then we can create a strategy to 
deploy an application not only safe and successful while we can 
achieve maximum benefit (in a friendly environment) out of 
reusable components. 
 
From the model of a component we can determine kinds of 
components that can be used and composed, and thus 
influences the properties of the components. Component 
properties determine how the user interacts with components 
and composed applications, and thus influence the usability of 
the environment. 
                          

9. Reusable Software Components and Frameworks: 
 
According to DENG-JYI CHEN et al. (2000), we can ideally 
regard a Reusable Software Component or Framework to be 
designed for use in constructing many different applications to 
maximize its applicability and for easy reuse or adaptation by 
software designers and programmers so that it can ease of 
tailoring for specific applications.  Fig. 2 depicts an ideal RSC 
or framework in which a 2-dimensional graphic may be used. 
 
Generalization is used to create generalized components which 
are general to the many applications while Specialization is to 
create specialized components which can not be used in 
general. Thus according to authors (DENG-JYI CHEN et al. 
(2000)) “an RSC or framework must be designed  

 
                                                     Figure 2   
                     An ideal Reusable Software Component  
                  or Framework (DENG-JYI CHEN et al. (2000) 
 
and implemented so that there is a balance between 
generalization and specialization”. According to the authors 
(DENG-JYI  et al. (2000)) a reusable component behaves like a 
server while a client (application program) only requires the 
specification of a server. It does not need to know the details of 
the services provided by server. Therefore, we can use the 
reusable components based on our properties for a given 
system. Once we identify our needs then it is possible to select 
the components based on the properties. We can optimize the 
particular type of the properties according to the requirements.  
 
10. Conclusion 
Present three dimensional model is more capable and can deal 
simultaneously several component problems. This model 
indicates a new way of dealing existing problems and limits the 
variables required for the component based development. 
However, a rigorous experimental procedure is desired to 
verify the present outcome in greater details. We hope to 
present experimental findings using a visual basic (Microsoft) 
environment in the future. As a result of present work we 
propose that: 1. It will be easy to understand the overall 
reusability in terms of functionality and complexity rather than 
an elaboration of large number of factors.  2. It removes the 
ambiguity in selecting parameter “b’ ” in the Frakes and Terry 
(1996) formula. Value of “b’ ” is different for different types of 
projects.  3. Systems will behave as modular in terms of the 
proposed model and hence helps us in the calculation of 
reusability. 4. Standardization and collection of similar 
components will be an easy task due to atomic character of 



 
 

 

 

OP’s. 5. It will provide the description of a complete system 
where the reusability will be fully explored within the 
theoretical available limit. 6. It also increases the portability of 
the system because of limited search. 
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                                                                       Table I  

Comparison of Estimated Reuse Benefit to that of Theoretical Calculated Values of Frakes and Terry (1996) formula.  

Complexity = 1083 and Functionality = 381. Implementation Language: C++ RDBMS (b’ = 0.15) 
 



 
 

 

 

Project Description 
(Hastings and Sajeev 
(2001) 

Reuse 
Rate 

Size 
After Reuse 
am1^b g1^z 

 Original  
Size 
am^b g^z 

Reuse Benefit using Present 
Formula (Equation  

Reuse Benefit using 
equation (17) Frakes 
and Terry(1996) 
formula 

10 % 3111.9005 3252 0.0431 0.0581 
20% 2776.5356 3252 0.1462 0.1163 
30% 2407.3984 3252 0.2597 0.1744 
40% 2088.4415 3252 0.3578 0.2325 
50% 1836.5335 3252 0.4353 0.2906 
60% 1644.4302 3252 0.4943 0.3488 
70% 1495.5141 3252 0.5401 0.4069 
80% 1380.1121 3252 0.5756 0.4650 

Application 
Type: Management 
Information 
 
Delivery Platform: 
MSWindows 

 
90% 1289.4386 3252 0.6035 0.5231 

                                                                                                     
                                                                    Table II  

Comparison of Estimated Reuse Benefit to that of Theoretical Calculated Values of Frakes and Terry (1996) formula.  

Complexity =  348 and Functionality =  65. Implementation Language: Assembler (b’ = 0.15) 
 
Project 
Description 
(Hastings and 
Sajeev (2001) 

Reuse 
Rate 

Size 
After Reuse 
am1^b g1^z 

Original  
Size 
 
am^b g^z 

Reuse 
Benefit using 
equation (21) 
Present 
Formula 

Reuse Benefit using equation (17) 
Frakes and Terry( 1996) 
formula 

10 % 1743.13438 2034 0.1430 0.1090 
20% 1273.43275 2034 0.3739 0.2181 
30% 912.621427 2034 0.5513 0.3271 
40% 677.675113 2034 0.6668 0.4361 
50% 510.140423 2034 0.7492 0.5451 
60% 390.222177 2034 0.8082 0.6542 
70% 295.51451 2034 0.8547 0.7632 
80% 212.683514 2034 0.8954 0.8722 

Application 
Type: Control 
Systems 
 
Delivery 
Platform: 
Embedded System 

90% 135.680524 2034 0.9333 0.9812 
 


