

Abstract— We suggest an analytical method to calculate explicit
component based software reuse. Our method is based on three
dimensional Vector Measure of software size which we have
derived in terms of the functionality and problem complexity by
extending the work of Hastings and Sajeev. Our calculated
analytical results are in close agreement with expected results.

We try here to confirm reuse by predicting reuse in terms of reuse
benefit by satisfying all the properties defined by Devanbu et al.
Present method is available early in the life cycle of a project.

Present technique is useful in understanding components
composition environment including the software development life
cycle and the deployability. Present reuse calculation also
overcomes many difficulties faced by software developers.

Index Terms— Reuse, Vector Reuse Measure, Reuse Benefit,
 Three Dimensional Model

1. Introduction

Problems of reuse in large systems (James (1996), Objected
Oriented Systems (Hitz (1995)), complex systems etc. has been
studied by many workers. However, none of these workers
comprehensively outlined theoretical or experimental models
to calculate, observe or validate the reuse measure across the
entire life cycle or during the early phase of the life cycle.

Measurement becomes difficult at the higher reuse rate
especially in the large and the Object Oriented Systems. So far
reusability has not been treated as an independent measurable
quantity which can resolve the problem of component
relationship in a given composition environment. We know that
most of the existing reuse metrics can measure the code.
However measuring code cannot predict the amount of reuse at
the early stage of system life cycle. Measuring components
interaction is a great problem at system, project or domain level
and it becomes quite tedious task to measure the system’s
performance. Question here is that, can we propose a model
which could account all possible coupling of components at all
levels of system developments where the reusability will have a

direct bearing on the systems performance? Yes, we are trying
to dig the answer in the present work which is based on the
extended work of Hastings and Sajeev (2001) and which has
already successfully provided calculation of efforts in several
projects. We will also involve the extended reuse benefit
properties of Devanbu et al. (1996) (from two to three
dimensional) to further support our argument.

2. Related Research & Problems

Devanbu et al. (1996) evaluated analytically and empirically
“how well several published software reuse metrics measure
the “time, money and quality”, benefits of software reuse.”
Frakes and Terry (1996) surveyed the metrics and models of
software reuse and reusability and reviewed the six types of
metrics and models namely cost benefit models, maturity
assessment models, amount of reuse metrics, failure modes
models, reusability assessment models and reuse library
metrics. However, most of these models fail to address the
issues of explicit relationships of reusability with the domain
properties, functions and the integration relation problems.
These models could not differentiate between the domain reuse
and project reuse also.

Above discussions suggest that we do not have a mathematical
formulation or logic which helps us in uniformly selecting,
deploying and integrating the components for the reuse. We
also do not have a technique to classify and manage the
components in the different type of systems.

Review of past theories and discussions suggest that reusability
should be treated explicitly which should have a direct relation
with the entire efforts at all stages in building a software so that
we can deal problem of reusability at all stages. Our knowledge
about components and its availability in day to day tasks has
become so wide that every day we find ourselves in a new
environment. Practically speaking reuse is now not domain
specific or project specific rather it has become time or
temporal specific. Reuse has now become a relative term as
compared to what we have and what we can do? Day to day
enhancement of knowledge and applications has certainly
created a situation where we have to say that “reuse is a time
oriented concept”.

In this work we suggest a technique for the measurement of
reuse in components based systems. Present measure is based
on three dimensional Vector Measure of software size which

 Component-Based Explicit Software
 Reuse

 O. K. Harsh+ and A. S. M. Sajeev*

Engineering Letters, 13:1, EL_13_1_4 (Advance online publication: 4 May 2006)
__

we have derived in terms of the reusability, functionality and
problem complexity by extending the work of Hastings and
Sajeev (2001) which is based on Operators and Operands.
Present method which is based on the Vector Reuse Measure
(VRM) specifications is not only available early in the life
cycle of a project to overcome difficulties met by inexperienced
software developers, but also helps us in selecting components
for the reuse by Customers based-on the properties mentioned
herewith.

3. Vector Size Measure and Reusability

The Vector Size Measure (VSM) (Hastings and Sajeev 2001)
can measure software size from requirements specifications. To
estimate early in the lifecycle, we need the measurement of size
based on the specification. This helps us to estimate effort early
during the cycle. VSM is a software size vector measured in
terms of functionality and problem complexity. VSM is based
on specifications which are formally expressed as Abstract
Data Types (ADT).

On the basis of two fundamental software size attributes, i.e.
functionality and problem complexity, Hastings and Sajeev
(2001) represented software size as the two-dimensional vector
which has both magnitude and direction. Given that we have
three fundamental software size attributes in the new model,
i.e., functionality, problem complexity and reusability, we can
represent software size as a three dimensional vector which has
both magnitude and direction (Figure 1). This representation
allows us to understand and transform software size
measurements using well-defined mathematical functions.

Consider a three dimensional picture (Figure 1) where the
ADT’s are defined along the axis of X, Y and Z as
functionality, problem complexity and reusability respectively.
Three dimensional model is the extension to the Fenton’s
(1991) suggestion that software size, S, is a function, f S , of
length, functionality, and problem complexity, such that: S :: =
f S (l, f, c o) where l represents the total number of entities in a
system, f represents the number of functions a system provides,
and c o represents the underlying problem complexity.

According to the work of Hastings and Sajeev (2001), length is
a derived attribute, thus they considered S :: = f S (f, c o). We,
in the present work, extend this as follows:

 S :: = f S (f, c o , r Se) where r Se is the reusability.

As mentioned in the Figure 1, (By using the plane vector
algebra (Ayres 1972)) magnitude, m, may be defined in terms
of the reusability as: m = Real Part +Imaginary Part = if + jc - ¡k
re, where i, j and k are the unit vectors along the x, y and z axis
respectively and ¡ = √- 1 and
 m = √ (f2 + c2 - r Se

2) [OP] (1)

Direction is defined as theta = tan-1 (c / √((f2 - r Se
2)).

However, we are more interested in the ratio between problem
complexity and so called effective functionality, i.e., the
gradient, g, to indicate the relative dimensions of a software
system, where:

g = sqrt (c^2 – reS^2)/f (2)

Gradient is a ratio of problem complexity and effective
functionality (in terms of the reusability) which tells us about
the relative dimensions of systems, i.e., the characteristics of
software systems.

Vector Representation

As discussed above the size has been extended in the present
work to include the percentage value of reusability (r Se) as: m

= (f2 + c0
2 - reS

2) (3) where f,

c o and r Se are the vector quantities, and the direction as

[tangent of] theta = g = sqrt (c^2 - r Se ^2)/f . This represents
the relative dimensions of a software system (note that f > 0)
which suggest that presence of reusability reduces the effective
value of the gradient. If the reusability is zero then equation (3)
reduces into the Hastings and Sajeev (2001) formula. The
square of the reusability in this formula will not be affected by
positive or negative sign of the reusability.

Z-
Ax

is

Y
-A

xi
s

T
O

NP

M = Magnitude
 OT 2 = m2 = ON2 + NT2 = (f2 - re

2) + c2

ON2 = OP2 + PN2 = (f2 - re
2)

Magnitude
X-Axis

Functionality

Complexity

re = Reusability

 Angle = ONT = Angle OPN= 900

 and Angle TON = θ and Tan θ = TN/ON = C/[(f2 – re
2)]1/2

ON2 = OP2 + PN2 = (f2 - re
2)

 90
0900

 θ

 Figure 1: Software Size as a vector in terms of three dimensional
 Representation .

Let Zk be the size of Component k where Zk is a vector quantity.
Note that Zk is greater than 0 except for a null specification.
Given a system, S consisting of q components we can measure
its size as:

∑
=

=
q

k
kS ZZ

1 (4)

We now define Expanded Size of a system S as:

∑
=

=
q

k
kkS ZnX

1 (5)
Where nk is the number of times Component k's public
functions (and attributes, if any) are used in other components.
This definition of expanded size is similar to that of Devanbu
and Karstu (1994). The only difference is that present method
measure the expanded size from specifications, where as
Devanbu and Karstu's measured it from code. We can also
define that Cost is proportional to Size, that is:

 C ∝ SZ (6)
Using equation (6), one can predict the variation in cost with
the size. Present reuse measure is based on Vector Reuse
Measure (VRM) specifications, which is available early in the
life cycle of a Project.

4. A Measure for Reuse

Here we define a reusability measure called Vector Reuse
Measure (VRM). Reuse is possible in two ways: One is the
number of times a component is used by other components, and
the other is the amount of change that is made to a component
before it is reused.

It should be noted that a component which is set to be
developed as part of a system ‘S’ is considered internal to ‘S’
while a component that is already available, but is set to be used
in System S is considered an external component and its
reusability will be different than the reusability of an internal
component. Since in the present work, size is directly related
with the functionality, complexity and reusability on equal
footing, therefore, it is easy to realize reuse equally in terms of
functionality and complexity.

5. Reusability and Adaptability of components

Two components k and k’ are close provided their
specifications are modified in such a way that:

kk

k

ZZ
Z

δ+
=∧ = ∧ k + δZk (7)

Where δZk is a very small quantity which is a difference of the
specifications of Components k and k'. Similarly we can also
define the reusabilities of two components k and k’ as:

 reS1 = reS2 + δrk (8)

Where δrk is the difference of reusabilitites of Components k
and k’ and it may be expressed as δrk = k – k’ (9)
Having defined reuse of a component, we can measure
reusability of a system S as:

∑
=

∧=
p

k
kkkSe Znr

1

 (10)

Where Zk is the size of the components and nk is the number of
times component k’s public functions (and attributes if any) are
used in other components.

6. Vector Size Measure in Three Dimensions and Reuse
 Benefit Estimation

Magnitude m may be expressed in three dimensions as

m = (f2 + c0
2 – reS2) (11) and

 g = sqrt (c^2 – reS^2)/f (12a)
Where r Se is the reusability, g is the gradient, f is the

functionality and c o is the problem complexity of the system.

If (r Se /f) is small then g = (c0/f) (12b)
which correspond to the two dimensional result. Therefore,
using equations (3) and (10), we get

m = (2f + c 2
o - r 2

eS) =

(2f + c 2
o - (∑

=

∧
p

k
kkk Zn

1
)2 (13)

 If we know the f, c o and m then we can calculate the

reusability (r Se) from the equation (13) or if we know the f, c o
then we can calculate the different values of m as the reusability
(r Se) varies. In the present work we take the Reuse Benefit
(Devanbu et al. (1996)) as:

Reusable Benefit =

)(
)()()(

reusewithoutSC
reusewithSCreusewithoutSCSRb

−
=

 (14)

Where as mentioned in the equation (6), C is proportional to
size.

Frakes and Terry (1996) proposed cost and productivity

model for software reuse. According to them the relative cost of
software development (C) may be expressed as:

C = [(b’-1) R] + 1 (15) or

 (C-1) = [(b’-1) R] (16)

Where R is the type of reuse level (company’s overall reuse
rate) and b’ is the cost relative to that for all new code, of
incorporating the reuse code into the new product. (b’ =1 for all
new code). Using equation (15), we can also calculate the reuse
benefit by using the equation (6). Thus equation (15) and
equation (14) may be expressed as:

C’=
)(

)()(
reusewithoutSC

reusewithSCreusewithoutSC −
=)(SRb

= [(b’-1)R] (17)

Hastings and Sajeev (2001) have derived an expression for

the estimated effort by considering a two dimensional model of
problem complexity and functionality as:

E = a mb gz (18)

Where m is the measured magnitude of a software
specification and g is the measured gradient; a, b and z are
coefficients. In the present work we have derived a three
dimensional formula for the magnitude m (equation 11) and
gradient (equation 12b). Equation (18) can furnish the
estimated effort for software using the three dimensional model
involving reusability, problem complexity and functionality if
we replace m and g in equation (18) by equations (11) and
(12b) as:

En = a ((2f + c 2
o - r 2

eS))b g1
z = a m1 g1

z

 (19)

Clearly the difference of equations (18) and (19), gives us the
reusable size as:

EReus= C(S with reuse) = [a mb gz - a m1 g1
z]

 (20)
The ratio of equations (20) and (18) will give us the reuse

benefit as:

C’ = EReus / E (21)

Where a = 0.7113 , z = 1.1585 and b = 1.0244 (Hastings &
Sajeev 2001) are constants, m1 = ((2f + c 2

o - r 2
eS)) is

the reusable magnitude and g = sqrt (c^2 - r Se ^2)/f while g
and m are respectively the original gradient and the original
magnitude of the system respectively. Equation (21) can

calculate the reuse benefit provided we know f and c o for a

given res. This can be compared with equation (17) since we
define that Cost as proportional to Size (equation 6), that is:

 C ∝ SZ .

We have predicted theoretically reuse benefit values in two
projects discussed by Hastings and Sajeev (2001) by using
equation (21) (by substituting f, c and assumed reusabilities);
this is then compared to that of Frakes and Terry (1996)
formula for same reusability values (using equation 17) (see
Tables I and II). A close agreement between them has been
obtained. In our present formulation we can prove all the eight
properties of reuse benefit as defined by Devanbu et al. (1996).

7. Reuse Benefit Properties for three dimensional model by
 extending the work of Devanbu et al. (1996):

Property 1: 1)(0, <≤∀ SRS b , that is reuse benefit
always lies between zero and one.

Using equations (13) and (14), we can write

Rb(S) = ((2f + c 2

o) - (2f + c 2
o - r 2

eS))/ (2f +

c 2
o)

or Rb (S) = [(1 - { (2f + c 2

o - reS
2))/ (2f + c 2

o)}]
the second term of this equation is always less than 1 since ∀S,
0 ≤ reS < 1 where reS is given by equation (10)

Therefore, 0 ≤ Rb(S) < 1 (22)

Therefore, this proves property 1. From equations (5) and (13)
we can find out the reuse benefit for the expanded size. Clearly
the numerator of equation (13) is always less than one or
greater (or equal) to zero depending upon the type of
components being reused and therefore reuse benefits satisfies
the property 1.

Property 2:

)()()()(|, 212121 SRSRbutSFunctionSFunctionSS bb ≠=∃

That is, it is possible to have two systems with the same
functionality but different reuse benefits.

 Let Rb (S 1) be the Reuse Benefit of a System S 1 consisting of
two components of which the second component is reused three
times while Rb (S 2) is the Reuse Benefit consisting of same two
components but replacing one use of the second component by
a component which has the same functional and behaviour
specification. In this case clearly reusabilites (reS1 and reS2) are
different, and, therefore, reS1 # reS2, while complexities and
functionality in both the systems are same.

Using equations (13) and (14), we can express for Rb (S1)

Rb (S1) = [((2f + c 2
o) - (2f + c 2

o - reS1
2))/

(2f + c 2
o)]

or Rb (S1) = [(1 - { (2f + c 2

o - reS1
2))/ (2f + c 2

o)}]
 (23)

Similarly for Rb (S 2) (where the second component is reused
three times) we have

Rb (S 2) = [(1 - { (2f + c 2

o - reS2
2))/ (2f + c 2

o)}]
 (24)

Since reS1

2 # reS2
2 and therefore equation (23) is not equal to

equation (24) which proves property 2.

Property 3: ∀S⏐ R b (S 1) >0, ∃ S 1 Function(S 1) =

Function(S 2) and R b (S 1) > R b (S 2)
That is, for any system S, it is possible to develop another
system, S 1 with the same functionality such that the reuse

benefit of S1 is less than that of S.

Let Rb (S 1) be the reuse benefit of System S. Rb (S1) > 0 means
there is at least one component, k which is reused. Replace one
use of a particular component with a new component with the
same functional behaviour to create S 2 (It is an external
component used once. similar to property (2)), otherwise, we
can also replace one use of k with a new component with the
same functionality and behaviour specifications (like property
2) to create S 2 , If we look at the numerators of R b (S 1)

(Equation 23) and R b (S 2) (Equation 24), we can see that the

numerator of R b (S 2) is less as compared to the numerator of
Rb (S1) because reS2 is less than reS1, which makes the numerator
of second term of equation (24) greater and hence the total
value of Rb (S2) becomes less (since as discussed above we
have replaced one used component with a new component to
create S2, therefore, reS1 is greater than reS2 and therefore
equation (23) is greater than equation (24) or Rb (S1) > Rb (S 2)
which proves property 3.

This property helps us to maximize reusability without
changing the functionality.

Property 4:)()(|, 1−>∀ n
cb

n
cb SRSRcS

That is, for any system S that reuses a component c, the reuse
benefit of using the component n times is more than that of
reusing it n-1 times. Using equation (14) and (13) (since we
define that Cost is proportional to Size (equation 6)), we can
express for reuse benefit for using n times component is

)(n

cb SR = [(2f + c 2
o) - (2f + c 2

o - (re (cS −) +

n c c∧ Z c)2] / [(2f + c 2
o)]

or)(n

cb SR = [1 - { (2f + c 2
o - (re (cS −) + n c c∧ Z c)2 /

((2f + c 2
o)}] (25)

Similarly for)(1−n

cb SR

)(1−n
cb SR = [1 - { (2f + c 2

o - (re (cS −) + (n c -

1) c∧ Z c)2 / ((2f + c 2
o)}] (26)

Where in equation (26) the number of times Component c has
been reduced by 1. We can note from equations (25) and (26)
that:

(r cS − + n c c∧ Z c) > (r cS − + (n c - 1) c∧ Z c) which makes
the numerator of equation (25) greater that the numerator of
equation (26), and therefore,

)(n
cb SR >)(1−n

cb SR Which proves the property 4.

Using equations (5), (7) and (11) it also suggests us that how
many components are there in the expended size?

Property 5:

)()(−− >> Cbcb SRShen R Cost(c) t if Cost(C)

Where)(−
cb SR is the reuse benefit of a system which is a

perturbation of S by removing one use of component c.
Similarly,)(−

Cb SR for Component C. According to this
property if c is a less expensive component compared to C then
the reuse benefit after removing one use of c will be greater
than the reuse benefit after removing one use of C or we can say
that it is beneficial to reuse higher cost components than lower
cost components.

we can demonstrate property 5 mathematically by using
equations (13) and (14) (since we define that Cost is
proportional to Size (equation 6)). As we can note that property
5 is about reusing the two components, c and C, of different
costs, therefore, it is suitable to assume that they are used
verbatim, which means that c∧ = C∧ = 1. Thus we can write

(using equations (13) and (14) as:
Rb (S c) = [(2f + c 2

o) – { (2f + c 2
o - (re (cS −) +

n c Z c)2 }] / [(2f + c 2
o)]

Rb (S
−
c) = [(2f + c 2

o) –{ (2f + c 2
o - (re (S-C) + (n c -

1) Zc)
2)}] /[(2f + c 2

o)] (27)

Similarly for Rb (SC)

Rb(SC) = [(2f + c 2

o) – { (2f + c 2
o - (re (S-C) +nC

ZC)2 }] / [(2f + c 2
o)]

Rb (S

−
C) = [(2f + c 2

o) - (2f + c 2
o -

 ((re (S-C) + (nC – 1) ZC)2] / [(2f + c 2
o)] (28)

Since we know that Cost is the function of size, so Cost(C) is
proportional to ZC, and similarly Cost(c) is proportional to Zc .
Since C is a high cost component compared to c therefore it is

straight forward to say that ZC > Z c .

Let us assume that RS-c-C is the reusability of System S
excluding the reusability of Component c and C. Thus we can
express the numerator of Equation (27) as:

[(2f + c 2

o) –{ (2f + c 2
o - (re (S-C) + (n c - 1)Zc)

2)}]

= [(2f + c 2

o) –{ (2f + c 2
o - (re (S-c-C) + (n c - 1)Zc +

nC ZC)2)}]

= [(2f + c 2

o) –{ (2f + c 2
o - (re (S-c-C) + (n c - 1)Zc +

(nC - 1) ZC + ZC)2)}] (29)

Similarly we can express the numerator of Equation (28) as:

[(2f + c 2

o) –{ (2f + c 2
o - (re (S-c-C) + (nC - 1)ZC +

(nc - 1) Zc + Zc)2)}] (30)

Comparing Equation (27) and (28),

bR (S −
c) > bR (−

CS) if Z C > Z c which demonstrated the
property 5.

Property 6:)()(cbcb SRSR e >

where ecS is a system with an external component ce and Sc is
a system with ce replaced by an internal component c of
equivalent functionality. The property states that the reuse
benefit out of using an external component is higher than that of
using an internal component of same functionality. Internal
component is said to be reused after using it once. It means that
first time use of internal component is not counted towards
reuse.

Let us assume that ecS be the System S which reuses an

external (pre-existing) component ce , therefore, its reusability
is re (cS − e). Using equation (13) and (14), we can express its
reuse benefit (external component ce) as :

Rb (ecS) = [1 - { (2f + c 2
o - (re (cS − e) + nc

e ec∧ Z c e)2 /

((2f + c 2
o)}] (31)

Where (re (cS − e) is the reusability of the system with the
external component and f is the functionality.

If we assume that Sc is the system with the same functionality as
S in which uses of all external component ce is replaced by an
internal component c. Using Definition 1, we can say that
number of reuses of internal component c is one less as
compared to the number of reuses of the external component ce

. Therefore, we can express the reuse benefit of Sc as:

Rb (Sc) = [1 - { (2f + c 2
o - (re (cS −) + (nc

e – 1) c∧ Z c)2

/ ((2f + c 2
o)}] (32)

Note that rest of the reuse is not affected by this perturbation, (re

(cS − e) and re (cS −) should be the same and as we know that ce

and c has the same specification therefore, ec∧ Z c e is the same

as ∧ c Zc . So we can express Equation (32) as:

Rb (Sc) = [1 - { (2f + c 2

o - (re (cS − e) + (nc
e – 1) c∧ e

Z c e)2 / ((2f + c 2
o)}] (33)

Thus comparing equations (31) and (32), we can express as:

)()(cbcb SRSR e > , which proves the property 6.

Property 7:)',()(1,,
e

cbcb cSRSR nene −≥

where nec
S , is a system S where an external component ce is

used n times. c'e is an external component identical in
functionality to ce. According to this property it is not more
beneficial to use an external component ce (n-1) times plus
another equivalent external component c'e once as compared to
use it ce n-times. Using equations (13) and (14) (since we define
that Cost is proportional to Size (equation 6)) we can

necS , as

)(n
cb SR = [1 - { (2f + c 2

o - (re (cS − e) + n ec∧ Z c e)2 /

((2f + c 2
o)}] (34)

Similarly for)',(1,

e
cb cSR ne − we have

)',(1,

e
cb cSR ne − = [1- { (2f + c 2

o - (re (cS − e) + (n – 1)

ec∧ Z c e + ∧ c
e' Zc

e')2 / ((2f + c 2
o)}]

 (35)

We can assume here that the two components are used
verbatim, and thus their Λ's should be 1. Since ce and c e' are
equivalent, their specifications should be the same. Therefore,

Z c e = Zc'
e. Substituting these in Equation (34) and Equation

(35), we get:

)()(,1,, ieSRSR ccbcb nenen −≥

Hence it proves the property 7.

We can also see from this fact that according to Devanbu et al.
(1996) in the second case there is “incorporation of new code
which involves the needles additional work to identify, procure
and validate the component; therefore, the added extra
component should not increase the benefit from reuse.”

Property 8:)()()(φSRSRSR bcbcb mv >>

where cv, cm and φ are components of equivalent functionality.
cv is reused verbatim, cm is a component which is a
modification of another component and φ is custom developed.
According to this property the reuse benefit is highest for
verbatim reuse, followed by modified reuse followed by
custom development.

Here we have a component c which is being used three different
times with three different ways by implementing of a systems S
differently. In first case a verbatim reuse of a component which
is represented by cv, secondly use the modified reuse of an
another component which is represented by cm and finally use
the custom developed internal component and is represented by
φ . This property is not concerned to the number of reuses.
Using equations (13) and (14), we can write for verbatim reuse
as:

)(vcb SR = [(2f + c 2
o) - (2f + c 2

o - (re (cS −) +

n c∧ v Zc v)2] / [(2f + c 2
o)] (36)

similarly for modified reuse

)(mcb SR = [(2f + c 2
o) - (2f + c 2

o - (re (cS −) +

n c∧ q Zc
m)2] / [(2f + c 2

o)] (37)

and for custom reuse

 =)(φSRb [(2f + c 2

o) - (2f + c 2
o - (re (cS −))2] /

[(2f + c 2
o)] (38)

Note that functionality of three components are the same, so f1 =
f2 = f3 , Zc

m = Zc
v and Λc

v = 1. Since cv is used verbatim and Λc
q

is less than 1 since cq is a modified component. Therefore, we
can say that

)()()(φSRSRSR bcbcb mv >>

Our successful validation of Devanbu (1996) properties under
the three dimensional reuse techniques further supports our
model. In addition, they are also helpful in many ways such as:

(a) These properties help us in selecting components for the
reuse by customers. Customer may be given choices to opt the
given components from the available systems. (b) A system
developer or customer can identify the properties which has
been successful in past in his or her environments. Based on
these properties he or she may select classes and objects for his
or her recent project. (c) Based on the properties, customers can
check and verify at each stage of software development about
the behavior of reuse. (d) Externally available reusable
components or sub-systems may be selected once the trends in
the applications have been identified. (e) Types of the
components through the reuse properties may help us in
identifying the components or classes which are useful or
creating hindrance in the reuse. Because it can be judged
whether coupling between components (due to an external or
internal components) are increasing or decreasing the systems
size? (f) Present model confines the searching and retrieval of
components within the space of ‘Functionality, Complexity and
Reusability’. Use of properties further classifies the
components according to our requirements. Therefore, search
space is not only reduced, but it becomes easy to customize our
applications. (g) As mentioned by Price et al. (1997), in design
perspective in a health care system, that “related class
hierarchies encourage the designers to group their components
into reusable portions at the earliest stages in the design
process”, suggests that it is possible to find such hierarchies
where we have the classes like Person, Patient, Physician,
Business, Record etc. as a general classes and which can be
further reused in the various small systems.

It is possible to classify these general classes on the basis of the
properties mentioned in the three dimensional space which can
be grouped into our desired reusable classes and can be further
used in our future systems. Classes based on these properties
can be suitably grouped for the future reuse in the other

systems. If we know about the characterization of classes based
on these properties early in the initial design phase, then we can
prevent the undesired coupling between these classes. From our
point of view an application is a specific combination of
complexity, functionality, and reusability. We can achieve a
balanced solution based on our requirements and needs.

8. Component Reuse Benefit and Composition
 Environment

Component based development (CBD) has been growing
considerably among developers, vendors and Information
Technology organizations. Reuse of software may be
considered as the most effective means for improvement of
productivity in software development projects.

Reuse of software generally thought as to increase productivity,
improve product reliability and lower overall costs. Four
process steps may be used in reusing an artifact (Dusink et al.
(1995)) they are (i) find (ii) select (iii) understand; (iv) adopt.

Devanbu et al. (1996) evaluated analytically and empirically
“how well several published software reuse metrics measure
the “time, money and quality”, benefits of software reuse.”
They assessed several existing software reuse metrics using
these properties. Devanbu’s work not only reflects the
applications of their different analytic properties while it also
raised some practical issues.

Reuse Benefit may be optimized during the composition and
deployability of software (components) if we use the above
mentioned properties. It is also possible to obtain desired
deployable software if we follow the one or more properties
according to our requirements.

Composing applications out of reusable and pre-existing
software components is an important question in creating
applications. Through software components we can make a
clear distinction between available components and the
applications from these components. We need the particular
type of component to compose an application.

If we have the multiple applications which share the particular
type of components or if we upgrade an application then it
becomes quite obvious to use the above properties to optimize
and integrate the required application. If we know the exact
functionality and complexity during each phase of the SDLC
(by using these properties) then we can create a strategy to
deploy an application not only safe and successful while we can
achieve maximum benefit (in a friendly environment) out of
reusable components.

From the model of a component we can determine kinds of
components that can be used and composed, and thus
influences the properties of the components. Component
properties determine how the user interacts with components
and composed applications, and thus influence the usability of
the environment.

9. Reusable Software Components and Frameworks:

According to DENG-JYI CHEN et al. (2000), we can ideally
regard a Reusable Software Component or Framework to be
designed for use in constructing many different applications to
maximize its applicability and for easy reuse or adaptation by
software designers and programmers so that it can ease of
tailoring for specific applications. Fig. 2 depicts an ideal RSC
or framework in which a 2-dimensional graphic may be used.

Generalization is used to create generalized components which
are general to the many applications while Specialization is to
create specialized components which can not be used in
general. Thus according to authors (DENG-JYI CHEN et al.
(2000)) “an RSC or framework must be designed

 Figure 2
 An ideal Reusable Software Component
 or Framework (DENG-JYI CHEN et al. (2000)

and implemented so that there is a balance between
generalization and specialization”. According to the authors
(DENG-JYI et al. (2000)) a reusable component behaves like a
server while a client (application program) only requires the
specification of a server. It does not need to know the details of
the services provided by server. Therefore, we can use the
reusable components based on our properties for a given
system. Once we identify our needs then it is possible to select
the components based on the properties. We can optimize the
particular type of the properties according to the requirements.

10. Conclusion
Present three dimensional model is more capable and can deal
simultaneously several component problems. This model
indicates a new way of dealing existing problems and limits the
variables required for the component based development.
However, a rigorous experimental procedure is desired to
verify the present outcome in greater details. We hope to
present experimental findings using a visual basic (Microsoft)
environment in the future. As a result of present work we
propose that: 1. It will be easy to understand the overall
reusability in terms of functionality and complexity rather than
an elaboration of large number of factors. 2. It removes the
ambiguity in selecting parameter “b’ ” in the Frakes and Terry
(1996) formula. Value of “b’ ” is different for different types of
projects. 3. Systems will behave as modular in terms of the
proposed model and hence helps us in the calculation of
reusability. 4. Standardization and collection of similar
components will be an easy task due to atomic character of

OP’s. 5. It will provide the description of a complete system
where the reusability will be fully explored within the
theoretical available limit. 6. It also increases the portability of
the system because of limited search.

ACKNOWLEDGEMENTS
The second author’s contribution to this paper was in part
supported by an ARC Discovery Grant DP0209483.

The first author is grateful to Professor A .S. M. Sajeev, Chair
of Computer Science Department and the Head of the School of
Computer Science, Mathematics and Statistics, University of
New England, Armidale, Australia for his constant guidance
and valuable supervision without which this work would have
not been possible.

 REFERENCES
 F. Ayres Jr., Theory and Problems of Differential and Integral
Calculus, second ed. New York, N.Y.: McGraw-Hill1, 972.

DENG-JYI CHEN, CHORNG-SHIUH KOONG, WU-CHI
CHEN, SHIH-KUN HUANG+ AND N. W. P. VAN DIEPEN
(2000), “Integration of Reusable Software Components and
Frameworks Into a Visual Software Construction Approach:,
JOURNAL OF INFORMATION SCIENCE AND
ENGINEERING., 16, 863-884.

Devanbu, P. and Karstu, S. (1994): Measuring the Benefits of
Software Reuse, Technical Report, AT&T Bell Labs.

Devanbu, P., Karstu, S., Melo, W. and Thomas, W. (1996):
Analytical and Empirical Evaluation of Software Reuse
Metrics, Proceeding of Intl. Conf. on Software Engineering
(ICSE-18), IEEE, pp. 189-198.

Dusink, L. and Katwijk, Jan van (1995): Reuse Dimensions,
Proceedings of the ACM SIGSOFT Symposium on Software
reusability (SSR’05), April, pp.137-149.

Fenton, N. E. (1991): Software Metrics: A Rigorous Approach.
London: Chapman and Hall.

Frakes, W. and Terry, C. (1996): Software Reuse: Metrics and
Models, ACM Computing Surveys, June, pp. 416-435

Hastings, T. E. and Sajeev, A. S. M. (2001): A Vector-Based
Approach to Software Size Measurement and Effort Estimation,
IEEE Transactions on Software Engineering, April, pp.
337-350.

Hitz, Martin (1995): Measuring reuse attributes in
object-oriented systems. In Proceedings of the Int’l Conference
on Object-Oriented Information Systems, Dublin, Ireland.

James, M. Neighbors (1996): Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE '96), p 2.
Publisher: IEEE Computer Society Washington, DC, USA.

O’Dell, J. (2004): Indexing software components: A proposal
for Enabling Reusing ‘Novel’Techniques, Apr-Jun, Vol. 12
Issue 2, p59, 2p; (AN 13049200) April-Jun, pp. 59-60.

Price, Margaretha, W and Demurjuan, Sr., Steven, A (1997):
Analyzing and Measuring Reusability in Object-Oriented
Designs, Conference on Object Oriented Programming
Languages and Applications, Proceedings of the 12th ACM
SIGPLAN, Atlanta, Georgia, pp 22-23. Publisher ACM
Press New York, NY, USA

Rine, C. David (1997): Success Factors for Software Reuse that
are Applicable across Domains and Businesses, Symposium on
Applied Computing Proceedings of the 1997 ACM symposium
on Applied computing, San Jose, California, United States,
ACM Press, pp 182 – 186.

Tracz, W. (1994): Software Reuse Myths Revisited, Software
Engineering. Proceedings. ICSE-16., 16th International
Conference, Sorrento, Italy, 16-21 May 1994 pp 271-272.

*Professor A.S.M. Sajeev is the Chair of Computer Science
and Head of the School of Computer Science, Mathematics and
Statistics at the University of New England, Armidale,
Australia.

+ O. K. Harsh is associated with University of New England,
Armidale, Australia and he has been working under the
supervision of Professor A. S. M. Sajeev, Chair of Computer
Science Department and the Head of the School of Computer
Science, Mathematics and Statistics, University of New
England, Armidale, Dr Harsh has been having long experience
of working in varieties of fields

 Table I

Comparison of Estimated Reuse Benefit to that of Theoretical Calculated Values of Frakes and Terry (1996) formula.

Complexity = 1083 and Functionality = 381. Implementation Language: C++ RDBMS (b’ = 0.15)

Project Description
(Hastings and Sajeev
(2001)

Reuse
Rate

Size
After Reuse
am1^b g1^z

 Original
Size
am^b g^z

Reuse Benefit using Present
Formula (Equation

Reuse Benefit using
equation (17) Frakes
and Terry(1996)
formula

10 % 3111.9005 3252 0.0431 0.0581
20% 2776.5356 3252 0.1462 0.1163
30% 2407.3984 3252 0.2597 0.1744
40% 2088.4415 3252 0.3578 0.2325
50% 1836.5335 3252 0.4353 0.2906
60% 1644.4302 3252 0.4943 0.3488
70% 1495.5141 3252 0.5401 0.4069
80% 1380.1121 3252 0.5756 0.4650

Application
Type: Management
Information

Delivery Platform:
MSWindows

90% 1289.4386 3252 0.6035 0.5231

 Table II

Comparison of Estimated Reuse Benefit to that of Theoretical Calculated Values of Frakes and Terry (1996) formula.

Complexity = 348 and Functionality = 65. Implementation Language: Assembler (b’ = 0.15)

Project
Description
(Hastings and
Sajeev (2001)

Reuse
Rate

Size
After Reuse
am1^b g1^z

Original
Size

am^b g^z

Reuse
Benefit using
equation (21)
Present
Formula

Reuse Benefit using equation (17)
Frakes and Terry(1996)
formula

10 % 1743.13438 2034 0.1430 0.1090
20% 1273.43275 2034 0.3739 0.2181
30% 912.621427 2034 0.5513 0.3271
40% 677.675113 2034 0.6668 0.4361
50% 510.140423 2034 0.7492 0.5451
60% 390.222177 2034 0.8082 0.6542
70% 295.51451 2034 0.8547 0.7632
80% 212.683514 2034 0.8954 0.8722

Application
Type: Control
Systems

Delivery
Platform:
Embedded System

90% 135.680524 2034 0.9333 0.9812

