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Abstract

The time-dependent Ornstein-Uhlenbeck process
(OU-process) is of immediate relevance to the pro-
gression of the CD4-cell counts of HIV infected pa-
tients. The first passage time density (FPTD) pro-
vides information about the disease level, and the pre-
dictions can then be used to optimize medical treat-
ment. Despite the importance and wide applications
of the time-dependent OU-process, no explicit ana-
lytic solution to such a first passage time problem is
known. In this paper we propose a simple and effi-
cient method for computing accurate estimates of the
FPTD of the time-dependent OU-process through a
constant threshold. This new approach is also able
to provide tight upper and lower bounds for the exact
FPTD in a systematic manner. Furthermore, this ap-
proach can be straightforwardly extended to the more
general case of a deterministically modulated bound-
aries as well.
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1. Introduction

The study of a progressive chronic disease is often
based on the modelling of a prognostic indicator, the
values of the indicator providing information about
the course of the disease, e.g. HIV infection or organ
failure[1,2] The first passage time density (FPTD)
is a useful tool to interpret the results, and the pre-
dictions can then be used to optimize medical treat-
ment, as indeed the case for the MELD score in end-
stage liver disease.[3] When the prognostic indicator
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is continuous, many researchers model its progres-
sion by a time-dependent Ornstein-Uhlenbeck sto-
chastic process (abbreviated as OU-process)1.[1,2,4]
The present work is motivated by recent research
on CD4-cell counts modelling for HIV infected pa-
tients.[5] The progression of the CD4-cell counts is
considered as an efficient indicator of the HIV infec-
tion, and numerical values have been inspired by the
literature.[1,6] The corresponding FPTD enables us
to characterize the disease progression and to com-
pare the progression in groups differentiated accord-
ing to covariates (sex, treatment, . . . ).
The FPTD of the time-dependent OU-process is

the solution of a partial differential equation called
the backward Chapman-Kolmogorov equation with
appropriate boundary conditions. Unfortunately, de-
spite the importance and wide applications of the OU-
process, explicit analytic solutions to such a first pas-
sage time problem are not known except for a few
specific instances. As summarized by Alili et al.[7],
three representations of analytical nature have been
obtained for the FPTD of an OU-process through a
constant threshold. The first one is based on an
eigenfunction expansion involving zeros of the par-
abolic cylinder functions, the second one is an inte-
gral representation involving some special functions,
and the third one is given in terms of a functional
of a three-dimensional Bessel bridge. In addition to
the numerical methods, e.g. the finite-difference ap-
proach and the direct Monte-Carlo simulation, these
three representations suggest alternative ways to ap-
proximate the FPTD. Nevertheless, these three rep-
resentations are valid for an OU-process with con-
stant model parameters only.
In the present work we derive the closed-form for-

mula for the FPTD of an OU-process with a time-

1This is a generalization of the Ornstein-Uhlenbeck process
with time-dependent model parameters.
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dependent drift to a parametric class of moving
boundaries by means of the method of images. We
also apply the results to develop a simple, efficient
and systematic approximation scheme to compute ac-
curate estimates of the exact FPTD through a fixed
threshold. Unlike previous approximate analytical
attempts, the proposed method does not involve any
sophisticated special functions or numerical inversion
of Laplace transforms.

2. First passage time density

We consider the Fokker-Planck equation (FPE) as-
sociated with a time-dependent OU-process[8]:
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where σ (t), µ (t), ν (t) are arbitrary functions of time
t. It is straightforward to show that its solution corre-
sponding to the so-called natural boundary condition
is given by
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By the method of images we are able to derive the
solution

P (x, t) =

Z ∞
1

{K (x− 1, t;x0 − 1, 0)−

K (x− 1, t;−x0 + 1, 0) e−2β(x0−1)
o
×

P (x0, 0) dx0 , (5)

which vanishes at x = 1−[γ (t) + 2βη (t)] e−α(t) ≡
x∗ (t) at any time t > 0. Here β is a real adjustable
parameter. The solution is valid for the interval
x∗ (t) 6 x < ∞. Hence, we have obtained a para-
metric class of closed-form solutions of Eq.(1) with a
moving absorbing boundary whose movement is con-
trolled by the parameter β.
Accordingly, the corresponding FPTD conditional

to P (x, 0) = δ (x− x0) can be analytically obtained
in closed form as follows:
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where N (·) is the cumulative normal distribution
function. In order to approximate the FPTD through
a fixed boundary at x = 1, we would choose an op-
timal value of the adjustable parameter β in such a
way that the integralZ τ

0

[x∗ (t)− 1]2 dt

is minimum. In other words, we try to minimize
the deviation of the moving boundary from the fixed
boundary by varying the parameter β. Here τ de-
notes the time at which the solution of the FPE is
evaluated. Simple algebraic manipulations then yield
the optimal value of β as follows:

βopt = −
R τ
0
γ (t) η (t) e−2α(t) dt

2
R τ
0
η2 (t) e−2α(t) dt

. (7)

Making use of the maximum principle for parabolic
partial differential equations[9], we can also determine
the upper and lower bounds for the exact solution as-
sociated with the fixed boundary. It is not difficult
to show2 that the lower bound can be provided by
the solution of the FPE associated with a moving
boundary whose x∗(t) is always larger than or equal
to unity for the duration of interest. Similarly, the

2The proof is based upon the maximum principle for par-
abolic partial differential equations (see the appendix of Lo et
al. (2003) for the relevant proof).



solution of the FPE associated with a moving bound-
ary whose x∗(t) is always smaller than or equal to
unity for the duration of interest can serve as the up-
per bound. Furthermore, the upper and lower bounds
can be optimized by adjusting the corresponding val-
ues of the parameter β.3 The FPTD corresponding
to the “upper-bound” solution is smaller than the
exact FPTD, whilst the one derived from the “lower-
bound” solution is larger than the exact value.

3. Multi-stage approximation

Now, we propose a systematic multi-stage scheme
to approximate the exact solution of the FPE with
a fixed absorbing boundary at x = 1. This ap-
proximation scheme has been successfully applied to
compute tight upper and lower bounds of barrier
option prices with time-dependent parameters very
efficiently, where the underlying asset prices follow
the lognormal process and the constant elasticity of
variance process[10,11]. For demonstration, we con-
sider the evaluation of the approximate FPTD in two
stages.

Stage 1: the time interval [0, τ/2]

We choose an appropriate value of the parameter β,
denoted by β1 , such that x

∗ (t = 0) = x∗ (t = τ/2) =
1. This determines the movement of the boundary
within the time interval [0, τ/2]. The corresponding
solution is given by

P (x, 0 6 t 6 τ/2)

=

Z ∞
1

G (x, t;x0, 0;β1)P (x
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Stage 2: the time interval [τ/2, τ ]

We repeat the procedure in stage 1 such that
x∗ (t = τ/2) = x∗ (t = τ) = 1. This will give us

3Each of the moving barriers associated with the upper and
lower bounds could be determined by requiring that either the
moving barrier returns to its initial position and merges with
the fixed barrier at time t = τ , i.e. x∗ (t = τ) = x∗ (t = 0), or
the instantaneous rate of change of x∗ (t) must be zero at time
t = 0. Both of the criteria are to ensure the deviation from the
fixed barrier to be minimum.

another value of β, denoted by β2 , and determine the
moving boundary’s trajectory for the time interval
[τ/2, τ ]. Then, the corresponding solution is evalu-
ated as follows:
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Ḡ (x, t;x0, τ/2;β2)P (x
0, τ/2) dx0 (10)

where
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As a result, the associated FPTD is found to be
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The integration can be performed analytically and
the result can be expressed in closed form in terms
of the cumulative bivariate normal distribution func-
tion N2 (·). However, in practice it is also very effi-
cient to calculate the integral numerically, e.g. using
the Gauss quadrature method. Apparently, one can
further improve the estimate by splitting the evalua-
tion process into four stages instead, namely [0, τ/4],
[τ/4, τ/2], [τ/2, 3τ/4] and [3τ/4, τ ]. Then, what one
needs to do is to determine the corresponding values
of β for these four different stages and perform succes-
sive integrations similar to the one in the two-stage
approximation. The final expression of the associ-
ated FPTD can be expressed in closed form in terms
of the N (·), N2 (·), N3 (·) and N4 (·) functions.
In summary, the essence of this multi-stage approx-

imation scheme is to replace the smooth barrier track
by a continuous and piecewise smooth trajectory in
order that the deviation from the fixed barrier is min-
imized in a systematic manner. We then need to
perform some simple one-dimensional numerical inte-
grations (e.g. using the Gauss quadrature method)4

at the connecting points of the piecewise smooth bar-
rier in order to evaluate the approximate value of
the FPTD. By construction, it is expected that the
multi-stage approximation becomes better and better
as the number N of stages increases; in fact, the error
is asymptotically reduced to zero. In practice, even
a rather low-order approximation can yield very ac-
curate estimates of the FPTD. Furthermore, similar
multi-stage approximation procedures can be applied

4The integration can be performed analytically and the re-
sult can be expressed in closed form in terms of the multi-
variate normal distribution functions. However, in practice the
numerical integrations are indeed very efficient.

to obtain very tight upper and lower bounds of the
exact FPTD.
For illustration, we apply the approximation

method to the example of a linear time-varying drift
term, namely µ (t)x+ ν (t) = −Γx+ a (1 + Γt) + Γb,
with the other input parameter σ being constant.
This process mimics the progression of the CD4-cell
counts which is considered an efficient marker of the
evolution of HIV infection from the origin date of the
disease.[1,2] The numerical values of the input para-
meters used have been inpired by the literature.[1,6]
In our calculations we have normalized the parame-
ters (Γ = 0.1, a = −5.47723 × 10−3, b = 1.13622,
σ = 0.02236, τ = 50 and x0 = 1.02669) such that
the absorbing fixed boundary is located at x = 1.
The moving boundaries used in the multistage ap-
proximation are shown in Figure 1. Numerical results
of the FPTD up to the two-stage approximation are
exhibited in Figure 2.5 Obviously, the FPTD im-
proves dramatically as we go from the single-stage
approximation to the two-stage approximation. It is
expected that, as the number of stages involved in-
creases, the multi-stage approximation for the exact
FPTD would keep improving significantly.

4. Conclusion

In this paper we have proposed a simple and effi-
cient method for computing accurate estimates (in
closed form) of the FPTD of the time-dependent
Ornstein-Uhlenbeck model through a fixed boundary,
representing the disease level of the HIV infection.
This new approach can also provide very tight upper
and lower bounds (in closed form) for the exact FPTD
in a systematic manner. Unlike previous approx-
imate analytical attempts, our novel approximation
scheme not only goes beyond the linear response and
weak noise limit, but it can also be systematically im-
proved to yield the exact results. Furthermore, it is
straightforward to extend our approach to study the
more general case of a deterministically modulated
boundary.
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Figure  1: Moving boundaries within the multistage approximation
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Figure  2: First passage time density vs. time within the multistage 
approximation
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