
 
 

 

  

 
Abstract—This transform was introduced in the year 1997 by 

Rajan [2], [4] and [5] on the lines of Hadamard Transform. This 
paper presents, in addition to its formulation, the algebraic 
properties of the transform and uses in pattern recognition, the 
technology related to object recognition, that is, about the use of 
Rajan Transform (RT) in recognizing regular and irregular 
objects. Rajan Transform is a homomorphism that maps a set 
consisting of a number sequence, its graphical inverse and their 
cyclic and dyadic permutations, to a set consisting of a unique 
number sequence ensuring the invariance property under such 
permutations. This paper describes in detail the techniques of 
using RT for recognizing regular and irregular shape objects. 
 
Index Terms— Image processing, Object Recognition, Pattern 
classification, Homomorphic Transform  

  
 

I. INTRODUCTION 
  Pattern recognition is essentially a classification process. It 

is after a prolonged research and study of related techniques 
like Permutation Invariant Systems and Number Theory, Rajan 
Transform was introduced in the year 1997 as a novel 
algorithm for classification purposes, which was earlier known 
as Rapid Transform. Subsequent research on the algebraic 
properties of this transform has exposed its richness. The 
purpose of this paper is to present a comprehensive 
introduction to RT and its algebraic properties, and its role in 
developing high-speed algorithms for recognizing regular and 
irregular shape objects. Basically any shape could be described 
in terms of certain regular shapes defined in a 3X3 
neighborhood structure in the manner how an arbitrary signal  
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is expressed in terms of the orthogonal functions of sinusoidal 
and co-sinusoidal functions as a power series (Fourier series) 
consisting of weighted sinusoids and co-sinusoids.  

Signal processing is either carried out in time domain or 
frequency domain depending on the needs and requirement. 
Similarly shape processing (recognition) is carried out on the 
representative polygons (similar to frequency components) 
using Rajan Transform. This paper is intended to present 
comprehensive details about the state-of-the-art technique of 
recognizing shapes of objects by analyzing representative 
polygons. 

 
II. RAJAN TRANSFORM 

 
     Rajan Transform is essentially a fast algorithm developed 
on the lines of Decimation-In-Frequency (DIF) Fast Fourier 
Transform algorithm, but it is different from the DIF-FFT 
algorithm. Given a number sequence x(n) of length N, which is 
a power of 2, first it is divided into the first half and the second 
half each consisting of (N/2) points so that the following hold 
good. 
g(j) = x(i)+x(i+(N/2))           ;    0 ≤ j ≤ N/2  ;  0 ≤ i ≤ N/2 
h(j) = |x (i) – x(i-N/2) )|        ;    0 ≤ j ≤ N/2  ;  (N/2) ≤ i ≤ N 
Now each (N/2)–point segment is further divided into two 
halves each consisting of (N/4) points so that the following 
hold good. 
g1(k) = g(j) + g(j + (N/4)) ; 0≤ k≤ (N/4) ; 0≤ j≤ (N/4) 
g2(k) = |g(j) - g(j -(N/4))|;0≤ k≤(N/4);(N/4)≤j≤ (N/2) 
h1(k) = h(j) + h(j + (N/4)); 0≤ k≤ (N/4) ;  0≤ j≤ (N/4) 
h2(k) = |h(j) -h(j - (N/4))|;0≤ k≤ (N/4);(N/4)≤ j≤ (N/2) 
This process is continued till no more division is possible. The 
total number of stages thus turns out to be log2N. Let us denote 
the sum and difference operators respectively as + and ~. If x(n) 
is a number sequence of length N = 2k; K>0, then its Rajan 
Transform is denoted as X(k). RT is applicable to any number 
sequence and it induces an isomorphism in a class of 
sequences, that is, it maps a domain set consisting of the cyclic 
and dyadic permutations of a sequence on to a range set 
consisting of sequences of the form X(k)E(r) where x(k) 
denotes the permutation invariant RT and E(r) an encryption 
code corresponding to an element  in the domain set. This map 
is a one-to-one and on to correspondence and an inverse map 
also exists. Hence it is viewed as a transform. Consider a 
sequence x(n) = 3, 8, 5, 6, 0, 2, 9, 6. Then X(k) = 39, 5, 13, 9, 
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13, 1, 7, 5. The signal flow graph for this transform together 
with the encryption key (number 0 or 1 inside the brackets) is 
given in figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.1: Signal flow diagram of one-dimensional 8-point RT 
 
Observe from the diagram that E(r) is a union of three 
sequences E1(r) = 0, 0, 0, 0, 1, 1, 0, 0 , E2(r) = 0, 0, 0, 0, 0, 0, 0, 
1 and E3(r) = 0, 0, 0, 1, 0, 1, 0, 0. That is, E(r) = E1(r)E2(r)E3(r). 
Now, the sequence X(k)E(r) = 39, 5, 13, 9, 13, 1, 7, 5, 0, 0, 0, 0, 
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 is the RT of the 
input sequence x(n) = 3, 8, 5, 6, 0, 2, 9, 6. In general, the first 
point in a RT is called ‘Cumulative point Index’ (CPI).  
 

III. INVERSE RAJAN TRANSFORM 
 
Retrieval of the information or the signal x(n) can be done by 
Inverse Rajan Transform (IRT) [2], [4] and [5]. The basic 
requirements for the IRT computation are the RT coefficients 
associated with the encryption values (k values) that are 
generated by encryption function while computing forward RT. 
The strategy adopted here is to retrace the forward transform 
signal flow graph. It was observed that the point-wise addition 
of a constant value, say K to the sample sequence x(n) while 
computing forward RT, changes only the DC component X0, 
that is, the CPI to X0+NK, which is the first coefficient of the 
newly computed RT, and the remaining spectral values remain 
the same of the original spectrum. For example, the RT 
spectrum X(k) of the sequence x(n) = 3, 8, 5, 6, 0, 2, 9, 6 is 39, 
5, 13, 9, 13, 1, 7, 5. Now let us build a new sequence x1(n) = 4, 
9, 6, 7, 1, 3, 10, 7 by adding K=1 to the sequence x(n) = 3, 8, 5, 
6, 0, 2, 9, 6. The RT spectrum of the new sequence is X1(k) = 
47, 5, 13, 9, 13, 1, 7, 5. Now, in order to work with sequences 
containing negative sample values, we proceed as usual in the 
case of forward transform. But, the inverse transform is 

calculated just by adding a constant value N(2M-1) to the CPI 
value of the spectrum. M is the bit length required to represent 
the maximum quantization level of the samples and N is the 
length of the sequence. This constant factor K = (2M-1) is 
chosen such that all the maximum possible negative values of 
the sequence x(n) are level shifted to 0 or above. This DC shift 
is required, because we hide the sign of the negative values that 
are generated while computing the forward RT. As mentioned 
earlier, RT induces an isomorphism between the domain set 
consisting of the inverse, cyclic, dyadic and dual class 
permutations of a sequence on to a range set consisting of 
sequences of the form X(k)E(r) where X(k) denotes the 
permutation invariant RT and E(r) an encryption code 
corresponding to an element in the domain set. This map is a 
one-to-one and on-to correspondence and an inverse map also 
exists. Thus RT is viewed as a transform. Now we provide a 
technique for obtaining the inverse of Rajan Transform. Inverse 
Rajan transform (IRT) is a recursive algorithm and it 
transforms a RT code X(k)E(r) of length N(1+m) where N = 2m 
and m is the number of stages of computation, into one of its 
original sequences belonging to its permutation class 
depending on the encryption code E(r). The computation of 
IRT is carried out in the following manner. First the input 
sequence is divided into segments each consisting of two points 
so that either 
g(2j+1)  =  (X(2k)+X(2k+1))/2 
g(2j)    =  max (X(2k), X(2k+1))-g(2j+1);  
        if E1 (2r)= 0 and E1(2r+1) = 0;  0≤j<N; 0≤k≤N; 0≤r≤N,  

or 
g(2j)      =  (X(2k)+X(2k+1))/2  
g(2j+1)  =  max (X(2k), X(2k+1) - g(2j)  
  if E1 (2r) = 1 or E1 (2r+1) = 1; 0≤j≤N; 0≤ k≤N; 0≤r≤N.  
 
The resulting sequence is divided into segments each consisting 
of four points. Each 4-point segment is synthesized as per the 
above procedure. The resulting sequence is further divided into 
segments each consisting of eight points and the same 
procedure is carried out. This process is continued till no more 
division is possible. Consider X(k) = 39,5,13,9,13,1,7,5. Then 
its IRT is x(n) = 3, 8, 5, 6, 0, 2, 9, 6. The inverse x(n) is obtained 
from the given X(k)E(r) as shown in figure 3.1.  

The symbols ^  > and ~ respectively denote the operators 
average of two, maximum of two and difference of two. Note 
that IRT will work only in the presence of encryption sequence 
E(r) and for every member of the permutation class there would 
be a unique encryption sequence. Study of the class of 
encryption sequences corresponding input sequences itself is a 
field of active research. A specific example would make things 
easy. Let us consider a sequence x(n) = 3, 8, 5, 6, 0, 2, 9, 6 and 
its RT, X(k) = 39, 5, 13, 9, 13, 1, 7, 5. Now addition of 15 to 
each sample point in x(n) would yield a sequence x1(n) = 18, 
23, 20, 21, 15, 17, 24, 21 and its RT would be X1(k) = 159, 5, 
13, 9, 13, 1, 7, 5. Observe that X1(0) = X(0) + 120 = 39 + 120 = 
159. As outlined earlier, one can add N(2M-1) to X(0) of a 
spectral sequence and compute the IRT as usual. Then it is 
important to subtract 2M-1 from every sample point so as to 



 
 

 

obtain the actual sample domain sequence. Let us take the case 
of X(k) = 39, 5, 13, 9, 13, 1, 7, 5. Now let us add 120 only to 
X(0) so that the spectral sequence becomes 159, 5, 13, 9, 13, 1, 
7, 5. The IRT of this sequence is 18, 23, 20, 21, 15, 17, 24, 21. 
By subtracting 15 from each sample value we obtain the actual 
sequence 3, 8, 5, 6, 0, 2, 9, 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.1: Signal flow diagram of IRT of a spectral sequence 
 

IV. ALGEBRAIC PROPERTIES OF RAJAN TRANSFORM 
 
RT has interesting algebraic properties like permutation 
invariance, scalar property and linear pair forming property. All 
such properties are explained in short in the following. 
Cyclic shift invariance property 
     Let us consider the same sequence x(n) = 3,8,5,6,0,2,9,6. 
Using this sequence one can generate seven more cyclic shifted 
versions such as xc1(n) = 6, 3, 8, 5, 6, 0, 2, 9 , xc2(n) = 9, 6, 3, 8, 
5, 6, 0, 2 , xc3(n) = 2, 9, 6, 3, 8, 5, 6, 0 , xc4(n) = 0, 2, 9, 6, 3, 8, 5, 
6 , xc5(n) = 6, 0, 2, 9, 6, 3, 8, 5 , xc6(n) = 5, 6, 0, 2, 9, 6, 3, 8 and 
xc7(n) = 8, 5, 6, 0, 2, 9, 6, 3. It is obvious that the cyclic shifted 
version of xc7(n) is x(n) itself. One can easily verify that all 
these eight sequences have the same X(k), that is, the sequence 
39, 5, 13, 9, 13, 1, 7, 5 but different E(r). 
Graphical inverse invariance property 

The sequence x(n) = 3, 8, 5, 6, 0, 2, 9, 6 has the 
graphical inverse  x-1(n) = 6, 9, 2, 0, 6, 5, 8, 3. Using this 
sequence one can generate seven more cyclic shifted versions 
such as xc1

-1(n)  =  3, 6, 9, 2, 0, 6, 5, 8 , xc2
-1(n)  = 8, 3, 6, 9, 2, 0, 

6, 5 , xc3
-1(n) = 5, 8, 3, 6, 9, 2, 0, 6 , xc4

-1(n) = 6, 5, 8, 3, 6, 9, 2, 0 
, xc5

-1(n) = 0, 6, 5, 8, 3, 6, 9, 2 , xc6
-1(n)  =  2, 0, 6, 5, 8, 3, 6, 9 and 

xc7
-1(n)  =  9, 2, 0, 6, 5, 8, 3, 6. It is obvious that the cyclic 

shifted version of xc7
-1(n) is x-1(n) itself. One can easily verify 

that all these eight sequences have the same X(k), that is, the 
sequence 39, 5, 13, 9, 13, 1, 7, 5 but different E(r) 
Dyadic shif t  invariance property  

The term ‘dyad’  refers  to  a  group of  two,  and 
the term ‘dyadic shif t ’  to  the operat ion of  
t ransposi t ion  of  two b locks  of  e lements  in  a  
sequence.  For  ins tance,  le t  us  take x(n)  = 3 ,  8 ,  5 ,  6 ,  
0 ,  2 ,  9 ,  6  and transpose i ts  f i rs t  half  with  the  second 
half .  The resul t ing  sequence Td

( 2 ) [x(n)]  =  0 ,  2 ,  9 ,  6 ,  
3 ,  8 ,  5 ,  6  is  the 2-block dyadic  shi f ted  vers ion of  x  
(n) .  The symbol  Td

( 2 )  denotes  the  2-block dyadic  
shi f t  operator .  In  the  same manner ,  we obtain  
T d

( 4 ) [T d
( 2 ) [x(n)]]  =  9 ,  6 ,  0 ,  2 ,  5 ,  6 ,  3 ,  8  and 

T d
( 8 ) [T d

( 4 ) [T d
( 2 ) [x(n)]]]=6,  9 ,  2 ,  0 ,  6 ,  5 ,  8 ,  3 .  One 

can  eas i ly ver i fy that  a l l  these dyadic sh if ted  
sequences  have the  same X(k) ,  that  is ,  the  sequence 
39,  5 ,  13,  9 ,  13,  7 ,  5  but  d if ferent  E(r) .  There is yet 
another way of dyadic shifting the input sequence x(n) to 
T d

( 2 ) [T d
( 4 ) [T d

( 8 ) [x(n)]]]. Let us take x(n) = 3, 8, 5, 6, 0, 2, 9, 6 
and obtain the following dyadic shifts: Td

( 8 ) [x(n)] = 8, 3, 6, 5, 
2, 0, 6, 9 , T d

( 4 ) [T d
( 8 ) [x(n)]] = 6, 5, 8, 3, 6, 9, 2, 0 and 

T d
( 2 ) [T d

( 4 ) [T d
( 8 ) [x(n)]]] = 6, 9, 2, 0, 6, 5, 8, 3. Note that 

T d
( 2 ) [T d

( 4 ) [T d
( 8 ) [x(n)]]] = T d

( 8 ) [Td
( 4 ) [T d

( 2 ) [x(n)]]]. One 
can easily verify from the above that other than 
T d

( 4 ) [T d
( 2 ) [x(n)]] and T d

( 8 ) [x(n)], all other dyadically 
permuted sequences fall under the category of the cyclic 
permutation class of x(n) and x-1(n). This amounts to saying 
that the cyclic permutation class of x(n) has eight non-repeating 
independent sequences, that of x-1(n) has eight non-repeating 
independent sequences and the dyadic permutation classes of 
x(n) has two non-repeating independent sequences. To 
conclude, all these 18 sequences could be seen to have the same 
X(k). Each of these 18 sequences has an independent 
encryption key E(r). 
Dual class invariance 

Given a sequence x(n), one can construct another 
sequence y(n) consisting of at least one number which is not 
present in x(n) such that X(k) = Y(k). In such a case, y(n) is 
called the dual of x(n). An arbitrary sequence x(n) of length 
N=2n is said to have a dual y(n) if and only if its CPI is an even 
number and is divisible by N/2. In other words, x(n) is said to 
form a dual pair with y(n). Consider two sequences x(n) = 2, 4, 
2, 2 and y(n) = 3, 1, 3, 3. Note that X(k) = Y(k)  = 10, 2, 2, 2 and 
the point-wise mean of the two sequences x(n) and y(n) is 2.5. 
From a dual pair one can generate another sequence (child 
sequence) consisting of numbers which are point-wise 
differences of the pair. Duality is a hereditary property that is 
transferred to child sequences. 
Regenerative property 
The sequence |x(0)-y(0)|, |x(1)-y(1)|, |x(2)-y(2)|, ….., 
|x(N-2)-y(N-2)|, |x(N-1)-y(N-1)| of a dual pair x(n) and y(n) of 
length N is eligible to form a dual pair with yet another 
sequence. For example let us consider a sequence x(n) = 3, 1, 3, 
3. Its CPI is 10 and it is divisible by N/2, that is, 2 yielding the 



 
 

 

value 5. Now one can obtain the dual sequence y(n) = 2, 4, 2, 2 
by subtracting each element of x(n) from 5. Now x(n) and y(n) 
form a pair and yield their ‘first generation child sequence’, say 
x1(n) = 1, 3, 1, 1 , which is obtained by finding the point wise 
difference between the parent sequences x(n) and y(n). One can 
easily verify that x1(n) also is eligible to form a dual pair with 
y1(n) = 2, 0, 2, 2. This hereditary property is termed here as 
‘regenerative property’. Another important observation 
follows. x1(n) forms a dual pair with y1(n) but this pair does not 
produce a child sequence as it was done by the pair <x(n), 
y(n)>.This could be easily verified by the fact that the point 
wise difference between x1(n) and y1(n) yields x1(n) only. 
Hence for brevity we call the sequences x1(n) and y1(n) as 
‘sterile sequences’ and the pair <x1(n), y1(n)> as a ‘sterile pair’. 
This property opens up new avenues for further research on 
generative and sterile pairs which have potential applications to 
areas related to encryption, and cryptography.. 
Scalar property 
Let x(n) be a number sequence and  be a scalar. Then the RT of 

x(n) will be X(k), where X(k) is the RT of x(n). For example, 

let us consider a sequence x(n) = 1, 3, 1, 2 and a scalar  of 

value 2. Now the RT X(k) of x(n) is 7, 3, 1, 1. The RT of x(n) 

= 2, 6, 2, 4 is 14, 6, 2, 2 which is nothing but X(k). 

Linearity property  
In general, RT does not satisfy the linearity property. However, 
it was observed that for a pair x(n) and y(n) which are number 
sequences either in the increasing order or in the decreasing 
order, the linearity property holds. That is, for x(n)+my(n) 

where  and m are scalars and x(n) and y(n) are two number 
sequences either in the increasing or decreasing order, the RT 
will be X(k)+mY(k), where X(k) and Y(k) are respectively the 
RTs of x(n) and y(n). A characterization theorem is yet to be 
established for categorizing pairs of sequences which would 
satisfy linearity property. 
Linear pair forming property 
Two sequences x(n) and y(n) are said to form a linear pair when 
X(k)+Y(k) is the RT of x(n)+y(n), where X(k) and Y(k) are the 
RTs of x(n) and y(n) respectively. The symbol + denotes the 
point wise addition of two sequences. As outlined earlier, pairs 
of sequences consisting of increasing numbers of decreasing 
numbers only form linear pair. In general arbitrary sequences 
do not form linear pairs. Consequently RT could be viewed as  
a nonlinear transform. However, higher order RT spectra do 
form linear pairs, and this has been identified as a very useful 
property for pattern recognition purposes.  

For instance let us consider two arbitrary sequences x(n) and 
y(n) given below: 

x(n) = 2,2,2,1,6,2,6,1,2,3,0,0,2,5,5,4; (16-point sequence) 
y(n) = 4,5,3,1,0,1,4,6,6,8,0,0,7,9,0,5; (16-point sequence) 

Now the RT of x(n) denoted as X1(k) is computed as X1(k) = 
43, 7, 7, 5, 19, 7, 7, 3, 15, 1, 1, 1, 9, 1, 3, 3 and the RT of y(n) 
denoted as Y1(k) is computed as Y1(k) = 59, 11, 21, 1, 17, 9, 9, 

5, 29, 3, 11, 7, 11, 1, 9, 1. Now, z(n) = x(n) + y(n) is given by 
the sequence 6, 7, 5, 2, 6, 3, 10, 7, 8, 11, 0, 0, 9, 14, 16, 6, 8, 6, 
8, 6, where as X1(k) + Y1(k) = 102, 18, 28, 6, 36, 16, 16, 8, 34, 
4, 12, 8, 20, 2, 12, 4. Note that Z(k) is not equal to X1(k) + 
Y1(k). Now, the second order RT spectra of X1(k) and Y1(k) are 
respectively computed as X2(k) = 132, 76, 72, 64, 32, 32, 28, 
28, 64, 32, 36, 20, 24, 16, 20, 12 and Y2(k) = 204, 128, 76, 56, 
80, 68, 48, 44, 72, 20, 32, 20, 36, 32, 16, 12. Let z1(n) be the 
sequence X1(k) + Y1(k). Then Z1(k) is the RT of  and z1(n) and 
is computed to be 326, 194, 138, 110, 98, 86, 70, 66, 138, 70, 
86, 42, 66, 62, 42, 38. Note that Z1(k) is not equal to X2(k) + 
Y2(k) = 336, 204, 148, 120, 112, 100, 76, 72, 136, 52, 68, 40, 
60, 48, 36, 24. This procedure is repeated for the third order 
spectra as follows: X3(k) = 688, 128, 128, 64, 304, 96, 96, 64, 
240, 0, 32, 32, 144, 32, 32, 32 and Y3(k) = 944, 184, 336, 104, 
272, 136, 144, 88, 464, 40, 176, 24, 176, 24, 144, 8 are the RTs 
of X2(k) and Y2(k)  respectively. The RT of X2(k) + Y2(k) is 
computed to be 1632, 312, 464, 168, 576, 232, 240, 152, 704, 
40, 208, 56, 320, 56, 176, 40 which is nothing but X3(k) + 
Y3(k).  

Thus it is clear from the above example that higher order RT 
spectra of arbitrary sequences of equal length do form linear 
pairs, and so the name ‘linear pair forming property’. Linear 
pair forming property is also called self-organizing property. 
To be more precise, given any arbitrary random sequence of 
appropriate length, the successive RTs would introduce order 
in the sequences and exhibit linearity property.  
 

V. OBJECT RECOGNITION USING RAJAN 
TRANSFORM 

 
Shape representation 
Any regular or irregular object image (two dimensional) could 
be represented by a set of basis convex polygons that are shown 
in figure 5.1. The convex polygons are labeled based on the 
vertices whose cells are dropped. The term `convex polygon’ 
refers to the polygon which is drawn by connecting the 
boundary cells and the central cell is not touched by the lines 
drawn. For example the convex polygon E1,3,5,7 is the polygon 
obtained by dropping the cells 1, 3, 5 and 7. Let us consider an 
irregular shape shown in figure 5.2. The image shown in figure 
5.2 is quantized as shown in figure 5.3. 

The quantized image is further scanned by the 3X3 
neighborhood window and on each move the polygon that 
could be fitted inside the image is observed. For example the 
first scan position of the image is shown in figure 5.4. The 
polygon B1 is found to be contained in the image. The window 
is moved to the right by one cell. Figure 5.5 shows the second 
scan position in the image. In this position polygon A is found 
to be contained in the image. 
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Fig 5.1: Sixteen basis convex polygons in a 3X3 
neighbourhood structure 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.2 Irregular shape of an object image. 
Any irregular image could also be represented in the same 

manner using 16 convex polygons. Now one can apply the 
Rajan Transform to all these 16 convex polygons as described 
below.  

After scanning the image once by the 3X3 window the 
scanning window is brought down by one row and the image 
scanned from left to right. This procedure of raster scanning is 
continued till the entire image is scanned by the window.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 5.3 Quantized version of the irregular shape of an object 

image 
3X3 Empty window (called as convex null and represented as 0) 
            Convex polygon B1 
             
 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig 5.4 First scan position of the window on the image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.5 Second scan position of the window on the image 

The overall effect of scanning the image yields a string of 
symbols denoting such convex polygons. This string is called 
pextral representation of the image just like the notion of 
spectral representation of a signal. For example, the pextral 
representation of the image given in figure 5.3 is computed as 
073B1A7B3016B1A12016A13016A13B5015A14015 

A14015A14015A13015B1A13B5012B1A15014B7A13B5015B7A12017AB
7A10022B7A4B7070 where the symbol 073 represents a string of 
73 convex nulls. 
RT spectrum of the pextra of 16 convex polygons 

The central idea on which this concept has been developed is 
the fact that it is sufficient to find the pextrum of a shape by 
considering the contour of the given shape as a string of 0s and 
1s and finding out the RT spectrum of it. For example, let us 
consider the contour of the pattern represented by the symbol A 
which is shown in figure 5.6 
 

Convex polygon A

Starting point 

The string corresponding to this 



 
 

 

 

 
 
 
 
 
 

Fig 5.6:Binary string representing the boundary 
of the pattern A 

 
The RT spectrum of this binary string is 8,0,0,0,0,0,0,0. So, 

the pextrum of the shape A is 8,0,0,0,0,0,0,0. Table 5.1 
provides the pextra of all 16 convex patterns. 

Now, the RT spectrum of the pextral code 073B1A7B3016B1 

A12016A13016A13B5015A14015 A14015 A14   015A13015B1A13B5012
 

B1A15014B7A13B5015B7A12017AB7A10022B7A4B7070 is 073,7,1,1, 
1,1,1,1,1, (8,1,1,1,1,1,1,1)7,7,1,1,1,1,1,1,1,016, 7,1,1,1,1,1,1,1, 
(8,0,0,0,0,0,0,0)12,016,(8.0.0.0.0.0.0.0)13,016,(8,0,0,0,0,0,0,0)13,
7,1,1,1,1,1,1,1,015,(8,0,0,0,0,0,0,0)14,015,(8,0,0,0,0,0,0,0)14,015,
(8,0,0,0,0,0,0,0)14,015,(8,0,0,0,0,0,0,0)13,015,7,1,1,1,1,1,1,1,(8,0
,0,0,0,0,0,0)13,7,1,1,1,1,1,1,1,012,7,1,1,1,1,1,1,1,(8,0,0,0,0,0,0,
0)15,014,7,1,1,1,1,1,1,1,(8,0,0,0,0,0,0,0)13,7,1,1,1,1,1,1,1, 
015,7,1,1,1,1,1,1,1,(8,0,0,0,0,0,0,0)12,017,8,0,0,0,0,0,0,0,7,1,1,1
,1,1,1,1,(8,0,0,0,0,0,0,0)10,022,7,1,1,1,1,1,1,1,(8,0,0,0,0,0,0, 0)4 

,7,1,1,1,1,1,1,1,070 

Object Recognition from RT spectrum of the pextra of 16 
convex polygons 

The technique of recognizing an object in a two 
dimanesional digital plane is as follows: The given digital 
image is represented as a string of the 16 basis convex 
polygons. Then each of the poygon is numerically coded in 
terms of 8 bits of 0s and 1s and RT applied to each block of 8 
bits. From RT spectrum, one can characterize the shape of a 
given image. One can as well obtain the histogram of the 
pextral code and form an idea of the shape of a given image.  

Table 5.1: Pextra of all 16 convex patterns 

Pattern Representative 
String 

Corresponding 
Pextrum 

 
 
 

 
1, 1, 1, 1, 1, 1, 1, 1 

 
8, 0, 0, 0, 0, 0, 0, 0 

 
 
 

 
0, 1, 1, 1, 1, 1, 1, 1 

 
7, 1, 1, 1, 1, 1, 1, 1 

 
 
 

 
1, 1, 0, 1, 1, 1, 1, 1 

 
7, 1, 1, 1, 1, 1, 1, 1 

 
 
 

 
1, 1, 1, 1, 0, 1, 1, 1 

 
7, 1, 1, 1, 1, 1, 1, 1 

 
 
 

 
1, 1, 1, 1, 1, 1, 0, 1 

 
7, 1, 1, 1, 1, 1, 1, 1 

 
 
 

 
0, 1, 0, 1, 1, 1, 1, 1 

 
6, 2, 0, 0, 2, 2, 0, 0 

 
 
 

 
1, 1, 0, 1, 0, 1, 1, 1 

 
6, 2, 0, 0, 2, 2, 0, 0 

 
 
 

 
1, 1, 1, 1, 0, 1, 0, 1 

 
6, 2, 0, 0, 2, 2, 0, 0 

  
0, 1, 1, 1, 1, 1, 0, 1 

 

 
6, 2, 0, 0, 2, 2, 0, 0 

  
0, 1, 1, 1, 0, 1, 1, 1 

 
6, 2, 2, 2, 0, 0, 0, 0 

  
1, 1, 0, 1, 1, 1, 0, 1 

 
6, 2, 2, 2, 0, 0, 0, 0 

  
0, 1, 0, 1, 0, 1, 1, 1 

 
5, 3, 1, 1, 1, 1, 1, 1 

  
1, 1, 0, 1, 0, 1, 0, 1 

 
5, 3, 1, 1, 1, 1, 1, 1 

  
0, 1, 1, 1, 0, 1, 0, 1 

 
5, 3, 1, 1, 1, 1, 1, 1 

  
0, 1, 0, 1, 1, 1, 0, 1 

 
5, 3, 1, 1, 1, 1, 1, 1 

  
0, 1, 0, 1, 0, 1, 0, 1 

 
4, 4, 0, 0, 0, 0, 0, 0 

       
For example, let us consider the example given above. The 
histogram of the pextral code is shown in figure 5.7. 
 

 
Legend: 

 



 
 

 

Fig 5.7: Histogram of the pextral code. 
 
Observations: 

The number of 0s, that is, convex polygons in an image 
indicates a measure of the background of the image, whereas 
the number of As in an image indicates the area spanned by the 
image. The presence of other polygons and their actual number 
gives an approximate nature of the boundary of the image. 
Inference 

Hence, it is proposed in this paper to study the spectra of the 
polygons rather than the spectra of the entire image. 
 
VI. CONCLUSIONS  
 

Rajan Transform has been used as a high-speed spectral 
domain tool to carry out object recognition and digital image 
processing operations. This paper mainly focuses on algebraic 
properties of the transform and uses in object recognition from 
RT spectrum of the pextra of 16 convex polygons. Research 
carry out so for clearly indicate that RT could be one of the best 
tools that could be used in cryptography. RT based 
watermarking of text and images and character recognition 
would yield a repertoire of tools of the future. Efforts are being 
made to abstract the notion of RT to Symbolic Processing of 
Signals and Images in the DNA computing paradigm. 
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