
Genetic Programming for Symbolic Regression
of Chemical Process Systems

B. V. Babu*, Member, IAENG, and S. Karthik
Chemical Engineering Department, Birla Institute of Technology and Science (BITS), Pilani-333 031.

Abstract—The novel evolutionary artificial intelligence

formalism namely, genetic programming (GP) a branch of
genetic algorithms is utilized to develop mathematical models
based on input-output data, instead of conventional regression
and neural network modeling techniques which are commonly
used for this purpose. This paper summarizes the available
MATLAB toolboxes and their features. Glucose to gluconic acid
batch bioprocess has been modeled using both GPLAB and
hybrid approach of GP and Orthogonal Least Square method
(GP OLS). GP OLS which is capable of pruning of trees has
generated parsimonious expressions simpler to GPLAB, with
high fitness values and low mean square error which is an
indicative of the good prediction accuracy. The capability of GP
OLS to generate non-linear input-output dynamic systems has
been tested using an example of fed-batch bioreactor. The
simulation and GP model prediction results indicate GP OLS is
an efficient and fast method for predicting the order and
structure for non-linear input and output model.

Index Terms—About four key words or phrases in
alphabetical order, separated by commas.

I. INTRODUCTION
The increasing emphasis on product 'quality', economic

process performance and environmental issues in the chemical
and allied industries is placing significant demands on existing
operational procedures. Enhanced process performance
generally requires increased process knowledge, with
mathematical models being the most common means of
representing this knowledge. While it may be possible to
develop a model using a detailed knowledge of the physics
and chemistry of a system, there are a number of drawbacks to
this approach. Industrial process systems are often extremely
complex and non-linear in nature, thus it may take a
considerable amount of time and effort to develop a realistic
model [1,2]. Moreover, in many instances simplifying
assumptions have to be made in order to provide a tractable
solution. A first-principles model will, therefore, often be
costly to develop and may be subject to inaccuracies.

* Corresponding Author
Assistant Dean-ESD &
Professor & Head-Chemical Engineering Department
Ph: +91-1596-245073 Ext. 205
Fax: +91-1596-244183
E-mail: bvbabu@bits-pilani.ac.in
http://discovery.bits-pilani.ac.in/discipline/chemical/BVb/

However, if an accurate process model were available, then
many of the benefits of improved process operability would be
achievable. The current trend within the process industries is
to use data based modeling techniques to develop accurate,
cost-effective input-output process descriptions [3]. The
popular techniques may be divided into two categories. The
first are based on the use of various statistical techniques and
regression analysis, while the second involves the use of
artificial neural networks.

The data-driven identification of these models involves the
following tasks:
1) Structure selection.
2) Input sequence design.
3) Noise modeling.
4) Parameter estimation.
5) Model validation.

Genetic programming (GP), which is an evolutionary
approach, is used to develop nonlinear models of chemical
process systems using only plant input-output data.

Genetic programming is different from all other approaches
to artificial intelligence, machine learning, neural networks,
adaptive systems, reinforcement learning, or automated logic
in all (or most) of the following seven ways (www.genetic-
programming.com/sevendiffs.html):
1) Representation: Genetic programming overtly conducts it

search for a solution to the given problem in program
space.

2) Role of point-to-point transformations in the search:
Genetic programming does not conduct its search by
transforming a single point in the search space into
another single point, but instead transforms a set of points
into another set of points.

3) Role of hill climbing in the search: Genetic programming
does not rely exclusively on greedy hill climbing to
conduct its search, but instead allocates a certain number
of trials, in a principled way, to choices that are known to
be inferior.

4) Role of determinism in the search: Genetic programming
conducts its search probabilistically.

5) Role of an explicit knowledge base: None.
6) Role of formal logic in the search: None.
7) Underpinnings of the technique: Biologically inspired.

A. Modeling of glucose to gluconic acid bioprocess
A new batch fermentation technique proposed for the

production of gluconic acid from glucose wherein A. niger

Engineering Letters, 14:2, EL_14_2_6 (Advance online publication: 16 May 2007)
__

mailto:bvbabu@bits-pilani.ac.in
http://discovery.bits-pilani.ac.in/discipline/chemical/BVb/

immobilized on a support matrix consisting of a cellulosic
fabric has resulted in higher yields [4]. The improved overall
productivity from this technique is primarily due to the
enhanced interaction between the dissolved oxygen and the
fungal mycelia. Enhancement in the said interaction is effected
via a continuous substrate dripping mechanism and not by the
mechanical agitation as used in the free-cell fermentation. The
main objective in this dissertation is to develop a mathematical
model of the new glucose to gluconic acid batch fermentation
process. For developing the fermentor model, experimental
data incorporating the effects of the substrate (glucose) and
biomass concentrations, and the dissolved oxygen content,
have been used.

1. Experimental Details

For developing the GP based model for the glucose to
gluconic acid bioprocess, experimental input-output data from
the fermenter were used. In these experiments, the gluconic
acid producing strain Aspergillus niger NCIM 545 had been
utilized.

1.1 Fermentation Medium for Immobilized Mycelia

Anhydrous purified glucose (100 g), MgSO4â7H2O
(0.035g), KH2PO4 (0.05 g), and 0.1 g of (NH4)2HPO4 were
dissolved in 1 L of water. The pH of this medium was adjusted
to 6.0 using 1MH2SO4. A woven cellulosic fabric support (69
_ 8.5 _ 0.6 cm) with void volume of approximately 140 mL
was sterilized at 15 psi for 60 min.

1.2 Submerged Fermentation

Submerged fermentation utilizing the immobilized culture
was carried out in a modified locally fabricated batch
fermenter. In the fermenter, the matrix with fully grown A.
niger was folded in a spiral shape. For preventing mycelial
recirculation, the upper end of the fixed bed was closed by the
filter mesh. The batch reactor was drained after the substrate
reached its lowest concentration.

1.3 Maintaining Oxygen Partial Pressure

A constant flow of air was used to maintain the oxygen
partial pressure and a Dissolved Oxygen (DO) probe (Ingold,
170-ppm type DO amplifier) was used for measuring the
dissolved oxygen concentration.

1.4 Glucose and Gluconic Acid Analyses

Feed and the unconverted glucose were analyzed by the
dinitrosalicyclic acid method [5], and the gluconic acid
concentration in the bioreactor was measured by titrating
against 6 N NaOH.

B. Problems involved in modeling of glucose to gluconic
acid bioprocess

The glucose to gluconic acid bioconversion using A. niger
immobilized on the cellulosic micro fibrils involves
complicated reaction and mass transfer phenomena.
Development of a phenomenological (“first principles”)
process model has therefore become a difficult task since the
physicochemical phenomena underlying the bioconversion
and the associated kinetic and transport mechanisms are not
well-understood. Also, it has been observed that the process

dynamics is nonlinear [5]. This has made the modeling task
even more complex. In view of these difficulties, a novel
artificial intelligence based paradigm, namely, genetic
programming (GP) [6] has been employed here for modeling
the fermenter. The principal advantage of the GP-formalism is
that it automatically arrives at an empirical closed-form
mathematical model relating process inputs and outputs
exclusively from the historic process input-output data.
Consequently, the detailed knowledge of the process
phenomenology (reaction kinetics and mass transfer
mechanisms) is not necessary in the GP-based process
modeling.

The main objective in this paper is to develop a
mathematical model of the new glucose to gluconic acid batch
fermentation process. For developing the fermenter model,
experimental data incorporating the effects of the substrate
(glucose) and biomass concentrations, and the dissolved
oxygen content, have been used.

C. Dynamic modeling of fed-batch bioreactor
This example considers a fed batch reactor that has been

studied by Park and Ramirez [7]. The system is described by
the following differential equations.

15121
1)/()(xxuxxg

dt
dx

−−= (1)

2532
2)/(xxuxg

dt
dx

−= (2)

3533
3)/(xxuxg

dt
dx

−= (3)

)20)(/(3.7 4533
4 xxuxg

dt
dx

−+−= (4)

u
dt

dx
=5 (5)

)12.0/(75.4
)1.0/(

))5.62)(4.0/((87.21

331

4
5

42

4443

4

ggg
xexg

xxxg
where

x

+=
+=

++=
−

X(0)=[0 0 1 5 1]T

and the constraint is
0≤u≤10

The model was simulated to obtain the feed rate, which in
turn was used to model the fed-batch bioreactor.

D. Objective and Scope of Study
The most well known and simple to apply statistical

techniques assume that any relationships between input and
output variables are linear and that the data itself is normally
distributed. Unfortunately, industrial systems are normally
highly non-linear and the data obtained from such processes
generally do not conform to normal distributions.
Nevertheless, numerous methods can be used to implement a
systematic data analysis methodology and can help to
establish the basic characteristics of the process.

A novel approach which offers a useful alternative to these
established methodologies is genetic programming (GP)
which has been used to develop nonlinear models of chemical
process systems using only plant input-output data. This
methodology not only performs symbolic regression to
determine the appropriate structure, complexity of the required
model but can also explain the physics of the system.

The work presented in this dissertation considers fulfilling
the following objectives:
1) Application of GP for regression: A study has been made

on genetic programming (GP). Different GP toolboxes
have been utilized and their merits and demerits have
been explored.

2) Modeling of Bioreactor using GP: GP based formalism
for the glucose to gluconic acid bioprocess has been
developed using the experimental input – output data
from the fermentor.

Dynamic modeling of chemical system: GP based dynamic
model for a fed – batch reactor, using pre-validated and
simulated data.

II. GENETIC PROGRAMMING (GP)
The performance of an individual organism in its

environment determines the likelihood of it passing on its
genetic material to future generations. This basic biological
principle is known as Darwinian survival of the fittest, and has
inspired a class of algorithms known as Genetic Algorithms
(GA’s) [8,9,10]. GA’s, attempt to find the best solution to a
problem by mimicking the process of evolution in nature.
Thus, a typical algorithm will 'breed' a population of
individuals that represent possible solutions to a particular
problem.

GA’s are not appropriate for symbolic regression problems
where the structure and parameters of a model are to be
determined simultaneously. This is because GA’s generally
use fixed length binary strings to code potential solutions to a
problem. Clearly this is unsuitable for symbolic regression,
where the model structure is allowed to vary during evolution.
However, GP is a closely related approach that does lend itself
to the implementation of symbolic regression.
GP differs from GA’s by utilizing the following:
1) Tree structured variable length chromosomes (rather than

chromosomes of fixed length and structure).
2) Chromosomes coded in a problem specific fashion (that

can usually be executed in their current form) rather than
binary strings.

3) Genetic operators that preserve the syntax of the tree
Structured chromosomes during 'reproduction'.

A. Preparatory Steps for Genetic Programming
Genetic programming starts from a high-level statement of

the requirements of a problem and attempts to produce a
computer program that solves the problem. The human user
communicates the high-level statement of the problem to the
genetic programming system by performing certain well-
defined preparatory steps.

The five major preparatory steps for the basic version of
genetic programming require the human user to specify are:

1) The set of terminals (e.g., the independent variables of the
problem, zero-argument functions, and random constants)
for each branch of the to-be-evolved program,

2) The set of primitive functions for each branch of the to-
be-evolved program,

3) The fitness measure (for explicitly or implicitly
measuring the fitness of individuals in the population),

4) Certain parameters for controlling the run, and
5) The termination criterion and method for designating the

result of the run.
The figure below shows the five major preparatory steps for
the basic version of genetic programming. The preparatory
steps (shown at the top of the Fig. 1) are the human-supplied
input to the genetic programming system. The computer
program (shown at the bottom) is the output of the genetic
programming system.

Fig. 1 Five major steps for GP [11]

The first two preparatory steps specify the ingredients that

are available to create the computer programs. A run of
genetic programming is a competitive search among a diverse
population of programs composed of the available functions
and terminals

1. Function set and Terminal

The identification of the function set and terminal set for a
particular problem (or category of problems) is usually a
straightforward process. For some problems, the function set
may consist of merely the arithmetic functions of addition,
subtraction, multiplication, and division as well as a
conditional branching operator. The terminal set may consist
of the program’s external inputs (independent variables) and
numerical constants. This function set and terminal set is
useful for a wide variety of problems (and corresponds to the
basic operations found in virtually every general-purpose
digital computer).

For many other problems, the ingredients include
specialized functions and terminals. For example, if the goal is
to get genetic programming to automatically program a robot
to mop the entire floor of an obstacle-laden room, the human
user must tell genetic programming what the robot is capable
of doing. For example, the robot may be capable of executing
functions such as moving, turning, and swishing the mop.

GP

A Computer Program

Terminal
Set

Function
Set

Fitness
 Measure

Parameters

Termination
Criterion and

result
designation

If the goal is the automatic creation of a controller, the
function set may consist of signal-processing functions that
operates on time-domain signals, including integrators,
differentiators, leads, lags, gains, adders, subtractors, and the
like. The terminal set may consist of signals such as the
reference signal and plant output. Once the human user has
identified the primitive ingredients for a problem of controller
synthesis, the same function set and terminal set can be used
to automatically synthesize a wide variety of different
controllers.

2. Fitness measure

The third preparatory step concerns the fitness measure for
the problem. The fitness measure specifies what needs to be
done. The fitness measure is the primary mechanism for
communicating the high-level statement of the problem’s
requirements to the genetic programming system. The first
two preparatory steps define the search space whereas the
fitness measure implicitly specifies the search’s desired goal.

3. Control Parameters

The fourth and fifth preparatory steps are administrative.
The fourth preparatory step entails specifying the control
parameters for the run. The most important control parameter
is the population size. In practice, the user may choose a
population size that will produce a reasonably large number of
generations in the amount of computer time we are willing to
devote to a problem (as opposed to, say, analytically choosing
the population size by somehow analyzing a problem’s fitness
landscape). Other control parameters include the probabilities
of performing the genetic operations, the maximum size for
programs, and other details of the run.

4. Termination

The fifth preparatory step consists of specifying the
termination criterion and the method of designating the result
of the run. The termination criterion may include a maximum
number of generations to be run as well as a problem-specific
success predicate. In practice, one may manually monitor and
manually terminate the run when the values of fitness for
numerous successive best-of-generation individuals appear to
have reached a plateau. The single best-so-far individual is
then harvested and designated as the result of the run.

5. Running GP

After the human user has performed the preparatory steps
for a problem, the run of genetic programming can be
launched. Once the run is launched, a series of well-defined,
problem-independent execution steps are executed.

B. Executional Steps in GP
Genetic programming typically starts with a population of

randomly generated computer programs composed of the
available programmatic ingredients. Genetic programming
iteratively transforms a population of computer programs into
a new generation of the population by applying analogs of
naturally occurring genetic operations. These operations are
applied to individual(s) selected from the population. The
individuals are probabilistically selected to participate in the

genetic operations based on their fitness (as measured by the
fitness measure provided by the human user in the third
preparatory step). The iterative transformation of the
population is executed inside the main generational loop of the
run of genetic programming.
GP uses four steps to solve problems:
1 Generate an initial population of random compositions of

the functions and terminals of the problem (Computer
programs).

2 Execute each program in the population and assign it a
fitness value according to how well it solves the problem.

3 Create a new population of computer programs:
1.1. Copy the best existing programs.
1.2. Create new computer programs by mutation.
1.3. Create new computer programs by crossover (sexual

reproduction).
4 The best computer program that appeared in any

generation, the best-so-far solution, is designated as the
result of genetic programming.

III. GENETIC PROGRAMMING TOOLBOXES IN MATLAB
MATLAB is a widely used programming environment

available for a large number of computer platforms. Its
programming language is simple and easy to learn, yet fast
and powerful in mathematical calculus. Furthermore, its
extensive and straightforward data visualization tools make it
a very appealing programming environment. Toolboxes are
collections of optimized, application specific functions, which
extend the MATLAB environment and provide a solid
foundation on which to build.

A. GPLAB
GPLAB is a genetic programming toolbox for MATLAB.

Versatile, generalist and easily extendable, it can be used by
all types of users, from the layman to the advanced researcher.

1. Operational Structure

The architecture of GPLAB follows a highly modular and
parameterized structure, which different users may use at
various levels of depth and insight [12].
1.1. Main modules

The operational structure of GPLAB has 3 main operation
modules, namely SETVARS, GENPOP and GENERATION,
and each represents an interaction point with the user.
1.1.1. GENPOP

This module generates the initial population (INIT POP)
and calculates its fitness (FITNESS). The individuals in
GPLAB are tree structures initialized with one of three
available initialization methods – Full, Grow, Ramped Half-
and-Half. The functions available to build the trees include
some protected functions, plus any MATLAB function that
verify closure. The terminals include a random number
generator and all the variables necessary, created in runtime.
Fitness is, by default, the sum of absolute differences between
the obtained and expected results in all fitness cases. The
lower the fitness value, the better the individual. This is the
standard for symbolic regression problems (“regfitness”).

GEN POP is called by the user. It starts by requesting some
parameter initializations to SET VARS, and finishes by

passing the execution to GENERATION. If the user only
requests the creation of the initial generation, GENERATION
is not used.
1.1.2. Generation

This module creates a new generation of individuals by
applying the genetic operators to the previous population
(OPERATORS). Standard tree crossover and tree mutation are
the two genetic operators available as plug and play functions.
They must have a pool of parents to choose from, created by a
SAMPLING method, which may or may not base its choice on
the EXPECTED number of offspring of each individual. Four
sampling methods (Roulette, SUS, Tournament,
Lexicographic Parsimony Pressure Tournament) and three
methods for calculating the expected number of offspring
(Absolute, Rank85, Rank89) are available as plug and play
functions, and any combination of the two can be used. The
genetic operators create new individuals until a new
population is filled, a number determined by the generation
gap.

Calculating fitness is followed by the SURVIVAL module,
where the individuals that enter the new generation are chosen
according to the elitism level parameter. The GENERATION
module repeats itself until the stop condition is fulfilled, or
when the maximum generation is reached. Several stop
conditions can be used simultaneously. This module can be
called either by the user or by GEN POP.

1.1.3. Set Vars

This module either initializes the parameters with the
default values or updates them with the user settings. Besides
the parameters directly related to the execution of the
algorithm, other parameters affect the output of its results.
SET VARS can be called either by the user or by a request for
parameter initialization from GEN POP.

1.2. Parameters in Genetic Programming Toolbox

1.2.1. Tree Initialization

The initial population of trees, created in runtime in the
beginning of a GPLAB run, is done by choosing random
functions and terminals from the respective sets. There are
three different methods available in GPLAB, used in the plug
and play fashion, and each of them uses either the standard
procedure based on depth, or the new variation based on size,
i.e., number of nodes, depending on the parameter depth nodes
(’1’ for depth, ’2’ for size):

‘fullinit’ - This is the Full method. In the standard
procedure, the new tree receives non terminal (internal) nodes
until the initial tree depth is reached - the last depth level is
limited to terminal nodes. As a result, trees initialized with this
method will be perfectly balanced with all the branches of the
same length. If size is used instead of depth, internal nodes are
chosen until the size of the new tree is close to the specified
size, and only then terminals are chosen. Unlike the standard
procedure, the size variation may not be able to create trees
with the exact size specified, but only close (never exceeding).

‘growinit’ - This is the Grow method. In the standard
procedure, each new node is randomly chosen between
terminals and non terminals, except nodes at the initial tree
depth level, which must be terminals. Tree created with this

method may be very unbalanced, with some branches much
longer than others.

‘rampedinit’ - This is the Ramped Half-and-Half method. In
the standard procedure, an equal number of individuals are
initialized for each depth between 2 and the initial tree depth
value. For each depth level considered, half of the individuals
are initialized using the Full method, and the other half using
the Grow method. The population of trees resulting from this
initialization method is very diverse, with balanced and
unbalanced trees of several different depths.

1.2.2. Functions

As any genetic programming algorithm, GPLAB needs
functions and terminals to create the population, in this case
the parse trees that represent individual functions. GPLAB can
use any MATLAB function that verifies closure, plus some
protected and logical functions and the if-then-else statement,
also available as part of the toolbox. The user indicates which
functions the algorithm should use by setting the parameter
variable functions. Table 1 contains information on the
available toolbox functions. All the functions described in
Table 1 are used in the plug and play fashion.

Table 1 Protected and logical function using Matlab

Protected
Function

MATLAB
Function

Input
Arguments

Output
Argument

Division mydivide a,b a (if b=0)
a/b (otherwise)

Square root mysqrt a
0 (if a<=0)

Sqrt(a)
(otherwise)

Power mypower a,b

ab (if ab is a valid
non-complex

number)
0 (otherwise)

Natural
logarithm mylog a

O (if a = 0)
log(abs(a))
(otherwise)

Base 2
Logarithm mylog2 a

O (if a = 0)
log2(abs(a))
(otherwise)

Base 10
Logarithm mylog10 a

O (if a = 0)
log10(abs(a))
(otherwise)

If – then – else
Statement myif a,b,c

eval (c)
(if eval (a) = 0)

eval (b)
otherwise

Negation
of AND Nand a,b not(and(a,b))

The advanced users who want to build and us their own

functions only have to implement them as MATLAB
functions (and make sure the input arguments can be either
scalars or vectors – see MATLAB user’s manual) and declare
them using one of the toolbox functions

params=setfunctions(params,’func1’,2,’func2’,1);
params=addfunctions(params,’func1’,2,’func2’,1);

setfunctions defines the set of available functions as
containing functions ’func1’ and ’func2’, replacing any other
functions previously declared. ’func1’ has arity 2 - it needs
two input arguments; ’func2’ has arity 1. Any number of
functions can be declared at one time, by adding more
arguments to setfunctions. addfunctions accepts the same
arguments but adds the declared functions to the already
defined set, keeping the previously declared functions
untouched. setfunctions and addfunctions are friendly
substitutes to directly setting the parameter variable functions.
The declaration of genetic operators is done similarly.

1.2.3. Terminals

GPLAB can use any constant as a terminal, plus a random
number between 0 and 1, generated in runtime, as the function
’rand’ with null arity. The declaration of terminals is done
similarly to the declaration of functions, by using friendly
substitutes to directly setting the parameter variable terminals.
For example, to declare the constant ’1’ and the random
number generator as members of the set of terminals.
Params = setterminals(params,’rand’,’1’);
Unlike in setfunctions, there is no need to indicate the arity,
which is always null. To add a new terminal to an already
declared set of terminals
Params = addterminals(params,’new_terminal’);

Any number of terminals can be declared or added at one
time, by adding more input arguments.

Variables needed to evaluate the fitness cases are also part
of the set of available terminals for the algorithm to work
with, and these can only be generated (automatically) in the
beginning of the run, according to the settings of the
parameters numvars and autovars:

numvars=[] and autovars=’0’ - the parameter numvars is
automatically filled with 0 and no variables are generated.
This setting is appropriate for artificial ant problems.

numvars=[] and autovars=’1’ - the parameter numvars is
automatically filled with the number of columns of the input
data set and these many variables are generated. This setting is
appropriate for symbolic regression and parity problems.

numvars=x - customized setting, where x is the number of
variables generated, corresponding to the x first columns of
the input data set.

1.2.4. Genetic Operators

GPLAB may use any number of genetic operators to create
new individuals. A proportion of individuals, specified in
parameter reproduction, may also be copied into the next
generation without suffering the action of the operators. Tree
crossover and tree mutation are the genetic operators provided
by GPLAB, implemented as follows:

Crossover: In tree crossover, random nodes are chosen from
both parent trees, and the respective branches are swapped
creating two offspring. There is no bias towards choosing
internal or terminal nodes as the crossing sites.

Mutation: In tree mutation, a random node is chosen from
the parent tree and substituted by a new random tree created
with the terminals and functions available. This new random
tree is created with the Grow initialization method and obeys
the size/depth restrictions imposed on the trees created for the
initial generation. Although these are the only genetic

operators provided, the addition of others is straightforward.
Genetic operator is simply a MATLAB function used as a
plug and play device to module OPERATOR, and the
declaration of its existence to the algorithm is made similarly
to the setting of functions and terminals, with one of the
toolbox functions
Params = setoperators(params,’operator1’,2,2,’operator2’,2,1);
Params=addoperators(params,’operator1’,2,2,’operator2’,2,1);
Some of the tree manipulation functions available are:
maketree(level,functions,arities,exactlevel,depthnodes) – this
function returns a new random tree no deeper/bigger than
level, using the functions with respective arities. If exactlevel
is true, the new tree will be initialized using the Full method;
otherwise, it will be initialized using the Grow method.
depthnodes indicates whether restrictions are to be applied in
tree depth or tree size (number of nodes)
tree2str (tree) – returns the string that tree represents
findnode(tree,x) – returns the subtree of tree with root on ode
number x. The nodes are numbered depth-first
swapnode(tree,x,node) – returns the result of swapping node
number x in tree for node
tree2str(tree) – returns the translation of tree into a string
treelevel(tree) – returns the depth of tree
nodes(tree) – returns the number of nodes of tree
intronnodes(tree,params,data,state) – returns the number of
introns of tree. Needs the variables params, data and state.

1.2.5. Selection for Reproduction

Genetic operators need parent individuals to produce their
children. In GPLAB these parents are selected according to
one of four sampling methods, as indicated in the parameter
variable sampling:

’Roulette’ - This method acts as if a roulette with random
pointers is spun, and each individual owns a portion of the
roulette that corresponds to its expected number of children.

’SUS’ - This method also relies on the roulette, but the
pointers are equally spaced.

’Tournament’ - This method chooses each parent by
randomly drawing a number of individuals from the
population and selecting only the best of them.

’Lexictour’ - This method implements lexicographic
parsimony pressure. Like in ’tournament’, a random number
of individuals are chosen from the population and the best of
them is chosen. The main difference is, if two individuals are
equally fit, the shortest one (the tree with less nodes) is chosen
as the best. This technique has shown to effectively control
bloat in different types of problems.

1.2.6. Expected number of children

Some sampling procedures choose the parents based on
their expected number of children, while others only need to
know which are better than which. Likewise, the calculation of
the expected number of children may use the actual fitness
values or simply their rank in the population. The parameter
variable expected determines with method is used for
calculating the expected number of children for each
individual. This calculation is performed only if the selection
for reproduction so requires. Three different methods are
available in GPLAB:

’Absolute’ - the expected number of children for each
individual is proportional to its absolute fitness value (it is
equal to its normalized, or relative, fitness) [13].

’Rank85’ - the expected number of children for each
individual is based on its rank in the population [4].

’Rank89’ - the expected number of children for each
individual is based on its rank in the population and on the
state of the algorithm (how far it is from the maximum
allowed generation). The differentiation between individuals
increases in later generations.

1.2.7. Measuring Fitness

‘regfitness’ - calculates, for each individual, the sum of the
absolute difference between the expected output value and the
value returned by the individual on all fitness cases. The best
individuals are the ones that return values less different than
the expected values - the ones with a lower fitness. This
function should be used with the parameter lowerisbetter set to
’1’. When regfitness is used, all the fitness values stored in the
algorithm’s variables are rounded to a certain number of
decimal places, given by the parameter precision. This is
meant to avoid rounding errors that affect the comparison of
two different individuals who have the same fitness.

1.2.8. Survival

After producing gengap new individuals for the new
population, GPLAB enters the SURVIVAL module where,
from the current population plus all the new children, a
number of individuals is chosen to form the new population.
One of four elitism levels may be used, indicated in the
parameter variable survival:

‘replace’ - The children replace the parent population
completely, even if they are worse individuals than their
parents. This option is not elitist at all.

‘keepbest’ - The best individual from both parents and
children is kept for the new population, independently of
being a parent or a child. The remaining places in the new
population are occupied by children only. If not all children
produced can be used in the new population, due to size
constraints, the worst are discarded.

‘halfelitism’ - Half of the new population will be occupied
by the best individuals chosen from both parents and children.
The remaining places will be occupied by the best children
still available.

‘totalelitism’ - The best individuals from both parents and
children are chosen to fill the new population. The survival
module is in fact elitist, even when the non elitism option is
chosen. If GPLAB is operating in batch mode, the best
children are always chosen, and the worst discarded.

1.2.9. Stop Conditions

GPLAB will run until the maximum generation indicated by
the user is reached, or until a stop condition is reached. Stop
conditions are defined by setting the parameter variable hits.
One hit is a tuple [f d] where f is the percentage of fitness
cases that must obey the stop condition and d is the definition
of the stop condition itself, meaning that the result obtained by
the best individual in the population must be no lower than the
expected result minus d% (of the expected result) and no
higher that the expected result plus d%. The default value of

hits is [100 0], which means “stop if the best individual
produces exact results in all fitness cases”. [50 10] would
mean “st op if the best individual produces results within
minus or plus 10% of the expected results, in at least 50% of
the fitness cases”. Several stop conditions can be used, by
adding rows to the hits variable. If the two previous stop
conditions were to be used concurrently, hits should be set to
[100 0; 50 10]. GPLAB tests each stop condition, starting with
the first row, until one is satisfied or all have been tested. It is
possible not to use any stop condition (hits= []), in which case
GPLAB will only stop when reaching the maximum number
of generations allowed.

B. Genetic Programming using Orthogonal Least Square
Method

Genetic Programming (GP) is used to generate nonlinear
input-output models of dynamical systems that are represented
in a tree structure. The main idea is to apply Orthogonal Least
Squares algorithm (OLS) to estimate the contribution of the
branches of the tree to the accuracy of the model. This method
results in more robust and interpretable models [13].

In practice, a model which gives good prediction
performance on the training data may be over-parameterized
and may contain unnecessary, complex terms. The penalty
function handles this difficulty, because it decreases fitness
values of trees that have complex terms. However, parameters
of this penalty term are not easy to determine and the penalty
function does not provide efficient solution for this difficulty.
An efficient solution may be the elimination of complex and
unnecessary terms from the model. For linear-in-parameters
models it can be done by the Orthogonal Least Squares (OLS)
algorithm.

1. Orthogonal Least Square Method Algorithm (OLS)

The great advantage of using linear-in-parameters models is
that the Least Squares Method (LS) can be used for the
identification of the model parameters, which is much less
computationally demanding than other nonlinear optimization
algorithms, since the optimal p = [p1, ……, pM]T parameter
vector can be analytically calculated:

FyFFp T)(1−= (6)
where y = [y(1),……, y(N)]T is the measured output vector,

and the F regression matrix is:

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

))(())((

))1(())1((

1

1

NxFNxF

xFxF

F

M

M

 (7)

In case most of process systems certain input and output
interactions will be redundant and hence components in the
ANOVA decomposition could be ignored, which can result in
more parsimonious representations. The OLS algorithm is an
effective algorithm to determine which terms are significant in
a linear-in-parameters model. The OLS introduces the error
reduction ratio (err) which is a measure of the decrease in the
variance of output by a given term.

The compact matrix form corresponding to the linear-in-
parameters model is y = Fp + e; where the F is the regression

matrix, p is the parameter vector, e is the error vector. The
OLS technique transforms the columns of the F matrix into a
set of orthogonal basis vectors in order to inspect the
individual contributions of each term.

The OLS algorithm assumes that the regression matrix F
can be orthogonally decomposed as F = WA, where A is an M
× M upper triangular matrix (it means Ai,j = 0 if i > j) and W is
an N × M matrix with orthogonal columns in the sense that
WTW = D is a diagonal matrix. (N is the length of y vector and
M is the number of regressors). After this decomposition one
can calculate the OLS auxiliary parameter vector g as

 (8)
where gi is the corresponding element of the OLS solution

vector. The output variance (yTy)/N can be explained as

∑ +=
=

M

i

T
i

T
ii

T eewwgyy
1

2 (9)

Thus the error reduction ratio, [err]i of Fi term can be
expressed as

[] .
2

yy
wwg

err
T

i
T
ii

i = (10)

This ratio offers a simple mean for order and selects the
model terms of a linear-in-parameters model according to their
contribution to the performance of the model.

2. GP and OLS

During the operation of GP the hybrid GP OLS algorithm
generates a lot of potential solutions in the form of a tree-
structure. These trees may have terms (subtrees) that
contribute more or less to the accuracy of the model.

The concept is the following: firstly the trees (the individual
members of the population) are decomposed to subtrees
(function terms of the linear - in- parameters models), then the
error reduction ratios of these function terms are calculated;
finally the less significant term(s) is/are eliminated. This “tree
pruning” method is realized in every fitness evaluation before
the calculation of the fitness values of the trees. The main goal
of the application of this approach is to transform the trees to
simpler trees which are more transparent, but their accuracy is
close to the original trees. Because the further goal is to
preserve the original structure of the trees as far as it possible
(because the genetic programming works with the tree
structure). This method always guarantees that the elimination
of one or more function terms of the model can be done by
”pruning” the corresponding subtrees, so that, there is no need
for structural rearrangement of the tree after this operation.

The proposed approach has been implemented in MATLAB
that is the most widely applied rapid prototyping system. The
aim of the toolbox is the data-based identification of static and
dynamic models, since the approach proposed in this paper is
can also be applied for static nonlinear equation discovery. At
the development of the toolbox special attention has been
given to the identification of dynamical input-output models.
Hence, the generated model equations can be simulated to get
one- and/or n-step ahead predictions. The toolbox is freeware,
and it is downloadable from the website of the authors:
www.fmt.veim.hu/softcomp. Important parameters utilized in
GP, are summarized in below Table 2

Table 2 Parameters used in GP – OLS toolbox

Population size 50
Maximum number of
 evaluated individuals

2500

Type of selection Roulette-wheel
Type of mutation Point-mutation
Type of crossover One-point (2 parents)
Type of replacement Elitist
Generation gap 0.9
Probability of crossover 0.5
Probability of mutation 0.5
Probability of changing terminal
-non-terminal nodes (vice versa)
during mutation

0.25

The individuals are represented by a structure called

population variable.
Structure:
 popu.generation Scalar integer Generation number
 popu.symbols Structure Equation symbols
 popu.size Scalar integer Number of individuals = nind
 popu.chrom Cells(1xnind) Chromosomes

The chrom contains the chromosomes (individuals):
equations encoded by trees.
Structure:
 chrom{i}.fitness Scalar integer Fitness value
 chrom{i}.mse Scalar integer Mean Square Error
 chrom{i}.tree Structure The tree encoding equation

The popu.chrom{i} contains the 'chromosome' of i-th
individual of the population.
The tree encodes the equation
Structure:
 tree.maxsize Scalar integer Max. number of nodes, nn
 tree.nodetyp Vector of integers (nn x 1) Type of nodes
 tree.node Vector of integers (nn x 1) Nodes
 tree.param Vector of reals (nn/2 x 1) Linear parameters
 tree.paramn Scalar integer Number of parameters

The maxsize is equal the maximum number of nodes (=
2max. deepth-1).The nodetype contains the type of nodes. The
value may be 1 or 2. If 1: operator, if 2: terminal node. The
vector contains the nodes of tree in a structured way from top
to down, from left to right. The node contains the index of the
symbol assigned to the nodes. The vector is structured in the
same way as nodetype variable. The indexes point to the
gene.symbols variable. E.g. if nodetype(i) = m and node(i) = n
then the i-th node is gene.symlist{m}{n}. The param contains
the parameters of linear-in-parameters model represented by
the tree. The vector is structured as the GP-OLS toolbox
extracts the model-terms from the tree.

The symbols contains the equation symbols, namely the
operators and variables. Structure:

 Symbols {1} Cells of strings Operator symbols (internal
nodes)

 Symbols {2} Cells of strings Variables symbols
(terminator nodes)

http://www.fmt.vein.hu/softcomp/gp/chromvar.html

The symbols {1} contain the operator symbols. E.g.
symbols {1} = {'+','*','*sqrt'}.

The symbol {2} contains the terminal symbols. E.g.
symbols {2} = {‘u (k-1)',’u (k-2)'}.

The GP-OLS identification directly uses the symbols {1},
but not the symbols {2}. During the identification, only the
size of the symbols {2} is used, it must be equal to the number
of columns of X, i.e. length (symbols {2}) = size(X, 2) (it is
important!). The gpols_result function uses the symbols {2}
directly to write the equation.
GP- OLS matlab toolbox contain the following important
functions
3.1 gpols_init: To make the population structure and to
generate initial individuals
Syntax:
 popu = gpols_init(popusize,maxtreedepth,symbols);
 popu Structure (population) Resulted initial population
 popusize Scalar integer Number of individuals (size of
population)
 maxtreedepth Scalar integer Maximum number of tree
levels (tree depth)
 symbols Cells of strings Equation symbols

This function initializes the population variable, clears and
re-initializes its structure.

This function is called at the beginning of your program.
This function does NOT evaluate the random generated
(initial) individuals, so gpols_evaluate function needs to be
called. The popu is the initialized population variable. The
symbol is the list of operator and terminator strings.
Example:
popu = gpn_init(50,gene);
popu = gpn_evaluate(popu,[1:50],X,Y,[],optv);

3.2 gpols_evaluate: To evaluate the initial population.
Syntax:
 newpopu = gpols_evaluate(popu,ixv,X,Y,Q,opte);
 newpopu Structure (population) Resulted population (with
fitness values)
 popu Structure (population) Population
 ixv Vector of integers Indexes of individuals must be
evaluated
 X Matrix of reals (np x nr) Input data for evaluation
 Y Vector of reals (np x 1) Output data for evaluation
 Q Vector of reals (np x 1) Optional weighting vector for X
and Y
 opte Vector (4 x 1 or 1 x 4) Options vector

This function evaluates the individuals of population. It
determines the linear parameters, applies OLS to eliminate
subtrees, and evaluates the fintess-value of resulted
individuals (trees).

The popu is the population variable, which contains the
individuals must be evaluated.

The ixv contains the indexes of individuals which must be
evaluated. If. e.g. ixv = [1 2 5 6] then it means that the 1-th, 2-
nd, 5-th, and 6-th member of population will be evaluated.

The X is regression matrix and the Y is the desired output
vector. The terminal nodes of trees refer to X, the estimated
output is compared to Y.

If Q vector is used, than the LS estimation problem modifies
to ETˇdiag(Q)ˇE, where E = Y - Ye, Ye is the estimated
output, Ye = XˇΘ.

The opte contains some parameters:
opte(1:2): a1 and a2 parameters of tree-size penalty function if
they are zeros then the penalty is not used,
opt(3): OLS threshold value (0-1 or integer greater than 1),
opt(4): set 1 if you want polynomial evaluation, else 0.

3.3 gpols_mainloop: To execute one evolutionary-loop and
step to next generation.
Syntax:
 [newpopu,evnum] = gpols_mainloop(popu,X,Y,Q,opt);
 newpopu Structure (population) New generation of
population
 evnum Scalar integer Number of function evaulations
 popu Structure (population) Population
 X Matrix of reals (np x nr) Input data for evaluation
 Y Vector of reals (np x 1) Output data for evaluation
 Q Vector of reals (np x 1) Optional weighting vector for X
and Y
 opt Vector (1x10 or 10x1) Options vector

This function execute one evolutionary-loop and generates
the next generation of population.The user should call this
function iteratively.

The popu is the population variable, which contains the
individuals of current generation.

The X, Y, and Q are the regression matrix, output vector
and weighting vector, respectively (see gpols_evaluation).

The opt contains the options:
opt(1): ggap, generation gap (0-1)
opt(2): pc, probability of crossover (0-1)
opt(3): pm, probability of mutation (0-1)
opt(4): sels, selection mode (0: roulette wheel, 1: total random,
2,3,..: tournament selection (with tournament size = sels)
opt(5): rmode, mode of tree-recombination (1 or 2)
opt(6): a1, first penalty parameter (default = 0)
opt(7): a2, second penalty parameter (default = 0)
opt(8): OLS threshold value (default = 0)
opt(9): if 1: polynomial evaluation, else normal evaluation
(default = 0)
opt(10): if 1: always evaluate all individuals, else evaluate
only new individuals (default = 0)

3.4 gpols_result: To write the current solution and the final
result.
Syntax:
 [sout,tree] = gpols_result(popu,info);
 sout String Information string
 tree Structure (tree) The best solution
 popu Structure (population) The input population
 info Scalar integer Asked information (0,1 or 2)

This function gets some information about the best member
of the population variable.
Use info = 0 and popu = [] at the very beginning of your
program to get a header string for info = 1: "Iter Fitness
Solution".
Use info = 1 after every iteration to get a short information,
e.g. "7. 0.729125 (y(k-2))+((u(k-1))*(u(k-1)))".

Use info = 2 at the end of your program to get detailed
information about the final solution.
E.g.:
"fitness: 0.729125, mse: 0.462421
-0.638898 * (y(k-2)) +
0.493203 * ((u(k-1))*(u(k-1))) +
-0.069117"
If info > 0, than the function gives back the tree structure of
the best solution (tree).
Example:
disp(gpols_result([],0));
gpols_mainloop(popu,X,Y,[],opt);
disp(gpols_result(popu,1));
disp(gpols_result(popu,2));

IV. RESULTS AND DISCUSSION
In this section the modeling capabilities of both GPLAB and

GPOLS have been tested and illustrated. Because GP is a
stochastic optimization algorithm ten independent runs were
executed for each method, while the best from all runs was
considered.

A. Model of Glucose to Gluconic acid bio process
In this section the modeling capabilities of both GPLAB and

GPOLS have been tested and illustrated. Because GP is a
stochastic optimization algorithm ten independent runs were
executed for each method, while the best from all runs was
considered.

For obtaining the GP-based model, process data from 46
runs were used. The data set (see Table 3) comprises values of
the three operating variables, namely, glucose concentration
(g/L) (x1), biomass concentration (g/L) (x2), and dissolved
oxygen (DO) concentration (mg/L) (x3), and the
corresponding values of the process output variable, i.e.,
gluconic acid concentration (y) [4]. The normalized data set
was partitioned into the training set (batches 1-23) and the test
set (batches 24-46). While the training set was used for
computing the fitness of the GP-searched expressions, the test
set was used to cross-validate the expressions. The objective
of cross-validation is to test the prediction (generalization)
ability of the GP-searched expressions on a data set different
from the set used for obtaining the expression. To secure an
overall optimal data-fitting expression, the GP procedure was
repeated 100 times by employing different seed values for the
pseudo-random number generator. In each such repeated run,
a different mathematical expression was searched by the GP.

1. GP model predicted by GPLAB:
Parameters used:
Tree Initialization: ‘rampedinit’,
Functions: ‘plus, minus, times and mypower’
Terminals: ‘x1, x2, x3, rand, 10’
Cross over probability: ‘0.95’
Mutation Probability: ‘0.05’
Selection for Reproduction: ‘Roulette’
Expected number of children: ‘Rank89’
Measuring fitness: ‘regfitness’
Generations: 250

Fitness: 0.971358

Table 3 Experimental Data Utilized for Building GP [4]
batch glucose

concn
(x1)
 (g/L)

biomass
concn
(x2)
 (g/L)

DO

(x3)
 (mg/L)

gluconic
acid
concn (y)
(g/L)

Gluconic
acid yield

(ygt) (%) a

1 100.0 1.00 10.0 6.416 5.90
2 150.0 2.00 10.0 48.015 29.42
3 200.0 2.00 15.0 27.100 20.76
4 150.0 2.50 15.0 57.946 35.51
5 150.0 3.00 15.0 57.389 35.16
6 120.0 2.00 25.0 36.262 27.77
7 120.0 2.00 30.0 45.020 34.48
8 150.0 2.00 30.0 94.424 57.86
9 150.0 3.00 25.0 80.486 49.32

10 150.0 2.00 40.0 128.907 78.99
11 150.0 2.00 45.0 146.036 89.48
12 150.0 2.00 50.0 154.230 94.50
13 180.0 2.00 50.0 175.525 89.63
14 150.0 3.00 40.0 129.006 79.05
15 150.0 2.50 50.0 154.360 94.58
16 150.0 2.50 55.0 152.440 93.41
17 150.0 2.50 60.0 148.940 91.26
18 160.0 2.50 60.0 163.067 93.67
19 175.0 3.00 55.0 176.490 92.69
20 160.0 3.00 60.0 162.420 93.30
21 180.0 3.00 60.0 172.598 88.13
22 150.0 3.00 60.0 151.280 92.70
23 100.0 3.00 60.0 21.803 20.04
24 100.0 2.00 10.0 6.670 6.13
25 120.0 2.50 10.0 22.952 17.58
26 100.0 2.00 15.0 7.829 7.20
27 150.0 2.00 15.0 57.261 35.09
28 120.0 2.00 20.0 31.486 24.12
29 150.0 2.00 20.0 66.900 40.99
30 150.0 2.50 20.0 67.449 41.33
31 150.0 3.00 20.0 67.328 41.25
32 150.0 2.00 35.0 111.328 68.22
33 150.0 2.50 30.0 95.988 58.82
34 150.0 3.00 30.0 94.707 58.03
35 150.0 2.50 40.0 129.930 79.61
36 150.0 3.00 35.0 111.604 68.38
37 150.0 2.00 60.0 152.430 93.40
38 120.0 2.00 60.0 73.502 56.30
39 150.0 3.00 45.0 144.651 88.63
40 180.0 2.50 55.0 179.064 91.94
41 150.0 3.00 50.0 152.890 93.68
42 180.0 2.50 60.0 174.483 89.09
43 150.0 3.00 55.0 154.230 94.50
44 166.0 3.00 60.0 169.450 93.82
45 165.0 3.00 60.0 167.910 93.53
46 162.0 3.00 60.0 164.870 93.54

a Gluconic acid percentage yield, ygt = 100 y/1.088x1

Model equation predicted:
mypower(times(times(mydivide(X1,mypower(times(mypower
(times(X1,X3),minus(0.82359,minus(X1,mypower(X3,X1)))),

The GP-based model obtained is: times(minus(X1,minus(0.47932,X3)),X3)),times(times(mydivi
de(X1,mypower(times(mypower(mypower(times(X1,X3),min
us(0.82359,minus(X1,X3))),minus(0.82359,minus(times(X3,X
2),X3))),times(minus(X1,minus(0.47932,X3)),X3)),times(X1,t
imes(minus(0.82359,minus(0.47932,X3)),X1)))),X3),times(mi
nus(0.82359,minus(0.47932,X3)),X1)))),X3),times(minus(0.8
2359,minus(0.47932,X3)),X1)),0.38498)

0.232508 * (x1) +2.067329 * (((x3)*(x1))/exp((x3)*(x1))) +
0.028817
Elapsed Time: 256.938 seconds

To secure an overall optimal data-fitting expression, the GP
procedure was repeated 100 times by employing different seed
values for the pseudo-random number generator. In such
repeated runs, the best mathematical expression was searched
seven times by GP - OLS.

2. GP model predicted by GP-OLS

The experimental data was split in to training set (1-23) and
test set (24-46)

The high fitness values are indicative of the good prediction
accuracy and generalization ability of the GP-based fermentor
model. A comparison of the model predicted and actual
process output values for the training and test set data is
presented in Figures 2-7. As the prediction is evolutionary,
following best models are obtained.

Parameters used:
Population size: 50.
Maximum number of evaluated

individuals: 50
 Type of selection: roulette-wheel
Model 1: Fitness: 0.957347, MSE: 0.027591 Type of mutation point: mutation
 0.517192 * ((x1)-exp(((x3)*exp((x3)*exp(x3)))*(((x3)-
exp(x1))*(x3)))) + 0.517702

Type of crossover: one-point (2 parents)
Type of replacement: elitist

 Time=288.328000 Generation gap: 0.9
 Probability of crossover: 0.5
Model 2: Fitness: 0.972972, MSE: 0.032064 Probability of mutation: 0.5
 -2.276953 * (x3) +2.323131 * ((x3)-exp((x1)-
exp((x1)*exp(x3)))) + 0.888878

Probability of changing terminal
- non-terminal: 0.25 nodes (vice versa)

during mutation Time=222.235000
 Functions: +,-, /,*,*exp, +exp,-exp,/exp
Model 3: Fitness: 0.969914, MSE: 0.040065 Terminals: x1, x2, x3
 0.232508 * (x1) + 2.067329 * (((x1)*(x3))/exp((x1)*(x3))) +
0.028817

The best fit obtained is:
Fitness: 0.969914

 Time=205.875000 MSE: 0.040065

Gluconic acid concentration as predicted by GP for Training set

0

50

100

150

200

-2 3 8 13 18 23

Batches

G
lu

co
ni

c
ac

id

co
nc

en
tr

at
io

n
(g

/l)

Experimental Values GP Simulated

Fig. 2 Gluconic acid concentration as predicted by GP for Training set (Model 1)

Gluconic acid concentration as predicted by GP for Test set

0

50

100

150

200

24 29 34 39 44

Batches

G
lu

co
ni

c
ac

id
 c

on
c

(g
/l)

Experimental Results GP Simulated Results

Fig. 3 Gluconic acid concentration as predicted by GP for Test set (Model 1)

Gluconic acid concentration as predicted by GP for Training set

0

50

100

150

200

0 5 10 15 20 25

Batches

G
lu

co
ni

c
ac

id
 c

on
c.

(g

/l)

Experimental GP Simulated value

Fig. 4 Gluconic acid concentration as predicted by GP for Training set (Model 2)

Gluconic acid concentration as predicted by GP for Test set

0

50

100

150

200

24 29 34 39 44

Batches

G
lu

co
ni

c
ac

id
 c

on
c.

(g

/l)

Experimental GP Simulated value

Fig. 5 Gluconic acid concentration as predicted by GP for Test set (Model 2)

Gluconic acid concentration as predicted by GP for Training set

0

50

100

150

200

0 5 10 15 20 25

Batches

G
lu

co
ni

c
ac

di
d

co
nc

.
(g

/l)

Experimental GP Simulated value

Fig. 6 Gluconic acid concentration as predicted by GP for Training set (Model 3)

Gluconic acid concentration as predicted by GP for Test set

0

50

100

150

200

24 29 34 39 44

Batches

G
lu

co
ni

c
ac

di
d

co
nc

.
(g

/l)

Experimental GP Simulated value

Fig. 7 Gluconic acid concentration as predicted by GP for Test set (Model 3)

B. Dynamic modeling of fed-batch bioreactor
Parameters used:
Population size: 50
Maximum number of
evaluated individuals: 20
Type of selection: roulette-wheel
Type of mutation point: mutation
Type of crossover: one-point (2 parents)
Type of replacement: elitist
Generation gap: 0.9
Probability of crossover: 0.5
Probability of mutation: 0.5
Probability of changing
terminal - non-terminal: 0.25
 nodes (vice versa) during mutation
Functions: +,-
Terminals: u(k-i),y(k-i)
The best fit obtained is:
Fitness: 0.915976
MSE: 0.000002
Elapsed Time: 9 seconds

Table 4 Comparison of output of simulated value and GP

model for Fed-Batch Bioreactor
Sl. No. Time

 (h)
Feed rate

(l/h)
Secreted
protein
conc.
(g/l)

(Simulated)

Secreted
protein
conc.
(g/l)

(GP model
prediction)

1 0 0.146 0 0
2 1 0.19708 0 0
3 2 0.26604 0 0.00011
4 3 0.35911 0 0.00011
5 4 0.48476 0 0.00011
6 5 0.65437 0 0.00011
7 6 0.88332 0 0.00011
8 7 1.19239 0 0.00011
9 8 1.6096 0 0.00011

10 9 0 0.00102 0.00011
11 10 0 0.03237 0.03237
12 11 0 0.03237 0.03248
13 12 0 0.03237 0.03248
14 13 0 0.03237 0.03248
15 14 10 0.03237 0.03248
16 15 10 0.06847 0.06847
17 15.1393 10 0.065539 0.06547
18 15.2393 10 0.062306 0.06268
19 15.3393 10 0.059273 0.05959
20 15.4393 10 0.056519 0.05669
21 15.5393 10 0.05394 0.05407
22 15.7393 10 0.04942 0.05171
23 15.8393 10 0.04743 0.04953
24 159393 10 0.04556 0.04754
25 16 10 0.0445 0.04567

GP model :
-2.281562 * (((u(k-2))*(y(k-1)))*(u(k-2))) + 0.111181 * ((u(k-
1))*(y(k-1))) + 22.699909 * ((u(k-2))*(y(k-1))) + 0.000111

The comparison of output of Simulated and GP model for
Fed – Batch Bioreactor has been summarized in Table 4.

V. CONCLUSIONS
This limited but intensive study can be concluded with the

following significant observations:
1 The study of two test examples using the MATLAB

toolboxes for genetic programming shows the potentiality
of the algorithm. Following salient points were observed
during this study:
1.1. Genetic programming is successful in giving the

best solution, in all the situations.
1.2. Genetic programming gives more than one equation

to a given set of input output data, with varying
fitness and mean square error. Thus, presenting user
more choices to choose from.

1.3. Crossover and mutation rates are selected based on
trial runs.

1.4. GPLAB though versatile with its features, lacks
pruning of branches in trees. Hence produces more
complex equations as compared to GP OLS which
uses Orthogonal least square (OLS) method to prune
branches in trees and is able to give simpler accurate
and high fitness equations. The best example is the
fermentor modeling, in which GPLAB gave a
equation which was impossible to discern and GP
OLS gave a simpler model of an excellent fit.

2 Modeling of glucose and gluconic acid bioprocess was
done using experimental input-output data. The best
equation from 100 test runs was obtained. The high
fitness values are indicative of the good prediction
accuracy and generalization ability of the GP-based
fermenter model. Based on the simulations following
significant points were observed.
2.1. GP-OLS was able to remove the uncontributing

branches as compared to GPLAB, to give rise to a
simple equation in 500 generations.

2.2. A comparison of the model predicted and actual
process output values for the training and test data
shows an accurate prediction and generalization
ability.

2.3. The model predicted by GP OLS, does not contain
biomass concentration (x2) term, clearly indicating
the acute contribution to the model. Hence, the
biomass concentration need not be a measured
quantity.

3 The capability of GP OLS to generate non-linear
input-output dynamic systems has been tested using two test
examples. In one of the examples a fed batch bioreactor that
has been studied by Park and Ramirez [5] has been
considered. The simulations were carried out using ODE23s
subroutine (MATLAB Library). The program was checked to
be error free. The data generated was used to obtain the GP
dynamic model. The simulation and GP model prediction
results indicate GP OLS is an efficient and fast method for

predicting the order and structure for non-linear input and
output model.

REFERENCES
[1] C. Rhodes and M. Morari, “Determining the model order of non-linear

input/output systems”, AIChE Journal, vol. 44, 1998, pp 151 – 163.
[2] J. Madar, J. Abonyi and F. Szeifert, “Model order Selection of nonlinear

Input Output models a Clustering based approach”, Journal of Process
Control, vol. 14, 2004, pp. 593 – 602.

[3] B. McKay, M. Willis and G. Barton, “Steady-state Modeling of
Chemical Process Systems using Genetic Programming”, Computers
and Chemical Engineering, vol. 21, 1997, pp 981 – 996.

[4] J. Cheema, N. V. Sankpal, S. S. Tambe and B. D. Kulkarni, “Genetic
Programming Assisted Stochastic Optimization Strategies for
Optimization of Glucose to Gluconic Acid Fermentation”,
Biotechnology Progress, vol.18, 2002, pp 1356 – 1365.

[5] G. L. Miller, “Use of Dinitrosalicyclic Acid Reagent for
Determination of Reducing Sugar”, Anal. Chem., vol. 31, 1959, pp
426-429.

[6] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, The MIT Press, Cambridge, MA, 1992.

[7] S. Park and W. F. Ramirez, “Optimal production of Secreted Protein in
Fed-Batch Reactors”, AIChE Journal, vol. 34, 2003, pp 1550 – 1558.

[8] D. E. Goldberg, Genetic Algorithms in search, Optimization, and
Machine learning, Addison-Wesley, MA, 1989.

[9] B. V. Babu, Process Plant Simulation, Oxford University Press, New
York, 2004.

[10] G. C. Onwubolu and B. V. Babu, New Optimization Techniques in
Engineering, Springer-Verlag, Germany, 2004.

[11] Home page of Genetic Programming Inc. “Preparatory Steps of Genetic
Programming”, Available online as on May, 2006 at
http://www.genetic-programming.com/gppreparatory.html.

[12] S. Silva , “RGPLAB: A Genetic Programming Toolbox for MATLAB”
[13] J. Madar., J. Abonyi, and F. Szeifert, “Genetic Programming for the

Identification of Nonlinear Input-Output Models”, GP OLS toolbox for
MATLAB, 2005.

Dr. B. V. Babu borned in Tuni of
Andhra Pradesh in India on February
15, 1961. He did his B.Tech in
chemical engineering from A.U.
College of Engineering, Andhra
University, Waltair, Andhra Pradesh,
India in 1983; and subsequently did
his M.Tech in chemical engineering
from C.I.T. of Bharatiar University,
Tamil Nadu, India in 1985. He
completed his Ph.D. in
hydrodynamics and heat transfer in
gas-liquid cocurrent downflow
through packed beds from I.I.T.
Bombay, India in 1993. He became
a Member (M) of IAENG.

 He has 21 years of teaching, research, administration, and
consultancy experience. He is currently working as a Professor and Head of
Chemical Engineering Department & Assistant Dean of Engineering Services
Division at Birla Institute of Technology and Science (BITS), Pilani,
Rajasthan, India. He has around 120 research publications in various
International Journals and Conference Proceedings to his credit. He has
published three books: 1. New Optimization Techniques in Engineering
(Heidelberg, Germany: Springer-Verlag, 2004); 2. Process Plant Simulation
(New Delhi, India, Oxford University Press, 2004); 3. Environmental
Management Systems (Pilani, India, BITS-Pilani, 2005). He guided 3 PhD
students, 28 ME Dissertation students and 24 Thesis students and around 170
Project students. He is currently guiding 6 PhD candidates, 2 Dissertation
students and 9 Project students. He currently has 2 research projects from
UGC & DST. His research interests include Evolutionary Computation
(Population-based search algorithms for optimization of highly complex and
non-linear engineering problems), Environmental Engineering, Biomass
Gasification, Energy Integration, Artificial Neural Networks, Nano
Technology, and Modeling & Simulation.

Prof. Babu is Life member of Indian Institute of Chemical
Engineers (IIChE), Life member of Indian Society for Technical Education
(ISTE), Life member of Institution of Engineers (IE), Fellow of International
Congress of Chemistry and Environment (ICCE), Life member of Indian
Environmental Association (IEA), Life member of Society of Operations
Management (SOM), Associate Member of International Society for
Structural and Multidisciplinary Optimization (ISSMO), and Member of
International Institute of Informatics and Systemics (IIIS). He is the recipient
of National Technology Day (11th May, 2003) Award given by CSIR, India
obtained in recognition of the research work done in the area of ‘A New
Concept in Differential Evolution (DE) – Nested DE’. He is Editorial Board
Member of three International Journals ‘Energy Education Science &
Technology’, ‘Research Journal of Chemistry and Environment’, and
‘International Journal of Computer, Mathematical Sciences and Applications’.
He is the referee & expert reviewer of 19 International Journals (Chemical
Engineering Science, Computers and Chemical Engineering, International
Journal of Heat and Mass Transfer, Chemical Engineering Journal, IEEE
Transactions on Evolutionary Computation, European Journal of Operations
Research, IEEE Transactions on Systems Man and Cybernetics, Industrial &
Engineering Chemistry Research, International Journal of Systems Science,
ASME Journal of Electronic Packaging, Bioresource Technology, Applied
Mathematical Modelling, Waste Management, International Journal of
Environment and Pollution, Progress in Energy and Combustion Science,
Journal of The Indian Institute of Science, Materials and Manufacturing
Processes, Transactions on Internet Research, The Proceedings of the Pakistan
Academy of Sciences). He is also on the Programme Committees as an expert
reviewer at many International Conferences. He reviewed three books of
McGraw Hill, Oxford University Press, and Tata McGraw Hill publishers. He
is PhD Examiner for one candidate and PhD Thesis Reviewer for 3
Candidates. Prof. Babu is the Organizing Secretary for “National Conference
on Environmental Conservation (NCEC-2006)” held at BITS-Pilani during
September 1-3, 2006. He also organized invited special sessions at two
international conferences (CIRAS-2003 and SCI-2004).

Mr. S. Karthik is a M.E. student at BITS-Pilani during 2003-2005 and did
his Dissertation work with Prof. B.V.Babu.

http://www.genetic-programming.com/gppreparatory.html

	I. Introduction
	A. Modeling of glucose to gluconic acid bioprocess
	1. Experimental Details

	B. Problems involved in modeling of glucose to gluconic acid bioprocess
	C. Dynamic modeling of fed-batch bioreactor
	D. Objective and Scope of Study
	II. Genetic Programming (GP)
	A. Preparatory Steps for Genetic Programming
	1. Function set and Terminal
	2. Fitness measure
	3. Control Parameters
	4. Termination
	5. Running GP

	B. Executional Steps in GP

	III. Genetic Programming Toolboxes in MATLAB
	A. GPLAB
	1. Operational Structure

	B. Genetic Programming using Orthogonal Least Square Method
	1. Orthogonal Least Square Method Algorithm (OLS)
	2. GP and OLS

	IV. Results and Discussion
	A. Model of Glucose to Gluconic acid bio process
	1. GP model predicted by GPLAB:
	2. GP model predicted by GP-OLS

	B. Dynamic modeling of fed-batch bioreactor

	V. Conclusions
	References

