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Abstract—The novel evolutionary artificial intelligence 

formalism namely, genetic programming (GP) a branch of 
genetic algorithms is utilized to develop mathematical models 
based on input-output data, instead of conventional regression 
and neural network modeling techniques which are commonly 
used for this purpose. This paper summarizes the available 
MATLAB toolboxes and their features. Glucose to gluconic acid 
batch bioprocess has been modeled using both GPLAB and 
hybrid approach of GP and Orthogonal Least Square method 
(GP OLS). GP OLS which is capable of pruning of trees has 
generated parsimonious expressions simpler to GPLAB, with 
high fitness values and low mean square error which is an 
indicative of the good prediction accuracy. The capability of GP 
OLS to generate non-linear input-output dynamic systems has 
been tested using an example of fed-batch bioreactor. The 
simulation and GP model prediction results indicate GP OLS is 
an efficient and fast method for predicting the order and 
structure for non-linear input and output model. 
 

Index Terms—About four key words or phrases in 
alphabetical order, separated by commas.  

I. INTRODUCTION 
The increasing emphasis on product 'quality', economic 

process performance and environmental issues in the chemical 
and allied industries is placing significant demands on existing 
operational procedures. Enhanced process performance 
generally requires increased process knowledge, with 
mathematical models being the most common means of 
representing this knowledge. While it may be possible to 
develop a model using a detailed knowledge of the physics 
and chemistry of a system, there are a number of drawbacks to 
this approach. Industrial process systems are often extremely 
complex and non-linear in nature, thus it may take a 
considerable amount of time and effort to develop a realistic 
model [1,2]. Moreover, in many instances simplifying 
assumptions have to be made in order to provide a tractable 
solution. A first-principles model will, therefore, often be 
costly to develop and may be subject to inaccuracies.  
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However, if an accurate process model were available, then 
many of the benefits of improved process operability would be 
achievable. The current trend within the process industries is 
to use data based modeling techniques to develop accurate, 
cost-effective input-output process descriptions [3]. The 
popular techniques may be divided into two categories. The 
first are based on the use of various statistical techniques and 
regression analysis, while the second involves the use of 
artificial neural networks.  
 
 
The data-driven identification of these models involves the 
following tasks: 
1) Structure selection.  
2) Input sequence design.  
3) Noise modeling.  
4) Parameter estimation.  
5) Model validation.  

Genetic programming (GP), which is an evolutionary 
approach, is used to develop nonlinear models of chemical 
process systems using only plant input-output data.  

Genetic programming is different from all other approaches 
to artificial intelligence, machine learning, neural networks, 
adaptive systems, reinforcement learning, or automated logic 
in all (or most) of the following seven ways (www.genetic-
programming.com/sevendiffs.html):  
1) Representation: Genetic programming overtly conducts it 

search for a solution to the given problem in program 
space.  

2) Role of point-to-point transformations in the search: 
Genetic programming does not conduct its search by 
transforming a single point in the search space into 
another single point, but instead transforms a set of points 
into another set of points.  

3) Role of hill climbing in the search: Genetic programming 
does not rely exclusively on greedy hill climbing to 
conduct its search, but instead allocates a certain number 
of trials, in a principled way, to choices that are known to 
be inferior.  

4) Role of determinism in the search: Genetic programming 
conducts its search probabilistically.  

5) Role of an explicit knowledge base: None.  
6) Role of formal logic in the search: None. 
7) Underpinnings of the technique: Biologically inspired. 

A. Modeling of glucose to gluconic acid bioprocess 
A new batch fermentation technique proposed for the 

production of gluconic acid from glucose wherein A. niger 
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immobilized on a support matrix consisting of a cellulosic 
fabric has resulted in higher yields [4]. The improved overall 
productivity from this technique is primarily due to the 
enhanced interaction between the dissolved oxygen and the 
fungal mycelia. Enhancement in the said interaction is effected 
via a continuous substrate dripping mechanism and not by the 
mechanical agitation as used in the free-cell fermentation. The 
main objective in this dissertation is to develop a mathematical 
model of the new glucose to gluconic acid batch fermentation 
process. For developing the fermentor model, experimental 
data incorporating the effects of the substrate (glucose) and 
biomass concentrations, and the dissolved oxygen content, 
have been used.  

 
1. Experimental Details 

For developing the GP based model for the glucose to 
gluconic acid bioprocess, experimental input-output data from 
the fermenter were used. In these experiments, the gluconic 
acid producing strain Aspergillus niger NCIM 545 had been 
utilized.  

 
1.1 Fermentation Medium for Immobilized Mycelia 

Anhydrous purified glucose (100 g), MgSO4â7H2O 
(0.035g), KH2PO4 (0.05 g), and 0.1 g of (NH4)2HPO4 were 
dissolved in 1 L of water. The pH of this medium was adjusted 
to 6.0 using 1MH2SO4. A woven cellulosic fabric support (69 
_ 8.5 _ 0.6 cm) with void volume of approximately 140 mL 
was sterilized at 15 psi for 60 min. 

 
1.2 Submerged Fermentation 

Submerged fermentation utilizing the immobilized culture 
was carried out in a modified locally fabricated batch 
fermenter. In the fermenter, the matrix with fully grown A. 
niger was folded in a spiral shape. For preventing mycelial 
recirculation, the upper end of the fixed bed was closed by the 
filter mesh. The batch reactor was drained after the substrate 
reached its lowest concentration. 

 
1.3 Maintaining Oxygen Partial Pressure 

A constant flow of air was used to maintain the oxygen 
partial pressure and a Dissolved Oxygen (DO) probe (Ingold, 
170-ppm type DO amplifier) was used for measuring the 
dissolved oxygen concentration. 
 
1.4 Glucose and Gluconic Acid Analyses 

Feed and the unconverted glucose were analyzed by the 
dinitrosalicyclic acid method [5], and the gluconic acid 
concentration in the bioreactor was measured by titrating 
against 6 N NaOH. 

B. Problems involved in modeling of glucose to gluconic 
acid bioprocess 

The glucose to gluconic acid bioconversion using A. niger 
immobilized on the cellulosic micro fibrils involves 
complicated reaction and mass transfer phenomena. 
Development of a phenomenological (“first principles”) 
process model has therefore become a difficult task since the 
physicochemical phenomena underlying the bioconversion 
and the associated kinetic and transport mechanisms are not 
well-understood. Also, it has been observed that the process 

dynamics is nonlinear [5]. This has made the modeling task 
even more complex. In view of these difficulties, a novel 
artificial intelligence based paradigm, namely, genetic 
programming (GP) [6] has been employed here for modeling 
the fermenter. The principal advantage of the GP-formalism is 
that it automatically arrives at an empirical closed-form 
mathematical model relating process inputs and outputs 
exclusively from the historic process input-output data. 
Consequently, the detailed knowledge of the process 
phenomenology (reaction kinetics and mass transfer 
mechanisms) is not necessary in the GP-based process 
modeling. 

The main objective in this paper is to develop a 
mathematical model of the new glucose to gluconic acid batch 
fermentation process. For developing the fermenter model, 
experimental data incorporating the effects of the substrate 
(glucose) and biomass concentrations, and the dissolved 
oxygen content, have been used. 

C. Dynamic modeling of fed-batch bioreactor 
This example considers a fed batch reactor that has been 

studied by Park and Ramirez [7]. The system is described by 
the following differential equations. 
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and the constraint is  
0≤u≤10 

The model was simulated to obtain the feed rate, which in 
turn was used to model the fed-batch bioreactor. 

D. Objective and Scope of Study 
The most well known and simple to apply statistical 

techniques assume that any relationships between input and 
output variables are linear and that the data itself is normally 
distributed. Unfortunately, industrial systems are normally 
highly non-linear and the data obtained from such processes 
generally do not conform to normal distributions. 
Nevertheless, numerous methods can be used to implement a 
systematic data analysis methodology and can help to 
establish the basic characteristics of the process.  



A novel approach which offers a useful alternative to these 
established methodologies is genetic programming (GP) 
which has been used to develop nonlinear models of chemical 
process systems using only plant input-output data. This 
methodology not only performs symbolic regression to 
determine the appropriate structure, complexity of the required 
model but can also explain the physics of the system. 

The work presented in this dissertation considers fulfilling 
the following objectives: 
1) Application of GP for regression: A study has been made 

on genetic programming (GP). Different GP toolboxes 
have been utilized and their merits and demerits have 
been explored. 

2) Modeling of Bioreactor using GP: GP based formalism 
for the glucose to gluconic acid bioprocess has been 
developed using the experimental input – output data 
from the fermentor. 

Dynamic modeling of chemical system: GP based dynamic 
model for a fed – batch reactor, using pre-validated and 
simulated data. 

II. GENETIC PROGRAMMING (GP) 
The performance of an individual organism in its 

environment determines the likelihood of it passing on its 
genetic material to future generations. This basic biological 
principle is known as Darwinian survival of the fittest, and has 
inspired a class of algorithms known as Genetic Algorithms 
(GA’s) [8,9,10]. GA’s, attempt to find the best solution to a 
problem by mimicking the process of evolution in nature. 
Thus, a typical algorithm will 'breed' a population of 
individuals that represent possible solutions to a particular 
problem. 

GA’s are not appropriate for symbolic regression problems 
where the structure and parameters of a model are to be 
determined simultaneously. This is because GA’s generally 
use fixed length binary strings to code potential solutions to a 
problem. Clearly this is unsuitable for symbolic regression, 
where the model structure is allowed to vary during evolution. 
However, GP is a closely related approach that does lend itself 
to the implementation of symbolic regression. 
GP differs from GA’s by utilizing the following: 
1) Tree structured variable length chromosomes (rather than 

chromosomes of fixed length and structure). 
2) Chromosomes coded in a problem specific fashion (that 

can usually be executed in their current form) rather than 
binary strings. 

3) Genetic operators that preserve the syntax of the tree 
Structured chromosomes during 'reproduction'. 

A. Preparatory Steps for Genetic Programming 
Genetic programming starts from a high-level statement of 

the requirements of a problem and attempts to produce a 
computer program that solves the problem. The human user 
communicates the high-level statement of the problem to the 
genetic programming system by performing certain well-
defined preparatory steps.  

The five major preparatory steps for the basic version of 
genetic programming require the human user to specify are:  

1) The set of terminals (e.g., the independent variables of the 
problem, zero-argument functions, and random constants) 
for each branch of the to-be-evolved program, 

2) The set of primitive functions for each branch of the to-
be-evolved program,  

3) The fitness measure (for explicitly or implicitly 
measuring the fitness of individuals in the population), 

4) Certain parameters for controlling the run, and 
5) The termination criterion and method for designating the 

result of the run. 
The figure below shows the five major preparatory steps for 
the basic version of genetic programming. The preparatory 
steps (shown at the top of the Fig. 1) are the human-supplied 
input to the genetic programming system. The computer 
program (shown at the bottom) is the output of the genetic 
programming system. 

Fig. 1 Five major steps for GP [11] 
 
The first two preparatory steps specify the ingredients that 

are available to create the computer programs. A run of 
genetic programming is a competitive search among a diverse 
population of programs composed of the available functions 
and terminals 
 
1. Function set and Terminal  

The identification of the function set and terminal set for a 
particular problem (or category of problems) is usually a 
straightforward process. For some problems, the function set 
may consist of merely the arithmetic functions of addition, 
subtraction, multiplication, and division as well as a 
conditional branching operator. The terminal set may consist 
of the program’s external inputs (independent variables) and 
numerical constants. This function set and terminal set is 
useful for a wide variety of problems (and corresponds to the 
basic operations found in virtually every general-purpose 
digital computer).  

For many other problems, the ingredients include 
specialized functions and terminals. For example, if the goal is 
to get genetic programming to automatically program a robot 
to mop the entire floor of an obstacle-laden room, the human 
user must tell genetic programming what the robot is capable 
of doing. For example, the robot may be capable of executing 
functions such as moving, turning, and swishing the mop.  
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If the goal is the automatic creation of a controller, the 
function set may consist of signal-processing functions that 
operates on time-domain signals, including integrators, 
differentiators, leads, lags, gains, adders, subtractors, and the 
like. The terminal set may consist of signals such as the 
reference signal and plant output. Once the human user has 
identified the primitive ingredients for a problem of controller 
synthesis, the same function set and terminal set can be used 
to automatically synthesize a wide variety of different 
controllers. 
 
2. Fitness measure 

The third preparatory step concerns the fitness measure for 
the problem. The fitness measure specifies what needs to be 
done. The fitness measure is the primary mechanism for 
communicating the high-level statement of the problem’s 
requirements to the genetic programming system. The first 
two preparatory steps define the search space whereas the 
fitness measure implicitly specifies the search’s desired goal. 
 
3.  Control Parameters 

The fourth and fifth preparatory steps are administrative. 
The fourth preparatory step entails specifying the control 
parameters for the run. The most important control parameter 
is the population size. In practice, the user may choose a 
population size that will produce a reasonably large number of 
generations in the amount of computer time we are willing to 
devote to a problem (as opposed to, say, analytically choosing 
the population size by somehow analyzing a problem’s fitness 
landscape). Other control parameters include the probabilities 
of performing the genetic operations, the maximum size for 
programs, and other details of the run.  
 
4. Termination 

The fifth preparatory step consists of specifying the 
termination criterion and the method of designating the result 
of the run. The termination criterion may include a maximum 
number of generations to be run as well as a problem-specific 
success predicate. In practice, one may manually monitor and 
manually terminate the run when the values of fitness for 
numerous successive best-of-generation individuals appear to 
have reached a plateau. The single best-so-far individual is 
then harvested and designated as the result of the run. 
 
5. Running GP 

After the human user has performed the preparatory steps 
for a problem, the run of genetic programming can be 
launched. Once the run is launched, a series of well-defined, 
problem-independent execution steps are executed. 

B. Executional Steps in GP 
Genetic programming typically starts with a population of 

randomly generated computer programs composed of the 
available programmatic ingredients. Genetic programming 
iteratively transforms a population of computer programs into 
a new generation of the population by applying analogs of 
naturally occurring genetic operations. These operations are 
applied to individual(s) selected from the population. The 
individuals are probabilistically selected to participate in the 

genetic operations based on their fitness (as measured by the 
fitness measure provided by the human user in the third 
preparatory step). The iterative transformation of the 
population is executed inside the main generational loop of the 
run of genetic programming. 
GP uses four steps to solve problems: 
1 Generate an initial population of random compositions of 

the functions and terminals of the problem (Computer 
programs). 

2 Execute each program in the population and assign it a 
fitness value according to how well it solves the problem. 

3 Create a new population of computer programs: 
1.1. Copy the best existing programs. 
1.2. Create new computer programs by mutation. 
1.3. Create new computer programs by crossover (sexual 

reproduction). 
4 The best computer program that appeared in any 

generation, the best-so-far solution, is designated as the 
result of genetic programming. 

III. GENETIC PROGRAMMING TOOLBOXES IN MATLAB 
MATLAB is a widely used programming environment 

available for a large number of computer platforms. Its 
programming language is simple and easy to learn, yet fast 
and powerful in mathematical calculus. Furthermore, its 
extensive and straightforward data visualization tools make it 
a very appealing programming environment. Toolboxes are 
collections of optimized, application specific functions, which 
extend the MATLAB environment and provide a solid 
foundation on which to build. 

A. GPLAB 
GPLAB is a genetic programming toolbox for MATLAB. 

Versatile, generalist and easily extendable, it can be used by 
all types of users, from the layman to the advanced researcher. 
 
1. Operational Structure 

The architecture of GPLAB follows a highly modular and 
parameterized structure, which different users may use at 
various levels of depth and insight [12]. 
1.1. Main modules 

The operational structure of GPLAB has 3 main operation 
modules, namely SETVARS, GENPOP and GENERATION, 
and each represents an interaction point with the user. 
1.1.1. GENPOP 

This module generates the initial population (INIT POP) 
and calculates its fitness (FITNESS). The individuals in 
GPLAB are tree structures initialized with one of three 
available initialization methods – Full, Grow, Ramped Half-
and-Half. The functions available to build the trees include 
some protected functions, plus any MATLAB function that 
verify closure. The terminals include a random number 
generator and all the variables necessary, created in runtime. 
Fitness is, by default, the sum of absolute differences between 
the obtained and expected results in all fitness cases. The 
lower the fitness value, the better the individual. This is the 
standard for symbolic regression problems (“regfitness”). 

GEN POP is called by the user. It starts by requesting some 
parameter initializations to SET VARS, and finishes by 



passing the execution to GENERATION. If the user only 
requests the creation of the initial generation, GENERATION 
is not used. 
1.1.2. Generation 

This module creates a new generation of individuals by 
applying the genetic operators to the previous population 
(OPERATORS). Standard tree crossover and tree mutation are 
the two genetic operators available as plug and play functions. 
They must have a pool of parents to choose from, created by a 
SAMPLING method, which may or may not base its choice on 
the EXPECTED number of offspring of each individual. Four 
sampling methods (Roulette, SUS, Tournament, 
Lexicographic Parsimony Pressure Tournament) and three 
methods for calculating the expected number of offspring 
(Absolute, Rank85,  Rank89) are available as plug and play 
functions, and any combination of the two can be used. The 
genetic operators create new individuals until a new 
population is filled, a number determined by the generation 
gap. 

Calculating fitness is followed by the SURVIVAL module, 
where the individuals that enter the new generation are chosen 
according to the elitism level parameter. The GENERATION 
module repeats itself until the stop condition is fulfilled, or 
when the maximum generation is reached. Several stop 
conditions can be used simultaneously. This module can be 
called either by the user or by GEN POP. 

 
1.1.3. Set Vars 

This module either initializes the parameters with the 
default values or updates them with the user settings. Besides 
the parameters directly related to the execution of the 
algorithm, other parameters affect the output of its results. 
SET VARS can be called either by the user or by a request for 
parameter initialization from GEN POP. 

 
1.2. Parameters in Genetic Programming Toolbox 

 
1.2.1. Tree Initialization 

The initial population of trees, created in runtime in the 
beginning of a GPLAB run, is done by choosing random 
functions and terminals from the respective sets. There are 
three different methods available in GPLAB, used in the plug 
and play fashion, and each of them uses either the standard 
procedure based on depth, or the new variation based on size, 
i.e., number of nodes, depending on the parameter depth nodes 
(’1’ for depth, ’2’ for size):  

‘fullinit’ - This is the Full method. In the standard 
procedure, the new tree receives non terminal (internal) nodes 
until the initial tree depth is reached - the last depth level is 
limited to terminal nodes. As a result, trees initialized with this 
method will be perfectly balanced with all the branches of the 
same length. If size is used instead of depth, internal nodes are 
chosen until the size of the new tree is close to the specified 
size, and only then terminals are chosen. Unlike the standard 
procedure, the size variation may not be able to create trees 
with the exact size specified, but only close (never exceeding). 

‘growinit’ - This is the Grow method. In the standard 
procedure, each new node is randomly chosen between 
terminals and non terminals, except nodes at the initial tree 
depth level, which must be terminals. Tree created with this 

method may be very unbalanced, with some branches much 
longer than others. 

‘rampedinit’ - This is the Ramped Half-and-Half method. In 
the standard procedure, an equal number of individuals are 
initialized for each depth between 2 and the initial tree depth 
value. For each depth level considered, half of the individuals 
are initialized using the Full method, and the other half using 
the Grow method. The population of trees resulting from this 
initialization method is very diverse, with balanced and 
unbalanced trees of several different depths. 

 
1.2.2. Functions 

As any genetic programming algorithm, GPLAB needs 
functions and terminals to create the population, in this case 
the parse trees that represent individual functions. GPLAB can 
use any MATLAB function that verifies closure, plus some 
protected and logical functions and the if-then-else statement, 
also available as part of the toolbox. The user indicates which 
functions the algorithm should use by setting the parameter 
variable functions. Table 1 contains information on the 
available toolbox functions. All the functions described in 
Table 1 are used in the plug and play fashion.  

 
Table 1 Protected and logical function using Matlab 

Protected 
Function 

MATLAB 
Function 

Input 
Arguments 

Output 
Argument 

Division mydivide a,b a (if b=0) 
a/b (otherwise) 

Square root mysqrt a 
0 (if a<=0) 

Sqrt(a) 
(otherwise) 

Power mypower a,b 

ab ( if ab is a valid
non-complex 

number) 
0 (otherwise) 

Natural  
logarithm mylog a 

O (if a = 0) 
log(abs(a)) 
( otherwise) 

Base 2 
Logarithm mylog2 a 

O (if a = 0) 
log2(abs(a)) 
( otherwise) 

Base 10 
Logarithm mylog10 a 

O (if a = 0) 
log10(abs(a)) 
( otherwise) 

If – then – else
Statement myif a,b,c 

eval (c) 
(if eval (a) = 0) 

eval (b) 
otherwise 

Negation 
of AND Nand a,b not(and(a,b)) 

 
The advanced users who want to build and us their own 

functions only have to implement them as MATLAB 
functions (and make sure the input arguments can be either 
scalars or vectors – see MATLAB user’s manual) and declare 
them using one of the toolbox functions 

params=setfunctions(params,’func1’,2,’func2’,1); 
params=addfunctions(params,’func1’,2,’func2’,1); 



setfunctions defines the set of available functions as 
containing functions ’func1’ and ’func2’, replacing any other 
functions previously declared. ’func1’ has arity 2 - it needs 
two input arguments; ’func2’ has arity 1. Any number of 
functions can be declared at one time, by adding more 
arguments to setfunctions. addfunctions accepts the same 
arguments but adds the declared functions to the already 
defined set, keeping the previously declared functions 
untouched. setfunctions and addfunctions are friendly 
substitutes to directly setting the parameter variable functions. 
The declaration of genetic operators is done similarly. 
 
1.2.3. Terminals 

GPLAB can use any constant as a terminal, plus a random 
number between 0 and 1, generated in runtime, as the function 
’rand’ with null arity. The declaration of terminals is done 
similarly to the declaration of functions, by using friendly 
substitutes to directly setting the parameter variable terminals. 
For example, to declare the constant ’1’ and the random 
number generator as members of the set of terminals. 
Params = setterminals(params,’rand’,’1’); 
Unlike in setfunctions, there is no need to indicate the arity, 
which is always null. To add a new terminal to an already 
declared set of terminals 
Params = addterminals(params,’new_terminal’); 

Any number of terminals can be declared or added at one 
time, by adding more input arguments. 

Variables needed to evaluate the fitness cases are also part 
of the set of available terminals for the algorithm to work 
with, and these can only be generated (automatically) in the 
beginning of the run, according to the settings of the 
parameters numvars and autovars: 

numvars=[] and autovars=’0’ - the parameter numvars is 
automatically filled with 0 and no variables are generated. 
This setting is appropriate for artificial ant problems. 

numvars=[] and autovars=’1’ - the parameter numvars is 
automatically filled with the number of columns of the input 
data set and these many variables are generated. This setting is 
appropriate for symbolic regression and parity problems. 

numvars=x - customized setting, where x is the number of 
variables generated, corresponding to the x first columns of 
the input data set. 

 
1.2.4. Genetic Operators 

GPLAB may use any number of genetic operators to create 
new individuals. A proportion of individuals, specified in 
parameter reproduction, may also be copied into the next 
generation without suffering the action of the operators. Tree 
crossover and tree mutation are the genetic operators provided 
by GPLAB, implemented as follows: 

Crossover: In tree crossover, random nodes are chosen from 
both parent trees, and the respective branches are swapped 
creating two offspring. There is no bias towards choosing 
internal or terminal nodes as the crossing sites. 

Mutation: In tree mutation, a random node is chosen from 
the parent tree and substituted by a new random tree created 
with the terminals and functions available. This new random 
tree is created with the Grow initialization method and obeys 
the size/depth restrictions imposed on the trees created for the 
initial generation. Although these are the only genetic 

operators provided, the addition of others is straightforward. 
Genetic operator is simply a MATLAB function used as a 
plug and play device to module OPERATOR, and the 
declaration of its existence to the algorithm is made similarly 
to the setting of functions and terminals, with one of the 
toolbox functions 
Params = setoperators(params,’operator1’,2,2,’operator2’,2,1); 
Params=addoperators(params,’operator1’,2,2,’operator2’,2,1); 
Some of the tree manipulation functions available are: 
maketree(level,functions,arities,exactlevel,depthnodes) – this 
function returns a new random tree no deeper/bigger than 
level, using the functions with respective arities. If exactlevel 
is true, the new tree will be initialized using the Full  method; 
otherwise, it will be initialized using the Grow method. 
depthnodes indicates whether restrictions are to be applied in 
tree depth or tree size (number of nodes) 
tree2str (tree) – returns the string that tree represents 
findnode(tree,x) – returns the subtree of tree with root on ode 
number x. The nodes are numbered depth-first 
swapnode(tree,x,node) – returns the result of swapping node 
number x in tree for node 
tree2str(tree) – returns the translation of tree into a string 
treelevel(tree) – returns the depth of tree 
nodes(tree) – returns the number of nodes of tree 
intronnodes(tree,params,data,state) – returns the number of 
introns of tree. Needs the variables params, data and state. 
 
1.2.5. Selection for Reproduction 

Genetic operators need parent individuals to produce their 
children. In GPLAB these parents are selected according to 
one of four sampling methods, as indicated in the parameter 
variable sampling: 

’Roulette’ - This method acts as if a roulette with random 
pointers is spun, and each individual owns a portion of the 
roulette that corresponds to its expected number of children. 

’SUS’ - This method also relies on the roulette, but the 
pointers are equally spaced. 

’Tournament’ - This method chooses each parent by 
randomly drawing a number of individuals from the 
population and selecting only the best of them. 

’Lexictour’ - This method implements lexicographic 
parsimony pressure. Like in ’tournament’, a random number 
of individuals are chosen from the population and the best of 
them is chosen. The main difference is, if two individuals are 
equally fit, the shortest one (the tree with less nodes) is chosen 
as the best. This technique has shown to effectively control 
bloat in different types of problems. 
 
1.2.6. Expected number of children 

Some sampling procedures choose the parents based on 
their expected number of children, while others only need to 
know which are better than which. Likewise, the calculation of 
the expected number of children may use the actual fitness 
values or simply their rank in the population. The parameter 
variable expected determines with method is used for 
calculating the expected number of children for each 
individual. This calculation is performed only if the selection 
for reproduction so requires. Three different methods are 
available in GPLAB: 



’Absolute’ - the expected number of children for each 
individual is proportional to its absolute fitness value (it is 
equal to its normalized, or relative, fitness) [13]. 

’Rank85’ - the expected number of children for each 
individual is based on its rank in the population [4]. 

’Rank89’ - the expected number of children for each 
individual is based on its rank in the population and on the 
state of the algorithm (how far it is from the maximum 
allowed generation). The differentiation between individuals 
increases in later generations. 
 
1.2.7. Measuring Fitness 

‘regfitness’ - calculates, for each individual, the sum of the 
absolute difference between the expected output value and the 
value returned by the individual on all fitness cases. The best 
individuals are the ones that return values less different than 
the expected values - the ones with a lower fitness. This 
function should be used with the parameter lowerisbetter set to 
’1’. When regfitness is used, all the fitness values stored in the 
algorithm’s variables are rounded to a certain number of 
decimal places, given by the parameter precision. This is 
meant to avoid rounding errors that affect the comparison of 
two different individuals who have the same fitness. 

 
1.2.8. Survival 

After producing gengap new individuals for the new 
population, GPLAB enters the SURVIVAL module where, 
from the current population plus all the new children, a 
number of individuals is chosen to form the new population. 
One of four elitism levels may be used, indicated in the 
parameter variable survival: 

‘replace’ - The children replace the parent population 
completely, even if they are worse individuals than their 
parents. This option is not elitist at all. 

‘keepbest’ - The best individual from both parents and 
children is kept for the new population, independently of 
being a parent or a child. The remaining places in the new 
population are occupied by children only. If not all children 
produced can be used in the new population, due to size 
constraints, the worst are discarded. 

‘halfelitism’ - Half of the new population will be occupied 
by the best individuals chosen from both parents and children. 
The remaining places will be occupied by the best children 
still available. 

‘totalelitism’ - The best individuals from both parents and 
children are chosen to fill the new population. The survival 
module is in fact elitist, even when the non elitism option is 
chosen. If GPLAB is operating in batch mode, the best 
children are always chosen, and the worst discarded. 
 
1.2.9. Stop Conditions 

GPLAB will run until the maximum generation indicated by 
the user is reached, or until a stop condition is reached. Stop 
conditions are defined by setting the parameter variable hits. 
One hit is a tuple [f d] where f is the percentage of fitness 
cases that must obey the stop condition and d is the definition 
of the stop condition itself, meaning that the result obtained by 
the best individual in the population must be no lower than the 
expected result minus d% (of the expected result) and no 
higher that the expected result plus d%. The default value of 

hits is [100 0], which means “stop if the best individual 
produces exact results in all fitness cases”. [50 10] would 
mean “st  op if the best individual produces results within 
minus or plus 10% of the expected results, in at least 50% of 
the fitness cases”. Several stop conditions can be used, by 
adding rows to the hits variable. If the two previous stop 
conditions were to be used concurrently, hits should be set to 
[100 0; 50 10]. GPLAB tests each stop condition, starting with 
the first row, until one is satisfied or all have been tested. It is 
possible not to use any stop condition (hits= []), in which case 
GPLAB will only stop when reaching the maximum number 
of generations allowed. 

B. Genetic Programming using Orthogonal Least Square 
Method 

Genetic Programming (GP) is used to generate nonlinear 
input-output models of dynamical systems that are represented 
in a tree structure. The main idea is to apply Orthogonal Least 
Squares algorithm (OLS) to estimate the contribution of the 
branches of the tree to the accuracy of the model. This method 
results in more robust and interpretable models [13]. 

In practice, a model which gives good prediction 
performance on the training data may be over-parameterized 
and may contain unnecessary, complex terms. The penalty 
function handles this difficulty, because it decreases fitness 
values of trees that have complex terms. However, parameters 
of this penalty term are not easy to determine and the penalty 
function does not provide efficient solution for this difficulty. 
An efficient solution may be the elimination of complex and 
unnecessary terms from the model. For linear-in-parameters 
models it can be done by the Orthogonal Least Squares (OLS) 
algorithm. 

 
1. Orthogonal Least Square Method Algorithm (OLS) 

The great advantage of using linear-in-parameters models is 
that the Least Squares Method (LS) can be used for the 
identification of the model parameters, which is much less 
computationally demanding than other nonlinear optimization 
algorithms, since the optimal p = [p1, ……, pM]T  parameter 
vector can be analytically calculated: 

FyFFp T)( 1−=    (6) 
where y = [y(1),……, y(N)]T is the measured output vector, 

and the F regression matrix is: 
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In case most of process systems certain input and output 
interactions will be redundant and hence components in the 
ANOVA decomposition could be ignored, which can result in 
more parsimonious representations. The OLS algorithm is an  
effective algorithm to determine which terms are significant in 
a linear-in-parameters model. The OLS introduces the error 
reduction ratio (err) which is a measure of the decrease in the 
variance of output by a given term. 

The compact matrix form corresponding to the linear-in-
parameters model is y = Fp + e; where the F is the regression 



matrix, p is the parameter vector, e is the error vector. The 
OLS technique transforms the columns of the F matrix into a 
set of orthogonal basis vectors in order to inspect the 
individual contributions of each term.  

The OLS algorithm assumes that the regression matrix F 
can be orthogonally decomposed as F = WA, where A is an M 
× M upper triangular matrix (it means Ai,j = 0 if i > j) and W is 
an N × M matrix with orthogonal columns in the sense that 
WTW = D is a diagonal matrix. (N is the length of y vector and 
M is the number of regressors). After this decomposition one 
can calculate the OLS auxiliary parameter vector g as 

   (8) 
where gi is the corresponding element of the OLS solution 

vector. The output variance (yTy)/N can be explained as 
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Thus the error reduction ratio, [err]i of Fi term can be 
expressed as 
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This ratio offers a simple mean for order and selects the 
model terms of a linear-in-parameters model according to their 
contribution to the performance of the model. 

 
2. GP and OLS 

During the operation of GP the hybrid GP OLS algorithm 
generates a lot of potential solutions in the form of a tree-
structure. These trees may have terms (subtrees) that 
contribute more or less to the accuracy of the model. 

The concept is the following: firstly the trees (the individual 
members of the population) are decomposed to subtrees 
(function terms of the linear - in- parameters models), then the 
error reduction ratios of these function terms are calculated; 
finally the less significant term(s) is/are eliminated. This “tree 
pruning” method is realized in every fitness evaluation before 
the calculation of the fitness values of the trees. The main goal 
of the application of this approach is to transform the trees to 
simpler trees which are more transparent, but their accuracy is 
close to the original trees. Because the further goal is to 
preserve the original structure of the trees as far as it possible 
(because the genetic programming works with the tree 
structure). This method always guarantees that the elimination 
of one or more function terms of the model can be done by 
”pruning” the corresponding subtrees, so that, there is no need 
for structural rearrangement of the tree after this operation. 

The proposed approach has been implemented in MATLAB 
that is the most widely applied rapid prototyping system. The 
aim of the toolbox is the data-based identification of static and 
dynamic models, since the approach proposed in this paper is 
can also be applied for static nonlinear equation discovery. At 
the development of the toolbox special attention has been 
given to the identification of dynamical input-output models. 
Hence, the generated model equations can be simulated to get 
one- and/or n-step ahead predictions. The toolbox is freeware, 
and it is downloadable from the website of the authors: 
www.fmt.veim.hu/softcomp. Important parameters utilized in 
GP, are summarized in below Table 2 

 
Table 2 Parameters used in GP – OLS toolbox 

Population size 50 
Maximum number of 
 evaluated individuals 

2500 
 

Type of selection Roulette-wheel 
Type of mutation Point-mutation 
Type of crossover One-point (2 parents) 
Type of replacement Elitist 
Generation gap 0.9 
Probability of crossover 0.5 
Probability of mutation 0.5 
Probability of changing terminal  
-non-terminal nodes (vice versa)  
during mutation 

0.25 

 
The individuals are represented by a structure called 

population variable. 
Structure: 
 popu.generation Scalar integer  Generation number  
 popu.symbols     Structure         Equation symbols  
 popu.size            Scalar integer  Number of individuals = nind  
 popu.chrom        Cells(1xnind)  Chromosomes 

The chrom contains the chromosomes (individuals): 
equations encoded by trees. 
Structure: 
 chrom{i}.fitness  Scalar integer  Fitness value  
 chrom{i}.mse      Scalar integer  Mean Square Error  
 chrom{i}.tree       Structure         The tree encoding equation  

The popu.chrom{i} contains the 'chromosome' of i-th 
individual of the population. 
The tree encodes the equation 
Structure: 
 tree.maxsize  Scalar integer          Max. number of nodes, nn  
 tree.nodetyp  Vector of integers (nn x 1)    Type of nodes  
 tree.node        Vector of integers (nn x 1)     Nodes  
 tree.param      Vector of reals (nn/2 x 1)       Linear parameters  
 tree.paramn   Scalar integer           Number of parameters  
 

The maxsize is equal the maximum number of nodes (= 
2max. deepth-1).The nodetype contains the type of nodes. The 
value may be 1 or 2. If 1: operator, if 2: terminal node. The 
vector contains the nodes of tree in a structured way from top 
to down, from left to right. The node contains the index of the 
symbol assigned to the nodes. The vector is structured in the 
same way as nodetype variable. The indexes point to the 
gene.symbols variable. E.g. if nodetype(i) = m and node(i) = n 
then the i-th node is gene.symlist{m}{n}. The param contains 
the parameters of linear-in-parameters model represented by 
the tree. The vector is structured as the GP-OLS toolbox 
extracts the model-terms from the tree. 

The symbols contains the equation symbols, namely the 
operators and variables. Structure: 

 Symbols {1}  Cells of strings  Operator symbols (internal 
nodes)  

 Symbols {2}  Cells of strings  Variables symbols 
(terminator nodes)  

http://www.fmt.vein.hu/softcomp/gp/chromvar.html


The symbols {1} contain the operator symbols. E.g. 
symbols {1} = {'+','*','*sqrt'}. 

The symbol {2} contains the terminal symbols. E.g. 
symbols {2} = {‘u (k-1)',’u (k-2)'}. 

The GP-OLS identification directly uses the symbols {1}, 
but not the symbols {2}. During the identification, only the 
size of the symbols {2} is used, it must be equal to the number 
of columns of X, i.e. length (symbols {2}) = size(X, 2) (it is 
important!). The gpols_result function uses the symbols {2} 
directly to write the equation. 
GP- OLS matlab toolbox contain the following important 
functions 
3.1 gpols_init: To make the population structure and to 
generate initial individuals 
Syntax: 
    popu = gpols_init(popusize,maxtreedepth,symbols); 
 popu        Structure (population)  Resulted initial population  
 popusize          Scalar integer    Number of individuals (size of 
population)  
 maxtreedepth  Scalar integer    Maximum number of tree 
levels (tree depth)  
 symbols           Cells of strings  Equation symbols  

This function initializes the population variable, clears and 
re-initializes its structure. 

This function is called at the beginning of your program. 
This function does NOT evaluate the random generated 
(initial) individuals, so gpols_evaluate function needs to be 
called. The popu is the initialized population variable. The 
symbol is the list of operator and terminator strings. 
Example: 
popu = gpn_init(50,gene); 
popu = gpn_evaluate(popu,[1:50],X,Y,[],optv); 
 
3.2 gpols_evaluate: To evaluate the initial population. 
Syntax: 
    newpopu = gpols_evaluate(popu,ixv,X,Y,Q,opte); 
 newpopu   Structure (population)  Resulted population (with 
fitness values)  
 popu          Structure (population)  Population  
 ixv  Vector of integers  Indexes of individuals must be 
evaluated  
 X  Matrix of reals (np x nr)  Input data for evaluation  
 Y  Vector of reals (np x 1)  Output data for evaluation  
 Q  Vector of reals (np x 1)  Optional weighting vector for X 
and Y  
 opte  Vector (4 x 1 or 1 x 4)  Options vector  

This function evaluates the individuals of population. It 
determines the linear parameters, applies OLS to eliminate 
subtrees, and evaluates the fintess-value of resulted 
individuals (trees). 

The popu is the population variable, which contains the 
individuals must be evaluated. 

The ixv contains the indexes of individuals which must be 
evaluated. If. e.g. ixv = [1 2 5 6] then it means that the 1-th, 2-
nd, 5-th, and 6-th member of population will be evaluated. 

The X is regression matrix and the Y is the desired output 
vector. The terminal nodes of trees refer to X, the estimated 
output is compared to Y. 

If Q vector is used, than the LS estimation problem modifies 
to ETˇdiag(Q)ˇE, where E = Y - Ye, Ye is the estimated 
output, Ye = XˇΘ. 

The opte contains some parameters: 
opte(1:2): a1 and a2 parameters of tree-size penalty function if 
they are zeros then the penalty is not used, 
opt(3): OLS threshold value (0-1 or integer greater than 1), 
opt(4): set 1 if you want polynomial evaluation, else 0. 
 
3.3 gpols_mainloop: To execute one evolutionary-loop and 
step to next  generation. 
Syntax: 
    [newpopu,evnum] = gpols_mainloop(popu,X,Y,Q,opt); 
 newpopu  Structure (population)  New generation of 
population  
 evnum      Scalar integer  Number of function evaulations  
 popu         Structure (population)  Population  
 X  Matrix of reals (np x nr)  Input data for evaluation  
 Y  Vector of reals (np x 1)  Output data for evaluation  
 Q  Vector of reals (np x 1)  Optional weighting vector for X 
and Y  
 opt  Vector (1x10 or 10x1)  Options vector  

This function execute one evolutionary-loop and generates 
the next generation of population.The user should call this 
function iteratively. 

The popu is the population variable, which contains the 
individuals of current generation. 

The X, Y, and Q are the regression matrix, output vector 
and weighting vector, respectively (see gpols_evaluation). 

The opt contains the options: 
opt(1): ggap, generation gap (0-1)  
opt(2): pc, probability of crossover (0-1)  
opt(3): pm, probability of mutation (0-1)  
opt(4): sels, selection mode (0: roulette wheel, 1: total random, 
2,3,..: tournament selection (with tournament size = sels) 
opt(5): rmode, mode of tree-recombination (1 or 2)  
opt(6): a1, first penalty parameter (default = 0) 
opt(7): a2, second penalty parameter (default = 0) 
opt(8): OLS threshold value (default = 0) 
opt(9): if 1: polynomial evaluation, else normal evaluation 
(default = 0) 
opt(10): if 1: always evaluate all individuals, else evaluate 
only new individuals (default = 0) 
 
3.4 gpols_result: To write the current solution and the final 
result. 
Syntax: 
    [sout,tree] = gpols_result(popu,info); 
 sout     String                            Information string  
 tree      Structure (tree)             The best solution  
 popu    Structure (population)  The input population  
 info      Scalar integer               Asked information (0,1 or 2)  

This function gets some information about the best member 
of the population variable. 
Use info = 0 and popu = [] at the very beginning of your 
program to get a header string for info = 1: "Iter Fitness 
Solution". 
Use info = 1 after every iteration to get a short information, 
e.g. "7. 0.729125 (y(k-2))+((u(k-1))*(u(k-1)))". 



Use info = 2 at the end of your program to get detailed 
information about the final solution. 
E.g.: 
"fitness: 0.729125, mse: 0.462421 
-0.638898 * (y(k-2)) +  
0.493203 * ((u(k-1))*(u(k-1))) +  
-0.069117" 
If info > 0, than the function gives back the tree structure of 
the best solution (tree). 
Example: 
disp(gpols_result([],0)); 
gpols_mainloop(popu,X,Y,[],opt); 
disp(gpols_result(popu,1)); 
disp(gpols_result(popu,2)); 

IV. RESULTS AND DISCUSSION 
In this section the modeling capabilities of both GPLAB and 

GPOLS have been tested and illustrated. Because GP is a 
stochastic optimization algorithm ten independent runs were 
executed for each method, while the best from all runs was 
considered. 

 

A. Model of Glucose to Gluconic acid bio process 
In this section the modeling capabilities of both GPLAB and 

GPOLS have been tested and illustrated. Because GP is a 
stochastic optimization algorithm ten independent runs were 
executed for each method, while the best from all runs was 
considered. 

For obtaining the GP-based model, process data from 46 
runs were used. The data set (see Table 3) comprises values of 
the three operating variables, namely, glucose concentration 
(g/L) (x1), biomass concentration (g/L) (x2), and dissolved 
oxygen (DO) concentration (mg/L) (x3), and the 
corresponding values of the process output variable, i.e., 
gluconic acid concentration (y) [4]. The normalized data set 
was partitioned into the training set (batches 1-23) and the test 
set (batches 24-46). While the training set was used for 
computing the fitness of the GP-searched expressions, the test 
set was used to cross-validate the expressions. The objective 
of cross-validation is to test the prediction (generalization) 
ability of the GP-searched expressions on a data set different 
from the set used for obtaining the expression. To secure an 
overall optimal data-fitting expression, the GP procedure was 
repeated 100 times by employing different seed values for the 
pseudo-random number generator. In each such repeated run, 
a different mathematical expression was searched by the GP. 
 
1. GP model predicted by GPLAB: 
Parameters used: 
Tree Initialization:  ‘rampedinit’, 
Functions:   ‘plus, minus, times and mypower’ 
Terminals:   ‘x1, x2, x3, rand, 10’ 
Cross over probability:  ‘0.95’ 
Mutation Probability:  ‘0.05’ 
Selection for Reproduction:  ‘Roulette’ 
Expected number of children:  ‘Rank89’ 
Measuring fitness:   ‘regfitness’ 
Generations:    250 

Fitness:     0.971358 
 

Table 3 Experimental Data Utilized for Building GP [4] 
batch glucose 

concn 
(x1) 
 (g/L) 

biomass 
concn 
(x2) 
 (g/L) 

DO 
 
(x3) 
 (mg/L) 

gluconic  
acid  
concn (y) 
(g/L) 

Gluconic  
acid yield 
 
(ygt) (%) a

1 100.0 1.00 10.0      6.416   5.90 
2 150.0 2.00 10.0    48.015 29.42 
3 200.0 2.00 15.0   27.100 20.76 
4 150.0 2.50 15.0   57.946 35.51 
5 150.0 3.00 15.0   57.389 35.16 
6 120.0 2.00 25.0   36.262 27.77 
7 120.0 2.00 30.0   45.020 34.48 
8 150.0 2.00 30.0   94.424 57.86 
9 150.0 3.00 25.0   80.486 49.32 

10 150.0 2.00 40.0 128.907 78.99 
11 150.0 2.00 45.0 146.036 89.48 
12 150.0 2.00 50.0 154.230 94.50 
13 180.0 2.00 50.0 175.525 89.63 
14 150.0 3.00 40.0 129.006 79.05 
15 150.0 2.50 50.0 154.360 94.58 
16 150.0 2.50 55.0 152.440 93.41 
17 150.0 2.50 60.0 148.940 91.26 
18 160.0 2.50 60.0 163.067 93.67 
19 175.0 3.00 55.0 176.490 92.69 
20 160.0 3.00 60.0 162.420 93.30 
21 180.0 3.00 60.0 172.598 88.13 
22 150.0 3.00 60.0 151.280 92.70 
23 100.0 3.00 60.0   21.803 20.04 
24 100.0 2.00 10.0     6.670   6.13 
25 120.0 2.50 10.0   22.952 17.58 
26 100.0 2.00 15.0     7.829   7.20 
27 150.0 2.00 15.0   57.261 35.09 
28 120.0 2.00 20.0   31.486 24.12 
29 150.0 2.00 20.0   66.900 40.99 
30 150.0 2.50 20.0   67.449 41.33 
31 150.0 3.00 20.0   67.328 41.25 
32 150.0 2.00 35.0 111.328 68.22 
33 150.0 2.50 30.0   95.988 58.82 
34 150.0 3.00 30.0   94.707 58.03 
35 150.0 2.50 40.0 129.930 79.61 
36 150.0 3.00 35.0 111.604 68.38 
37 150.0 2.00 60.0 152.430 93.40 
38 120.0 2.00 60.0   73.502 56.30 
39 150.0 3.00 45.0 144.651 88.63 
40 180.0 2.50 55.0 179.064 91.94 
41 150.0 3.00 50.0 152.890 93.68 
42 180.0 2.50 60.0 174.483 89.09 
43 150.0 3.00 55.0 154.230 94.50 
44 166.0 3.00 60.0 169.450 93.82 
45 165.0 3.00 60.0 167.910 93.53 
46 162.0 3.00 60.0 164.870 93.54 

a Gluconic acid percentage yield, ygt = 100 y/1.088x1
 
Model equation predicted: 
mypower(times(times(mydivide(X1,mypower(times(mypower
(times(X1,X3),minus(0.82359,minus(X1,mypower(X3,X1)))),



The GP-based model obtained is: times(minus(X1,minus(0.47932,X3)),X3)),times(times(mydivi
de(X1,mypower(times(mypower(mypower(times(X1,X3),min
us(0.82359,minus(X1,X3))),minus(0.82359,minus(times(X3,X
2),X3))),times(minus(X1,minus(0.47932,X3)),X3)),times(X1,t
imes(minus(0.82359,minus(0.47932,X3)),X1)))),X3),times(mi
nus(0.82359,minus(0.47932,X3)),X1)))),X3),times(minus(0.8
2359,minus(0.47932,X3)),X1)),0.38498) 

0.232508 * (x1) +2.067329 * (((x3)*(x1))/exp((x3)*(x1))) + 
0.028817 
Elapsed Time: 256.938 seconds 

To secure an overall optimal data-fitting expression, the GP 
procedure was repeated 100 times by employing different seed 
values for the pseudo-random number generator. In such 
repeated runs, the best mathematical expression was searched 
seven times by GP - OLS. 

 
2. GP model predicted by GP-OLS 

The experimental data was split in to training set (1-23) and 
test set (24-46) 

The high fitness values are indicative of the good prediction 
accuracy and generalization ability of the GP-based fermentor 
model. A comparison of the model predicted and actual 
process output values for the training and test set data is 
presented in Figures 2-7. As the prediction is evolutionary, 
following best models are obtained. 

Parameters used: 
Population size:   50. 
Maximum number of evaluated  

individuals:  50 
 Type of selection:  roulette-wheel 
Model 1: Fitness: 0.957347, MSE: 0.027591 Type of mutation point:  mutation 
 0.517192 * ((x1)-exp(((x3)*exp((x3)*exp(x3)))*(((x3)-
exp(x1))*(x3)))) + 0.517702  

Type of crossover:  one-point (2 parents) 
Type of replacement:  elitist 

 Time=288.328000  Generation gap:   0.9 
 Probability of crossover:   0.5 
Model 2: Fitness: 0.972972, MSE: 0.032064 Probability of mutation:  0.5 
 -2.276953 * (x3) +2.323131 * ((x3)-exp((x1)-
exp((x1)*exp(x3)))) + 0.888878  

Probability of changing terminal 
- non-terminal: 0.25 nodes (vice versa) 

during mutation  Time=222.235000  
 Functions:   +,-, /,*,*exp, +exp,-exp,/exp 
Model 3: Fitness: 0.969914, MSE: 0.040065 Terminals:  x1, x2, x3 
 0.232508 * (x1) + 2.067329 * (((x1)*(x3))/exp((x1)*(x3))) + 
0.028817  

The best fit obtained is: 
Fitness: 0.969914 

 Time=205.875000 MSE: 0.040065 
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Fig. 2 Gluconic acid concentration as predicted by GP for Training set (Model 1) 
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Fig. 3 Gluconic acid concentration as predicted by GP for Test set (Model 1) 
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Fig. 4 Gluconic acid concentration as predicted by GP for Training set (Model 2) 
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Fig. 5 Gluconic acid concentration as predicted by GP for Test set (Model 2) 
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Fig. 6 Gluconic acid concentration as predicted by GP for Training set (Model 3) 
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Fig. 7 Gluconic acid concentration as predicted by GP for Test set (Model 3) 



 

B. Dynamic modeling of fed-batch bioreactor 
Parameters used: 
Population size:   50 
Maximum number of  
evaluated individuals:  20 
Type of selection:  roulette-wheel 
Type of mutation point:  mutation 
Type of crossover:  one-point (2 parents) 
Type of replacement:  elitist 
Generation gap:   0.9 
Probability of crossover:   0.5 
Probability of mutation:  0.5 
Probability of changing  
terminal - non-terminal:  0.25 
     nodes (vice versa) during mutation 
Functions:    +,- 
Terminals:   u(k-i),y(k-i) 
The best fit obtained is: 
Fitness: 0.915976 
MSE: 0.000002 
Elapsed Time: 9 seconds 

 
Table 4 Comparison of output of simulated value and GP 

model for Fed-Batch Bioreactor 
Sl. No. Time 

 (h) 
Feed rate  

(l/h) 
Secreted  
protein  
conc.  
(g/l)  

(Simulated) 

Secreted  
protein  
conc.  
(g/l) 

(GP model 
prediction) 

1 0  0.146 0 0 
2 1 0.19708 0 0 
3 2 0.26604 0 0.00011 
4 3 0.35911 0 0.00011 
5 4 0.48476 0 0.00011 
6 5 0.65437 0 0.00011 
7 6 0.88332 0 0.00011 
8 7 1.19239 0 0.00011 
9 8 1.6096 0 0.00011 

10 9 0 0.00102 0.00011 
11 10 0 0.03237 0.03237 
12 11 0 0.03237 0.03248 
13 12 0 0.03237 0.03248 
14 13 0 0.03237 0.03248 
15 14 10 0.03237 0.03248 
16 15 10 0.06847 0.06847 
17 15.1393 10 0.065539 0.06547 
18 15.2393 10 0.062306 0.06268 
19 15.3393 10 0.059273 0.05959 
20 15.4393 10 0.056519 0.05669 
21 15.5393 10 0.05394 0.05407 
22 15.7393 10 0.04942 0.05171 
23 15.8393 10 0.04743 0.04953 
24 159393 10 0.04556 0.04754 
25 16 10 0.0445 0.04567 

GP model :  
-2.281562 * (((u(k-2))*(y(k-1)))*(u(k-2))) + 0.111181 * ((u(k-
1))*(y(k-1))) +  22.699909 * ((u(k-2))*(y(k-1))) + 0.000111 

The comparison of output of Simulated and GP model for 
Fed – Batch Bioreactor has been summarized in Table 4. 

V. CONCLUSIONS 
This limited but intensive study can be concluded with the 

following significant observations: 
1 The study of two test examples using the MATLAB 

toolboxes for genetic programming shows the potentiality 
of the algorithm. Following salient points were observed 
during this study: 
1.1. Genetic programming is successful in giving the 

best solution, in all the situations. 
1.2. Genetic programming gives more than one equation 

to a given set of input output data, with varying 
fitness and mean square error. Thus, presenting user 
more choices to choose from. 

1.3. Crossover and mutation rates are selected based on 
trial runs. 

1.4. GPLAB though versatile with its features, lacks 
pruning of branches in trees. Hence produces more 
complex equations as compared to GP OLS which 
uses Orthogonal least square (OLS) method to prune 
branches in trees and is able to give simpler accurate 
and high fitness equations. The best example is the 
fermentor modeling, in which GPLAB gave a 
equation which was impossible to discern and GP 
OLS gave a simpler model of an excellent fit. 

2 Modeling of glucose and gluconic acid bioprocess was 
done using experimental input-output data. The best 
equation from 100 test runs was obtained. The high 
fitness values are indicative of the good prediction 
accuracy and generalization ability of the GP-based 
fermenter model. Based on the simulations following 
significant points were observed. 
2.1. GP-OLS was able to remove the uncontributing 

branches as compared to GPLAB, to give rise to a 
simple equation in 500 generations. 

2.2. A comparison of the model predicted and actual 
process output values for the training and test data 
shows an accurate prediction and generalization 
ability. 

2.3. The model predicted by GP OLS, does not contain 
biomass concentration (x2) term, clearly indicating 
the acute contribution to the model. Hence, the 
biomass concentration need not be a measured 
quantity. 

3 The capability of GP OLS to generate non-linear 
input-output dynamic systems has been tested using two test 
examples. In one of the examples a fed batch bioreactor that 
has been studied by Park and Ramirez [5] has been 
considered. The simulations were carried out using ODE23s 
subroutine (MATLAB Library). The program was checked to 
be error free. The data generated was used to obtain the GP 
dynamic model. The simulation and GP model prediction 
results indicate GP OLS is an efficient and fast method for 



predicting the order and structure for non-linear input and 
output model. 
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