
New Polynomial Classes for #2SAT Established
Via Graph-Topological Structure

Guillermo De Ita, Pedro Bello, Meliza Contreras ∗

Abstract—We address the problem of designing ef-

ficient procedures for counting models of Boolean

formulas and, in this task, we establish new classes

of instances where #2SAT is solved in polynomial

time. Those instances are recognized by the topo-

logical structure of the underlying graph of the in-

stances. We show that, if the depth-search over the

constrained graph of a formula generates a tree where

the set of fundamental cycles are disjointed (there are

not common edges between any pair of fundamental

cycles), then #2SAT is tractable. This class of in-

stances do not set restrictions on the number of oc-

currences of a variable in a Boolean formula. Our

proposal can be applied to impact directly in the re-

duction of the complexity time of the algorithms for

other counting problems.

Keywords:#SAT Problem, Counting models, Fibonacci

Numbers.

1 Introduction

The propositional Satisfiability problem (SAT problem) is
a special concern to the Artificial Intelligence (AI) field,
and it has a direct relationship to Automated Theorem
Proving. As is well known, the SAT problem is a classical
NP-complete problem, and an intensive area of research
has been the identification of restricted cases for which
the SAT problem, as well as its optimization and counting
version: MaxSAT and #SAT problems, can be solved
efficiently.

The problem of counting models for a Boolean formula
(#SAT problem) can be reduced to several different prob-
lems in approximate reasoning. For example, for estimat-
ing the degree of reliability in a communication network,
computing degree of belief in propositional theories, for
the generation of explanations to propositional queries, in
Bayesian inference, in a truth maintenance systems, for
repairing inconsistent databases [1, 5, 6, 14, 16]. The pre-
vious problems come from several AI applications such as
planning, expert systems, approximate reasoning, etc.

For example, if we have a knowledge base KB which de-

∗Universidad Autónoma de Puebla, Faculty of Computer Sci-
ences Av. San Claudio and 14 Sur, Puebla, México 72570 Tel: 01
(222) 2 229 55 00 ext 7239 and 7217 Email: deita@ccc.inaoep.mx,
pbello@cs.buap.mx, mel 22281@hotmail.com

scribes a real world W faithfully, given a formula Σ such
that neither Σ nor Σ is a consecuence of KB, a reason-
able assumption is that if more models of KB assert Σ,
the more likely is that Σ will be true in W [13].

#SAT is at least as hard as the SAT problem, but in
many cases, even when SAT is solved in polynomial time,
no computationally efficient method is known for #SAT.
For example, 2-SAT problem (SAT restricted to consider
(≤ 2)-CF’s), it can be solved in linear time. However,
the corresponding counting problem #2-SAT is a #P-
complete problem.

Earlier works on #2SAT include papers by Dubois [8],
Zhang [17] and Littman [9]. More recently, new up-
per bounds for exact deterministic algorithms for #2SAT
have been found by Dahllöf [4], Fürer [11], Angelsmark
[1] and Jonsson [12]. And given that #2SAT is a #P-
complete problem, all the above proposals are part of the
class of exponential algorithms.

The maximum polynomial class recognized for #2SAT is
the class (≤ 2, 2µ)-CF (conjunction of binary or unary
clauses where each variable appears twice at most) [14,
15]. Here, we extend such class for considering the topo-
logical structure of the undirected graph induced by the
restrictions (clauses) of the formula.

We extend the procedures presented in [6] for determin-
ing a general class of 2-CF where #2SAT is tractable. We
show that a larger polynomial class for #2SAT (and for
the counting independent sets too), is not restricted by
the number of occurrences of the variables in the formula
Σ (or the degree of its respective constrained graph GΣ),
but rather by the topological structure of GΣ.

In a general way, if GΣ can be expressed as a tree union
a set of disjointed cycles, then #SAT (Σ) is computed in
polynomial time. We have called to this new polynomial
class “Topologically Ordered” and generalizes the poly-
nomial classes for #2SAT presented in [6, 14, 15, 16], it
allows to establish a finer border between the instances
of #2SAT which are in FP or in #P. Thus, the last algo-
rithm presented here, can be used to impact directly in
the reduction of the complexity time of the algorithms for
#SAT as well as for many others counting hard problems.

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

2 Procedure Description

2.1 Notation and Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A
literal is either a variable x or a negated variable x. As
is usual, for each x ∈ X , x0 = x and x1 = x. We use υ(l)
to indicate the variable involved by the literal l.

A clause is a disjunction of different literals (sometimes,
we also consider a clause as a set of literals). For k ∈ IN ,
a k-clause is a clause consisting of exactly k literals and,
a (≤ k)-clause is a clause with k literals at most. A unary
clause has just one literal and a binary clause has exactly
two literals. The empty clause signals a contradiction.
A clause is tautological if it contains a complementary
pair of literals. From now on, we will consider just non-
tautological and non-contradictory clauses. A variable
x ∈ X appears in a clause c if either x or x is an element
of c. Let υ(c) = {x ∈ X : x appears in c}.
A Conjunctive Form (CF) is a conjunction of clauses (we
also consider a CF as a set of clauses). We say that Σ is
a monotone CF if all of its variables appear in unnegated
form. A k-CF is a CF containing only k-clauses and,
(≤ k)-CF denotes a CF containing clauses with at most k
literals. A kµ-CF is a formula in which no variable occurs
more than k times. A (k, sµ)-CF, (≤ k, sµ)-CF is a k-
CF, (≤ k)−CF , such that each variable appears no more
than s times. In this sense we have a hierarchy given by
the number of occurrences by variable, where (k, sµ)-CF
is a restriction of (k, (s + 1)µ)-CF, and a hierarchy given
by the number of literals by clause, where (≤ k, sµ)-CF
is a restriction of (≤ (k + 1), sµ)-CF. For any CF Σ, let
υ(Σ) = {x ∈ X : x appears in any clause of Σ}.
An assignment s for Σ is a function s : υ(Σ) → {0, 1}. An
assignment can be also considered as a set of no comple-
mentary pairs of literals. If l ∈ s, being s an assignment,
then s makes l true and makes l false. A clause c is satis-
fied by s if and only if c ∩ s �= ∅, and if for all l ∈ c, l ∈ s
then s falsifies c.

A CF F is satisfied by an assignment s if each clause in
F is satisfied by s and s falsifies c if c is not satisfied by
s and F is contradicted if it is not satisfied.

Let SAT (Σ) be the set of models that Σ has over υ(Σ).
Σ is a contradiction or unsatisfiable if SAT (Σ) = ∅.
Let µυ(Σ)(Σ) = |SAT (Σ)| be the cardinality of SAT (Σ).
Given Σ a CF, the SAT problem consists in determin-
ing if Σ has a model. The #SAT consists of counting
the number of models of F defined over υ(Σ). We will
also denote µυ(Σ)(Σ) by #SAT(Σ). When υ(Σ) will clear
from the context, we will omit it as a subscript.

Let #LANG-SAT be the notation for the #SAT prob-
lem for propositional formulas in the class LANG-CF,
e.g. #2-SAT denotes #SAT for formulas in 2-CF, while

#(2, 2µ)-SAT denotes #SAT for formulas in the class
(2, 2µ)-CF. FP denotes the class of functions calculable
in deterministic polynomial time, while #P is the class of
functions calculable in nondeterministic polynomial time.
The #SAT problem is a classical #P-complete problem.

The Graph Representation of a 2-CF

Let Σ be a 2-CF, the constrained graph of Σ is the
undirected graph GΣ = (V, E), with V = υ(Σ) and
E = {(υ(x), υ(y)) : (x, y) ∈ Σ}, that is, the vertices of
GΣ are the variables of Σ and for each clause (x, y) in Σ
there is an edge (υ(x), υ(y)) ∈ E. The degree of a node
v ∈ V is the number of incident edges to v.

Given a 2-CF Σ, a connected component of GΣ is a max-
imal subgraph such that for every pair of vertices x, y,
there is a path in GΣ from x to y. We say that the set
of connected components of Σ are the subformulas corre-
sponding to the connected components of GΣ. We will
denote [[n]] = {1, 2, ..., n}.
If {G1, . . . , Gr} is a partition in connected components of
Σ, then:

µυ(Σ)(Σ) =
[
µυ(G1)(G1)

] ∗ · · · ∗ [
µυ(Gr)(Gr)

]
(1)

In order to compute µ(Σ), first we should determine the
set of connected components of Σ, and this procedure is
done in linear time [15]. Then, compute µ(Σ) is trans-
lated to compute µυ(G)(G) for each connected component
G of Σ. From now on, when we mention a formula Σ, we
suppose that Σ is a connected component. We say that
a 2-CF Σ is a cycle, a chain or a tree if GΣ is a cycle, a
chain or a tree, respectively.

Let Υ be a monotone 2-CF defined over the set of n
variables X = {x1, ..., xn}, and let SI = {xj : j ∈ I} be
an independent set in GΥ, that is, if no pair of vertices
of SI is joined by an edge of GΥ, then the assignment

defined by xi =
{

0 if i ∈ I,
1 otherwise

satisfies Υ. The reason is that for every clause (xi ∨
xj) of Υ, at least one of the variables is assigned to 1.
Otherwise, by the definition of Υ, (xi, xj) ∈ E, but both
xi and xj are in SI .

This shows that to compute the number of models for Σ
can be alternatively reduced to compute the number of
independent sets of the constrained graph GΣ, then the
remark follows easily.

Remark 1 The problem of counting the number of mod-
els in a monotone (2, kµ)-CF Σ is equivalent to counting
the number of independent sets in its constrained graph
GΣ which has degree k

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

2.2 Linear Procedures for #2SAT

Our purpose is to identify any restriction over the class
of (≤ 2)-CF’s under which the hard problem #2SAT
becomes easy. We suppose that GΣ is the constrained
graph of a connected component type given by Σ a (≤ 2)-
CF. We present the different typical simple graphs for GΣ

and we design linear procedures to compute #SAT (Σ)
for those graphs.

2.2.1 If GΣ is a Chain

First, let us consider that GΣ = (V, E) is a linear
chain. Let us write down its associated formula Σ,
without a loss of generality (ordering the clauses and
its literals, if it were necessary), as: Σ = {c1, ..., cm} ={
{xε1

1 , xδ1
2 }, {xε2

2 , xδ2
3 }, . . . , {xεm

m−1, x
δm
m }

}
, where |υ(ci) ∩

υ(ci+1)| = 1, i ∈ [[m− 1]], and δi, εi ∈ {0, 1}, i = 1, ..., m.

As Σ has m clauses then |υ(Σ)| = n = m + 1. We
will compute µ(Σ) in base to build a series (αi, βi), i =
1, ..., m, where each pair of the series is associated to the
variable xi of υ(Σ). The value αi indicates the number
of times that the variable xi is ’true’ and βi indicates the
number of times that the variable xi takes value ’false’
over the set of models of Σ.

Let fi be a family of clauses of Σ built as follows:
f0 = ∅,fi = {cj}j≤i, i ∈ [[m]]. Note that fi ⊂ fi+1,
i ∈ [[m − 1]]. Let SAT (fi) = {s : s satisifies fi}, Ai =
{s ∈ SAT (fi) : xi ∈ s}, Bi = {s ∈ SAT (fi) : xi ∈ s}.
Let αi = |Ai|; βi = |Bi| and µi = |SAT (fi)| = αi + βi.
From the total number of models in µi, i ∈ [[m]], there are
αi of which xi takes the logical value ’true’ and βi models
where xi takes the logical value ’false’.

For example, c1 = (xε1
1 , xδ1

2), f1 = {c1}, and (α1, β1) =
(1, 1) since x1 can take one logical value ’true’ and
one logical value ’false’ and with whichever of those
values satisfies the subformula f0 while SAT (f1) =
{xε1

1 xδ1
2 , x1−ε1

1 xδ1
2 , xε1

1 x1−δ1
2 }, and then (α2, β2) = (2, 1)

if δ1 were 1 or rather (α2, β2) = (1, 2) if δ1 were 0.

In general, we compute the values for (αi, βi) associated
to each node xi, i = 2, .., m, according to the signs (εi, δi)
of the literals in the clause ci, by the next recurrence
equation:

(αi, βi) =

⎧⎪⎪⎨
⎪⎪⎩

(βi−1 ,αi−1 + βi−1) if (εi, δi) = (0, 0)
(αi−1 + βi−1,βi−1) if (εi, δi) = (0, 1)
(αi−1 ,αi−1 + βi−1) if (εi, δi) = (1, 0)
(αi−1 + βi−1,αi−1) if (εi, δi) = (1, 1)

(2)

Note that, as Σ = fm then µ(Σ) = µm = αm + βm. We
denote with ′ →′ the application of one of the four rules
of the recurrence (2), so, the expression (2, 3) → (5, 2)

denotes the application of one of the rules (in this case,
the rule 4), over the pair (αi−1, βi−1) = (2, 3) in order to
obtain (αi, βi) = (αi−1 + βi−1, αi−1) = (5, 3).

Example 1 Let Σ = {(x1, x2), (x2, x3), (x3, x4), (x4, x5),
(x5, x6)} be a 2-CF which conforms a chain, the series
(αi, βi), i ∈ [[6]], is computed as: (α1, β1) = (1, 1) →
(α2, β2) = (2, 1) since (ε1, δ1) = (1, 1), and the rule
4 has to be applied. In general, applying the cor-
responding rule of the recurrence (2) according to
the signs expressed by (εi, δi), i = 3, ..., 6, we have
(2, 1) → (α3, β3) = (1, 3) → (α4, β4) = (3, 4) →
(α5, β5) = (3, 7) → (α6, β6) = (10, 7), and then,
#SAT (Σ) = µ(Σ) = µ6 = α6 + β6 = 10 + 7 = 17.

If Σ is a chain, we apply (2) in order to compute µ(Σ).
The procedure has a linear time complexity over the num-
ber of variables of Σ, since (2) is applied while we are
traversing the chain, from the initial node y0 to the final
node ym.

There are other procedures for computing #SAT(Σ)
when Σ is a (2, 2µ)-CF [14, 15], but such proposals do
not distinguish the number of models in which a variable
x takes value 1 of the number of models in which x takes
value 0, situation which is made explicit in our procedure
through the pair (α, β) labeled by x. This distinction over
the set of models of Σ is essential when we want to extend
the computing of #SAT(Σ) for more complex formulas.

Example 2 Suppose now a monotone 2-CF Υ with m
clauses and where GΥ is a linear chain. I.e Υ =
{(x1, x2), (x2, x3), . . . , (xm−1, xm)}. Then, at the be-
ginning of the recurrence (2), (α1, β1) = (1, 1) and
(α2, β2) = (2, 1) since (ε1, δ1) = (1, 1), and in gen-
eral, as (εi, δi) = (1, 1), for i ∈ [[m]], then the rule:
(αi, βi) = (αi−1 + βi−1, αi−1) is always applied while we
are scanning each node of the chain, thus the Fibonacci
numbers appear!.

µ2 = α2 + β2 = α1 + β1 + α1 = 3,
µ3 = α3 + β3 = µ2 + α2 = 5,
(µi)i≥3 = αi + βi = µi−1 + µi−2

Applying the Fibonacci series for the formula F of the
example 2, we obtain the values (αi, βi), i = 1, ..., 6:
(1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8),
and this last series coincides with the Fibonacci numbers:
(F2, F1) → (F3, F2) → (F4, F3) → (F5, F4) → (F6, F5) →
(F7, F6). We infer that (αi, βi) = (Fi+2, Fi+1) and then
µi = Fi+2 +Fi+1 = Fi+3, i = 1, ..., m. E.g. for m = 5, we
have µ(F) = µ5 = F7 + F6 = F8 = 21.

Theorem 1 Let Σ be a monotone 2-CF with m clauses
such that GΣ is a chain, then:

#SAT (Σ) = Fm+3

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

Corollary 1 If GF is a chain with m edges then the
number of independent sets in GF is Fm+3.

Considering Parallel Edges

Consider the case where in a Conjunctive Form there are
two 2-clauses involving the same variables. In this case,
the constrained graph has two parallel edges and the re-
currence equation in (2) has to consider four different
signs.

Suppose, for example that we have the two clauses: ck =
(xεk

i−1, x
δk
i) and cj = (xεj

i−1, x
δj

i) which involve the two
variables: xi−1 and xi. Then, we compute the values for
(αi, βi) associated to the node xi, according to the signs
(εk, δk) and (εj , δj) associated to the clauses: ck and cj

in the following way:

(αi, βi) takes the following six possible values:

(αi−1,αi−1) if (εk, δk) = (1, 1) and (εj , δj) = (1, 0)
(µi−1 ,0) if (εk, δk) = (1, 1) and (εj , δj) = (0, 1)
(βi−1 ,αi−1) if (εk, δk) = (1, 1) and (εj , δj) = (0, 0)
(αi−1,βi−1) if (εk, δk) = (1, 0) and (εj , δj) = (0, 1)
(0 ,µi−1) if (εk, δk) = (1, 0) and (εj , δj) = (0, 0)
(βi−1 ,βi−1) if (εk, δk) = (0, 1) and (εj , δj) = (0, 0)

And Considering the case when in a Conjunctive Form
there are three 2-clauses involving the same variables.
In such case, the constrained graph has three paral-
lel edges. Suppose, for example that we have the fol-
lowing three clauses: (xi−1, xi),(xi−1, xi),(xi−1, xi) then
(αi, βi) = (0, αi−1) since (xi−1, xi) is the unique clause
which was not considered. And then, only the true val-
ues for xi−1 are preserved and used for assigning the false
values to xi.

This means, that the negation of the clause which does
not appear indicates the value for (αi, βi). For example,
(xi−1, xi) = xi−1 ∧ xi and then only the true values for
xi−1 have to be changed to false values for xi in order to
satisfy the previous three clauses, simultaneously. And
this pattern is used for the other four forms to choose
three clauses with the same two variables.

Processing Unary Clauses

If there are unary clauses in Σ, i.e. U ⊆ Σ and U =
{(l1), (l2), ..., (lk)}. Then, when the recurrence (2) is be-
ing applied over a node xi of GΣ, it has to be checked
if xi ∈ υ(U) or not. If xi /∈ υ(U) we only apply the
recurrence (2), but if xi ∈ υ(U) then

(αi, βi) =

⎧⎨
⎩

(0, βi) if (xi) ∈ U
(αi, 0) if (xi) ∈ U
(0, 0) if (xi) ∈ U ∧ (xi) ∈ U

Since an unary clause uniquely determines the values of
its variable. Furthermore when (xi) ∈ U and (xi) ∈
U then the original formula is insatisfactible and then
µ(Σ ∪ U)=0.

Of course, the previous cases: parallel edges and unary
clauses can be considered in a pre-processing of the for-
mula before applying the general algorithm.

2.2.2 If GΣ is a Tree

Let Σ be a Boolean formula with n variables and m
clauses and where there are no cycles in GΣ = (V, E).
Traversing GΣ in depth-first build a tree, that we denote
as AΣ, whose root node is any vertex v ∈ V , e.g. the
node with minimum degree in GΣ, and where v is used
for beginning the depth-first search.

We denote with (αv, βv) the associated pair to a node v
(v ∈ AΣ). We compute µ(Σ) while we are traversing GΣ

in depth-first search, for the next procedure.

Algorithm Count Models for Trees(AΣ)

Input: AΣ the tree defined by the depth-search over GΣ

Output: The number of models of Σ

Procedure: Traversing AΣ in depth-first, and when a
node v ∈ AΣ is left (all of its edges have been processed),
assign:

1. (αv, βv) = (1, 1) if v is a leaf node in AΣ.

2. If v is a father node with a list of child nodes as-
sociated, i.e., u1, u2, ..., uk are the child nodes of v,
then as we have already visited all the child nodes,
then each pair (αuj , βuj) j = 1, ..., k has been defined
based on (2). (αvi , βvi) is obtained by apply (2) over
(αi−1, βi−1) = (αuj , βuj). This step is iterated until
computes all the values (αvj , βvj), j = 1, ..., k. And
finally, let αv =

∏k
j=1 αvj and βv =

∏k
j=1 βvj .

3. If v is the root node of AΣ then returns(αv + βv).

This procedure returns the number of models for Σ in
time O(n + m) which is the necessary time for traversing
GΣ in depth-first.

Example 3 Let Σ = {(x1, x2), (x2, x3), (x2, x4), (x2, x5),
(x4, x6), (x6, x7), (x6, x8)} be a 2-CF and consider us
that the depth-search starts in the node x1. The tree
generated by the depth-search as well as the number
of models in each level of the tree is showed in Figure
1. The procedure Count Models for T rees returns for
αx1 = 41, βx1 = 36 and the total number of models is:
#SAT(Σ) = 41 + 36 = 77.

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

 X4

 X8

(1, 1)

(4, 1)

(2, 1)

(36, 5)
 X1

(41,36)

(1, 1) X5

 X2

 X7

(1, 1)

(2, 1)

(2, 1)

(5,4)
(9, 5)

 X3

(2, 1)

 X6

(1, 1)

Figure 1: The tree graph for the formula of the example 3

2.2.3 If GΣ is a Cycle

Let GΣ be a simple cycle with m nodes, that is, all the
variables in υ(Σ) appear twice, |V | = m = n = |E|.
Ordering the clauses in Σ in such a way that | υ(ci) ∩
υ(ci+1) |= 1, and ci1 = ci2 whenever i1 ≡ i2 mod m,

hence x1 = xm, then Σ =
{
ci = {xεi

i−1, x
δi

i }
}m

i=1
, where

δi, εi ∈ {0, 1}. Decomposing Σ as Σ = Σ′ ∪ cm, where
Σ′ = {c1, ..., cm−1} is a chain and cm = (xεm

m−1, x
δm
1)

is the edge which conforms with GΣ′ the simple cycle:
x1, x2, ..., xm−1, x1. We can apply the linear procedure
described in (2.2.1) for computing µ(Σ′).

Every model of Σ′ had determined logical values for
the variables: xm−1 and x1 since those variables ap-
pear in υ(Σ′). Any model s of Σ′ satisfies cm if and
only if (x1−εm

m−1 /∈ s and x1−δm
m /∈ s), that is, SAT (Σ′ ∪

cm) ⊆ SAT (Σ′), and SAT (Σ′ ∪ cm) = SAT (Σ′) − {s ∈
SAT (Σ′) : s falsifies cm}. Let X = Σ′ ∪ {(x1−εm

m−1) ∧
(x1−δm

m)}, µ(X) is computed as a chain with two unary
clauses, then:

#SAT (Σ) = µ(Σ) = µ(Σ′) − µ(X)

= µ(Σ′) − µ(Σ′ ∧ (x1−εm
m−1) ∧ (x1−δm

m))
(3)

For example, let us consider Σ be a monotone 2-CF
with m clauses such that GΣ is a simple cycle. Σ ={
ci = {xεi

i−1, x
δi

i }
}m

i=1
, where δi = εi = 1, υ(ci) ∩

υ(ci+1) = {xi}, and ci1 = ci2 whenever i1 ≡ i2 mod m,
hence x1 = xm. Let Σ′ = {c1, ..., cm−1}, then: µ(Σ′) =
µm−1 = Fm−1+3 = Fm+2 for theorem 1. As εm = δm = 1
then µ(X) = µ(Σ′ ∧ (x1) ∧ (xm−1)) which is computed
by the series: (α1, β1) = (0, 1) = (F0, F1) since (x1) ∈ X ,
(α2, β2) = (1, 0) = (F1, F0); (α3, β3) = (1, 1) = (F2, F1);
(α4, β4) = (2, 1) = (F3, F2); and in general (αi, βi) =
(Fi, Fi−1), then for the variable xm−1, (αm−1, βm−1) =
(Fm−1, Fm−2), then µ(X) = βm−1 = Fm−2 since (xm) ∈
X . Finally, #SAT (Σ) = µ(Σ) = µ(Σ′) − µ(X) =
Fm+2 − Fm−2. On the other hand, Fm+2 − Fm−2 =
Fm+1 + Fm − Fm−2 = Fm+1 + Fm−1 + Fm−2 − Fm−2 =
Fm+1 + Fm−1.

Theorem 2 Let Σ be a monotone 2-CF with m clauses
and where GΣ is a simple cycle, then: #SAT (Σ) =
Fm+2 − Fm−2 = Fm+1 + Fm−1.

Corollary 2 If GΣ is a simple cycle with m nodes then
the number of independent sets of GΣ is Fm+1 + Fm−1.

Example 4 Let Σ = {ci}6
i=1 = {{x1, x2}, {x2, x3},

{x3, x4}, {x4, x5}, {x5, x6}, {x6, x1}} be a monotone 2-CF
which represents the cycle GΣ=(V ,E), see Figure 2. Let
G′ = (V, E′) where E = E′ ∪ {c6}, that is, the new
graph G′ is Σ minus the edge c6. Applying theorem 2,
#SAT (Σ) = F7 + F5 = 13 + 5 = 18

Union of Cycles and Chains

Now, Let Σ be a monotone 2-CF such that GΣ is the
union of a chain graph GL and an edge: {xj , xk} which
is adyacent to two nodes of GL, e.g. see Figure 3.

Let L = {(xi, xi+1)}, i = 1, ..., m be the formula chain
and let Y = {(xj), (xk)} ∪ {(xi, xi+1)}, i = 1, ..., k. We
note that µ(Σ) = µ(L) − µ(Y) since we must eliminate
from the set of models of L those models that falsify the
clause (xj , xk) in order to satisfy Σ.

We denote with (αi, βi)/G the corresponding pair (αi, βi)
associated to the node xi from the constrained graph of
the formula G.

In previous section, we have seen how to compute µ(Y)
when Y is a chain union two unary clauses. Apply-
ing recurrence (2), in the step (j)-th, we have that
(αj , βj)/Y = (Fj+2, Fj+1), and as xj appears in nonposi-
tive way in Y then (αj , βj)/Y = (0, Fj+1).

For the next steps, we have that: (αj+1, βj+1)/Y =
(Fj+1, 0) → (αj+2, βj+2)/Y = (Fj+1, Fj+1);
(αj+3, βj+3)/Y = (2 · Fj+1, Fj+1) → (3 · Fj+1, 2 · Fj+1) =
(F4 · Fj+1, F3 · Fj+1). And for the step k:
(αk, βk)/Y = (Fl · Fj+1, Fl−1 · Fj+1) where l is the
length of the cycle, and as xk appears in nonpositive way
in Y , then Fl · Fj+1 will be changed to zero, resulting
in this way that (αk, βk)/Y = (0, βk) = (0, Fl−1 · Fj+1).
Therefore µ(Y) = Fl−1 · Fj+1 = Fk−j−1 · Fj+1.

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

1 2 3 4 5 6X XX XX X

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) → (α5, β5) → (α6, β6)
(1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8)
(0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3)

⇒ (13, 8)− (0, 3) = (13, 5)

Figure 2: Computing #SAT (Σ) when GΣ is a cycle

x2x1

x0

x3 x4 x5 x6

x7

Figure 3: Constrained Graph of the formula of the example 5

While the corresponding pair (αk, βk) in the series
(αi, βi)/L, is: (αk, βk)/L = (Fk+2, Fk+1), and in order
to compute µ(Σ), we have in the step k: (αk, βk)Σ =
(αk, βk)/L−(αk, βk)/Y = (Fk+2, Fk+1)−(0, Fl−1 ·Fj+1) =
(Fk+2, Fk+1−Fl−1 ·Fj+1) = (Fk+2, Fj+l+1−Fl−1 ·Fj+1) =
(Fk+2, Fl · Fj+2).

For the following pairs of the series, we have
(αk+1, βk+1)/Σ = (Fk+2+Fl ·Fj+2, Fk+2) → (2·Fk+2+Fl ·
Fj+2, Fk+2 +Fl ·Fj+2); (αk+3, βk+3)/Σ = (3 ·Fk+2 +2 ·Fl ·
Fj+2, 2·Fk+2+Fl ·Fj+2), and in general, (αk+i, βk+i)/Σ =
(Fi+1 · Fk+2 + Fi · Fl · Fj+2, Fi · Fk+2 + Fi−1 · Fl · Fj+2).

If we consider, m = k + p, then: (αm, βm)/Σ =
(αk+p, βk+p)/Σ = (Fp+1 ·Fk+2 +Fp ·Fl ·Fj+2, Fp ·Fk+2 +
Fp+1 · Fl · Fj+2), and therefore µ(Σ) = αm + βm =
Fp+1 ·Fk+2 +Fp ·Fl ·Fj+2 +Fp ·Fk+2 +Fp+1 ·Fl ·Fj+2 =
Fk+2 ·(Fp+1+Fp)+Fl ·Fj+2 ·(Fp+Fp−1). Thus, #SAT(Σ)
can be expressed as: Fp+2 ·Fk+2 +Fp+1 ·Fl ·Fj+2, being j
the start node of the cycle, k the final node of the cycle,
l the length of the cycle and p = m − k the number of
nodes between the final node of the cycle and the final
node of the chain.

Theorem 3 If GΣ can be decomposed in a linear chain
with m edges and a simple cycle of length l between the
nodes j and k, 0 < j < k < m, where there are p nodes
between the node k and the node m + 1, then the number
of independent sets in GΣ, which corresponds with the
number of models of the 2-CF monotone formula Σ, is:
Fk+2 · Fp+2 + Fl · Fj+2 · Fp+1

Example 5 Let Σ = {(xi, xi+1)}i = 0, . . . , 6∪{(x2, x5)}.
GΣ is shown in Figure 2. GΣ contains the simple cycle:
x2, x3, x4, x5, x2, then j = 2, k = 5 and l = k − j + 1 = 4
is the length of the cycle. The linear chain embedded in
GΣ has m = 7 edges (and the total graph has 8 edges),
then p = m − k = 7 − 5 = 2 and, according to theorem
(3): µ(Σ) = F7 · F4 + F3 · F4 · F3 = 13 · 3 + 2 · 3 · 2 = 51.

2.2.4 GΣ has Only Non-intersected Cycles

Finally, we arrive to the end of the category of connected
components GΣ where #SAT (Σ) can be computed in
polynomial time. Let GΣ = (V, E) be the constrained
graph of a Boolean formula Σ with n variables and m
clauses. Choose arbitrarily a node vr ∈ V for starting
the depth-first search over GΣ in order to build the tree
AΣ and where vr will be the root node.

Let T be a tree graph, any edge adyacent to two nodes
of T conforms a simple cycle, such cyle is called a fun-
damental cycle and this edge is called a back edge. Each
back edge that we find during the depth-first search is
added to the base cycle matrix CM .

Since each back edge signals the beginning and the end
of a fundamental cycle in AΣ, we store each fundamental
cycle in each row of CM , beginning from the back edge
and continuing with the tree edges of the cycle, each edge
in each column until we arrive to the edge which closes
the base cycle.

We call back-edge clause to the clause in Σ corresponding
to the back edge in GΣ. Let C = {c1, . . . , ck} be the set
of fundamental cycles found during the depth first search
and let TΣ = AΣ ∪ C be the depth first graph.

Given two distinct fundamental cycles Ci and Cj from
the depth-first graph, if Ci and Cj share common edges
we say that both cycles are intersected, that is, Ci ⊕ Cj

conforms a new cycle, where ⊕ denotes the operation
or-exclusive between the set of edges of the cycles. If
the cycles Ci and Cj have no common nodes nor edges
then we say that both cycles are independent, that is,
Ci ⊕ Cj = Ci ∪ Cj . While if the cycles have not com-
mon edges but maybe they have a common node, we say
that both cycles are non-intersected. Note that a pair of
independent cycles are non-intersected.

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

We establish in the following theorem the larger class of
formulas where the #2SAT problem can be computed in
polynomial time.

Theorem 4 Applying a depth-first search over GΣ, if the
set of fundamental cycles obtained during the search are
non-intersected, then #SAT (Σ) is computed in polyno-
mial time.

We prove this theorem given the polynomial time algo-
rithm which computes #2SAT for this class of formulas.

Algorithm Count Models for Disjoint cycles()

Input: TΣ the tree defined by the depth-first search over
GΣ and CM the base cycle matrix.

Output: The number of models of Σ.

Procedure:

1. Translate AΣ in a DAG (Directed Acyclic Graph),
giving an orientation to each edge {u, v} by directing
u → v if v is an ancestor node of u in AΣ. Let DΣ

be the DAG built in this way.

2. Apply a topological order procedure over DΣ obtain-
ing an arrangement of the vertices.

3. Computing the number of models of Σ, traversing
by each node in DΣ according to the order given by
the topological procedure and computing the pair
(αv, βv) when the node v is visited, in the following
way:

a) cycle = false /* Beginning without cycle */

b) Let v = First T opological Order()
/*v is the first node of the arrangement */

do {
c) If (v is a leaf node in TΣ) then (αv, βv) = (1, 1)

d) If (v has child nodes) then

e) for each child node u of v
{
Let (αi−1, βi−1) = (αu, βu).
Apply recurrence (2), computing:
(αi−1, βi−1) → (αi, βi) = (αv, βv).
If ((αv−old, βv−old) had associated a value)
then (αv, βv) = (αv ∗ αv−old, βv ∗ βv−old)

Let (αv−ci, βv−ci) = (αv−old, βv−old)
/* Update values for cycles */
Let (αv−old, βv−old) = (αv, βv)
/* Keep the old values */
}

f) If (cycle) then
{
(αi−1, βi−1) = (αuc , βuc)
/* Apply (2) also to the cycle */
(αi−1, βi−1) → (αi, βi) = (αvc , βvc)
If((αv−ci, βv−ci) had associated a value) then
(αvc , βvc) = (αvc ∗ αv−ci, βvc ∗ βv−ci)
}

g) If (v has two output edges)then
cycle = true
/*Marks the beginning of a cycle*/
If(v ∈ back edge clause) then
(αvc , βvc) = (1, 0) otherwise (αvc , βvc) = (0, 1).
/* end of a base cycle */

h) If (v closes a cycle of CM) then
{ If(v ∈ back edge clause) then
(αvc , βvc) = (αvc , 0) otherwise (αvc , βvc) =
(0, βvc).
(αv−old, βv−old) = (αv, βv) = (αv − αvc , βv −
βvc)
cycle = false
}
/*Finish a cycle*/

i) Let v = Next Topological Order(v);

j) }while(v <> Nil);

k) return(αvr + βvr)

The procedure: First T opological Order() returns the
first vertice and Next Topological Order(v) returns the
next vertice of its argument, according to the arrange-
ment built for the topological order procedure in step
(2).

Note that all the procedures involved in
Count Models for Disjoint cycles such as; depth-
first search, detecting if the set of fundamental cycles are
disjointed, applying topological order, traversing by DΣ

according to the order given by the topological order,
etc... All of them are linear procedures over the length
of the graph, thus, the main procedure has complexity
time O(n + m) being n the number of variables and m
the number of clauses of Σ. Then, our proposal is a
linear time procedure over the length of the formula Σ.

In the following example, the term “cycle” is used to
indicate a path in the DAG which comes from an original
fundamental cycle of the matrix CM .

Example 6 Let Σ = {(x1, x2), (x2, x3), (x1, x13), (x2, x4),
(x12, x2), (x3, x4), (x4, x5), (x4, x11), (x5, x6), (x11, x5),
(x6, x7), (x7, x8), (x7, x9), (x10, x7), (x9, x5), (x13, x12)}.
Applying the above algorithm over Σ and considering to
x1 as the root node of the tree AΣ. The step (1) builds the
DAG DΣ showed in Figure 4. The order of evaluation of

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

x1 x2 x3 x4 x5 x6 x7 x8

x9

x10

x11x12x13

Figure 4: The DAG built in base of the formula of the example 5

the nodes of the DAG according to the Topological Order,
step (2), is performed in step (3), in the following way:

Evaluate leaf nodes (step c): x10, x8, x9. The node has
two output edges (step g): x9. Evaluate father with many
children (step e): x10; x8; x9 → x7. Evaluate path and cy-
cle (steps e and f): x9, x7, x6, x5. Evaluate end of a cycle
(step h): x5. The node has two output edges (step g):
x11. Evaluate path and cycle (steps e and f): x11, x5, x4.
Evaluate end of a cycle (step h): x4. Evaluate path and
cycle (steps e and f): x4, x3, x2. Evaluate end of a cycle
(step h): x2. Evaluate path and cycle (steps e and f):
x13, x12, x2, x1. Evaluate end of a cycle (step h): x1.

Thus, the procedures presented here, for computing µ(Σ)
being Σ a Boolean formula in 2-CF and where GΣ is
a cycle, a chain, a tree or a tree union non-intersected
cycles, each one runs in linear time over the length of the
given formula.

We have called to the class of formulas which holds the
conditions of theorem (4) a topologically ordered formulas.
This class of formulas is a superclass of (2, 2µ)-CF, and
it has not restriction over the number of occurrences of a
variable over the formulas, although (2, 3µ)-CF is a #P -
complete problem.

The class of topologically ordered Boolean formulae brings
us a new paradigm for solving #SAT in polynomial time,
and it would impact directly on the complexity time of
the algorithms for #SAT.

The dichotomy theorem [3] establishes that if F is a finite
set of affine logical relations then #SAT(F) is in FP, oth-
erwise #SAT(F) is #P-complete. This dichotomy theo-
rem fails to show that the #2SAT problem can be solved
in polynomial time for the topologically ordered formulas.
In fact, this new class of topologically ordered formulas
demands for a deep study of the topological structure of
the Boolean formulae (or of the associated graphs) which
allows to obtain a finer border between the two classes:
FP and #P, for the #2SAT problem.

On the other hand, we also determine a new polynomial
class of graphs for counting the number of independent
sets, such is the case where the considered 2-CF is mono-
tone and holds the condition of theorem 5.

Theorem 5 Given an undirected connected graph G =
(V, E), if it is acyclic or has a set of disjointed cycles,
then the number of independent sets is computed in poly-
nomial time.

3 Conclusions and Future Work

#SAT for the class of Boolean formulas in 2-CF is a clas-
sical #P-complete problem. Until now, the maximum
subclass of 2-CF where #2SAT is solved efficiently is for
the class (2, 2µ)-CF, which are the Boolean formulas in
2-CF where each variable appears twice at most.

We present different linear procedures to compute #SAT
for subclasses of 2-CF. We have called topologically or-
dered to the formulas Σ in 2-CF where GΣ (the con-
strained undirected graph of Σ) is acyclic or a tree
union non-intersected cycles. And we have shown that
#SAT (Σ) is computed in linear time over the length of
the formula Σ for the class of topologically ordered formu-
las.

The latter class of 2-CF contains the class (2, 2µ)-CF,
and it does not have restrictions over the number of oc-
currences of a variable in the given formula, although
(2, 3µ)-SAT is a #P -complete problem. Then, the class of
topologically ordered formulas brings us a new paradigm
for solving #SAT, and would be used to incide directly
over the complexity time of the algorithms for #2SAT.

Furthermore, we have shown a strong relation between
the number of models of a monotone formula in 2-CF
and the Fibonacci numbers which allows to determine
new classes of graphs where the number of independent
sets is computed in polynomial time.

References

[1] Angelsmark O., Jonsson P., Improved Algorithms for
Counting Solutions in Constraint Satisfaction Prob-
lems, In ICCP: Int. Conf. on Constraint Program-
ming, 2003.

[2] Bulatov, A. , Dalmau V., Towards a di-
chotomy theorem for the counting constraint sat-
isfaction problem, Technical report, Comput-
ing Lab., Oxford Univ., 2003. Available from
web.comlab.ox.ac.uk/oucl/work/andrei.bulatov/counting.ps

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

[3] Creignou N., Hermann M., “Complexity of General-
ized Satisfiability Counting Problems”, Information
and Computation pp. 1-12, N125, 1996

[4] Dahllöf, V., Jonsonn, P., Wahlström, M., “Count-
ing models for 2SAT and 3SAT formulae.”, Theoret-
ical Computer Sciences 332, pp. 265-291, N332(1-3),
2005.

[5] Darwiche, A., “On the Tractability of Counting The-
ory Models and its Application to Belief Revision
and Truth Maintenance”, Jour. of Applied Non-
classical Logics, pp. 11-34, N11(1-2),2001.

[6] De Ita G., “Polynomial Classes of Boolean Formulas
for Computing the Degree of Belief”, Advances in
Artificial Intelligence LNAI 3315, pp.430-440,2004.

[7] Dyer, M., Greenhill C., Some #P-completeness
Proofs for Coulorings and Independent Sets, Re-
search Report Series, University of Leeds, 1997.

[8] Dubois, O., “ Counting the number of solutions
for instances of satisfiability”, Theoretical Computer
Science, pp. 49-64, N81(1), 1991.

[9] Littman M. L., Pitassi T., Impagliazzo R., On the
Complexity of counting satisfying assignments, Un-
published manuscript.

[10] Greenhill, C., “The complexity of counting colour-
ings and independent sets in sparse graphs and hy-
pergraphs”, Computational Complexity, 1999.

[11] Fürer, M., Prasad, S. K., Algorithms for Counting 2-
SAT Solutions and Coloring with Applications, Elec-
tronic Colloqium on Comp. Complexity, Report No.
33, 2005.

[12] Dahllöf, V., Jonsson, P., “An algorithm for counting
maximum weighted independent sets and its appli-
cations” ,Proc. 13th ACM-SIAM Symp. on Discrete
Algorithms, pp. 292-298, 2002.

[13] Birbaum, E., Lozinskii, E.,“The Good Old
Davis Putnam Procedure Helps Counting Models”,
Jour. of Artificial Intelligence Research 10, pp.
457477,1999.

[14] Roth, D., “On the hardness of approximate reason-
ing”, Artificial Intelligence 82,pp 273-302,1996.

[15] Russ, B., Randomized Algorithms: Approximation,
Generation, and Counting, Distingished disserta-
tions Springer, 2001.

[16] Vadhan, S. P., “The complexity of Counting in
Sparse, Regular, and Planar Graphs”, SIAM Jour-
nal on Computing, pp. 398-427, V31, N2, 2001.

[17] Zhang, W., “Number of models and satisfiability of
set of clauses”, Theoretical Computer Sciences, pp.
277-288,N155(1), 1996.

Engineering Letters, 15:2, EL_15_2_11
__

(Advance online publication: 17 November 2007)

