
 
 

 

  
Abstract—This paper details a learning decision-theoretic 

intelligent agent designed to solve the problem of guiding vehicles 
in the context of Personal Rapid Transit (PRT). The intelligent 
agents are designed using Bayesian Decision Networks. The 
agents are designed to utilize the known methods of machine 
learning with Bayesian Networks (BN): parameter learning and 
structure learning. In addition, a new method of machine learning 
with BNs, termed utility learning in this paper, is introduced. BN 
software for Matlab is used to realize the proposed agent. 
Additional software is written to simulate the PRT problem using 
various intelligent agents that utilize one or more learning 
methods. 
 

Index Terms—Bayesian Decision Networks, Machine Learning, 
Multi-agent systems, Personal Rapid Transit.  

I. INTRODUCTION 
This paper’s goal is to study the design of intelligent agents 

that operate in a multi-agent environment. An intelligent agent 
is a machine that is capable of perceiving its environment and 
acting upon that environment to change it from its current state 
to a desired state. The ability to learn is important for an agent 
to change its structure, program, or responses in a manner that 
is expected to improve its future performance [1]. As the 
complexity of intelligent agents increase, the agents will need 
the ability to perform unsupervised learning, which is learning 
without input from human controllers or observers. 

The decision theoretic agents (DTA) are designed using 
Bayesian Decision Networks (BDN). Bayesian Decision 
Networks are formed by two network structures, Bayesian 
Networks (BN) and Influence Diagrams (ID) [2]. A BN also 
known as a Belief Network is a probabilistic model encoded by 
a graphical structure that allows designers to represent 
variables of interest and the conditional dependencies between 
them. The strength of BNs over some other probabilistic 
models is that a BN allows the incorporation of prior 
knowledge or belief in the model. Influence Diagrams add 
decision making capabilities to the Bayesian Networks because 
it enables the agent to decide which action to take. Influence 
Diagrams apply utility theory to decision networks by allowing 
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a designer to specify how much weight each state of a set of 
variables has on the available actions that can be taken. Section 
3 contains a detailed description of the components of a BDN 
and the methodology used to arrive at decisions. 

There are two methods of learning with BNs; structure 
learning that allows determining network structure from data 
and parameter learning that allows determining the conditional 
probability relationships between network nodes. In this paper, 
we introduce a method of learning with IDs termed utility 
learning, developed in [3, 8], where an agent changes the utility 
function or weighting given to influence variables in order to 
change the way it makes its decisions. 

The decision theoretic agent designed in this paper is applied 
to the problem of vehicle control in a Personal Rapid Transit 
(PRT) system. The nature of PRT makes the problem 
multi-agent in nature since the actions an agent takes have 
definitive effect on those that other agents can make. A 
simulator is created to enable testing of the decision theoretic 
agents and comparison of the performance of utility learning to 
that of parameter and structure learning. The DTA will be built 
using the Bayesian Network Toolbox (BNT) for Matlab by 
Kevin Murphy and the Structure Learning Package (SLP) by 
Philippe Leray which adds additional structure learning 
functions including ones that handle learning with incomplete 
data to the BNT [4].  

II. PERSONAL RAPID TRANSIT 
Personal Rapid Transit (PRT) is a proposed public transport 

idea that offers automated on-demand non-stop point-to-point 
transportation between one’s start and destination [5]. 
Passengers enter and exit the vehicles at stops that are not along 
the main guide-way allowing the vehicles to always travel at 
top speed between destinations. The issues involved in 
implementation of PRT are those of design, construction and 
cost of guide-ways, spacing between vehicles when traveling at 
speed, other safety considerations, and the control system of the 
vehicles (which are assumed to be autonomous) as well as 
balancing the cost of running all the vehicles on the system 
versus the actual demand. This can become complex as demand 
can shift to different parts of the system, as opposed to being 
balanced across the entire system, and ridership of public 
transportation tends to fluctuate depending on the time of day, 
season, or special occasions. 

The autonomous vehicles that implement a PRT system must 
simultaneously perform numerous tasks. The vehicles need to 

Decision Theoretic Agent Design for Personal 
Rapid Transit Systems 

Iheanyi C. Umez-Eronini, Ferat Sahin 

Engineering Letters, 15:2, EL_15_2_13
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



 
 

 

be able to plan the most efficient routes along the transit 
system, maintain occupant safety and comfort by avoiding 
collisions with other vehicles as well as sudden accelerations or 
decelerations. In order for the system to function in an 
on-demand manner throughout any given day, vehicles need to 
learn ridership patterns and adjust their actions accordingly. A 
centralized control system that directs each individual vehicle 
is likely to be of great computational complexity and vulnerable 
in that failure of the central system could lead to a system-wide 
shutdown. The individual vehicles will need to be able to pilot 
themselves as well as plan routes that take into account the 
movements of other vehicles. 

Testing of the intelligent agent is done using a simulator 
developed to model a simplified version of the PRT problem. 
This work makes the assumption that the guide-ways allow for 
travel of only one vehicle at a time. This is similar to having a 
train system with only one set of tracks that must be used for 
travel in either direction. As in the PRT concept, the stops will 
be off the main guide-ways. The vehicles (intelligent agents) 
will respond to calls and attempt to service them as quickly as 
possible. The overall control problem is simplified by allowing 
the vehicles to stop along a guide-way instead of always 
traveling at full speed. The agents have a finite-range 
360-degree sensor capable of detecting other agents and their 
current direction of travel. Additionally, the agents have a full 
map of the transit system and always know their precise 
location on it. The vehicle actions are limited to traveling in one 
of four directions (north, south, east, or west), or not moving at 
all. The agent’s overall goals are to service calls as quickly as 
possible without any collisions. 

The simulator maintains a static map of the guide-ways and 
destinations. This map holds information indicating which 
locations are guide-ways, intersection points, or destination 
points. The simulator provides functions that generate goals for 
each agent, a route planner, and data collection from an agent’s 
simulated sensors.  

   
Figure 1: PRT Map Showing Sensor Radius of an Agent 
The simulator can also graphically display the map overlaid 
with a symbol representing an agent at its current location.  

This provides a means of qualitatively analyzing the 
performance of an agent planner as well as rapid development 
and debugging of simulator code. Fig. 1 shows the PRT system 

map with a single agent facing east. The circle represents the 
limits of the agent’s sensors. The sensors are modeled such that 
each intelligent agent can determine the exact locations of any 
other vehicles detected directly in front of the agent and a sector 
in the sensor circle where any other agents are detected.  

III. BAYESIAN DECISION NETWORKS 
A BN is a directed acyclic graph (DAG) that is constructed 

by a set of variables coupled with a set of directed edges 
between variables where each set of variables contain a finite 
set of mutually exclusive states [6]. These variables are known 
as the chance nodes of the graph. These nodes are not limited to 
being random variables; they can be known elements or 
observed entities. Fig 2 shows an example BN-DAG. In a BN, 
directed edges exist between two variables that are directly 
related. In terms of probability, there is a conditional 
dependency between the two variables. For example, in Fig 2, 
there are conditional dependencies between A and C and 
between B and C. The absence of a directed edge between two 
variables denotes a conditional independency. So, A and B are 
conditionally independent given C. So, while it is possible that 
the events A and B are not independent, once C is known, 
knowledge about A cannot affect the probability of event B. 

Associated with each node is a probability table that models 
the chance of a node being in one of its states. Nodes that have 
parents are conditionally dependent on at least one other node 
and thus have associated conditional probability tables (CPT). 
These tables allow designers to encode prior knowledge or 
belief. If an agent is unable to observe the state of a variable, it 
can estimate its belief that the node is in a particular state using 
the known probability tables and relationships between 
variables by a process called BN inference. This is an 
algorithmic process that utilizes Bayes Rule, the Law of Total 
Probability, and other probability rules to estimate the probable 
state of unobserved variables. 

P(A) P(B)

P(C|A,B)

A

C

B

 
Figure 2: Example Bayesian Network 
 
It is this process that enables an agent to evaluate its belief 
about its environment and other agents. 

Bayesian decision networks extend BNs with IDs. Influence 
diagrams introduce decision nodes to BNs. Decision nodes are 
a set of mutually exclusive choices available to the decision 
maker. Influence Diagrams are a network structure that 
graphically represents the relationships between decisions 
nodes, chance nodes, and utility nodes. The utility node is a 
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function that maps all the possible combinations of decisions 
and the chance nodes the utility node depends upon to a value 
representing the desirability of those combinations. The 
objective of an ID is to choose the decision that maximizes (or 
minimizes) the value of the utility node. 

If the state of one of the chance nodes that the utility node 
depends upon is unknown or unobserved, then the IDs decision 
is indeterminate. By combining IDs with BNs, an agent can 
make decisions in spite of uncertainty by estimating the states 
of unobserved variables. This is a very powerful tool for 
designing intelligent agents since it is impossible for an agent to 
have complete knowledge of its environment’s state at any 
given time. In [20], expected utility is given by (1). 

∑=
i

ii AOUAEOPEAEU )|(),|()|(      (1) 

In (1), E is the available evidence, A is an action with 
possible outcome state Oi, U(Oi |A) is the utility of each of the 
outcome states, given that action A is taken and P(Oi |E,A) is 
the conditional probability distribution of the possible outcome 
states in light of the observation of evidence E and that action A 
is taken [7].  

IV. DESIGN OF THE INTELLIGENT AGENTS 
In this work, the simulator determines, ahead of time, the 

current route each agent will take in the PRT system. Based on 
the sensor data, the agent decides whether to move along its 
route, halt, that is to remain on the route but don’t move, or to 
take a temporary detour from its current route to a temporary 
new goal location. Agents can also prematurely return to their 
original path from temporary route. The simulator handles 
generating the alternate route goal point (at random) and uses 
its path planning function to reroute the agent. 

The first agent developed is the rule-based planner. It serves 
as a baseline for comparing the performance of the BN based 
planners for several reasons: 

1. It would be the simplest to develop (once a set of rules 
governing agent behavior have been established). 

2. Rule based planners are typically the types of controllers 
most system designers initial use baring experience or 
knowledge of more advanced methods. 

3. The planner itself is simple, its just made up of a series 
of if-then statements (with one exception); if the 
planners developed in this research cannot meet or 
exceed its performance, then they’re not worth the extra 
time and development effort necessary for their 
implementation. 

To aid in developing the rules for the planner, it is necessary 
to first establish the system goals. Keeping in line with the 
real-world concerns of PRT, the absolute goal is that the system 
maintains safety – agents cannot ever crash into each other. In 
terms of the simulator, that means that the agents cannot occupy 
the same block at the same time. The second PRT goal is that 
agents must travel to their goal points as quickly as possible 
without violating the first. Since the simulator plans the route 
for each agent to its goal points, the main job of the planner is to 
ensure that an agent does not have a collision and direct it along 
its path in such a way that it can travel to its target position as 

fast as possible. As a result, when developing the rules that 
govern agent actions in situations where another agent is 
nearby and could impede its travel, the rules were designed 
such that as much as possible agents will remain in motion 
towards their target. A full discussion of the rules can be found 
in [3, 8]. 

In developing the rules for the rule-based planner, decisions 
were made which directly linked a specific agent-environment 
state to a set of observations. One of the reasons for using BNs 
is the realization that the observation-state linkages may not 
always be correct since these determinations were made with 
limited knowledge of actual system dynamics. A BN, which 
models the system, allows the designer to over time, generate a 
statistically accurate set of observation-state linkages. 
Additionally, BNs allows the designer to incorporate the 
original belief of the system behavior – effectively what is 
encoded by the rules developed in the previous section. This 
means that a BN can capture all the rules developed for the rule 
based planner and through parameter updating, develop a more 
accurate association of observations to agent-system states. 

The BN agents are formed from the rules used to create the 
rule-based planner. Nodes are variables that model possible 
sensor readings to which a PRT agent would have access. The 
arcs denoting conditional probability relationships were 
determined by grouping together all of the variables used to 
implement each rule. The utility table, a weighting of each 
combination of decision values and influence node states was 
manually specified to select actions the designer anticipated 
would achieve the objectives of guiding agents to their target 
locations as quickly as possible while minimizing collisions. 

 
Figure 3: Internal Agent Model of Itself and Its 
Environment 

Each agent maintains a separate BN to model the behavior of 
other agents in the system, and a single internal BN that models 
the relationships between the actions that the other agents take, 
the environment, and agent goals. Fig. 3 shows the internal 
agent BN. The actual networks created with the BNT do not 
incorporate the utility and decision nodes. The operation of 
those nodes is instead carried out in software with functions 
specifically written for the purpose of this work. 

The names shown in Fig. 3 for each node are the ones used in 
the code written to implement the agents. To simplify the 
design, each node, with the exception of utility and decision 
nodes, is a binary node taking on either a true or false value. 
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The probability tables describe the chances of a node being in 
either the true or false state given the possible states of the other 
variables. The node names prefixed with an ‘o’ indicate 
variables which depend upon observations of, or predictions 
about, other agents. 

IntNear is a node indicating whether an intersection was 
detected within an agent’s scan (or field of view). InsInt 
indicates whether a particular agent is inside of an intersection. 
As can be seen from the BDN in Fig. 3, knowledge of being 
inside an intersection depends upon whether or not there is 
even one detected in an agent’s field of view. FreeExit 
indicates whether there is a potential direction by which an 
agent that is in a detected intersection could leave it. The value 
of this node logically depends upon whether there is an 
intersection detected by an agent and whether other agents are 
also detected. The oIsNear indicates if another agent was 
detected within a particular scan while oIsAhd indicates that not 
only is an agent detected, but also the detect agent is directly 
ahead of the one doing the scan. The Mov indicates whether the 
current agent is moving or standing still while oDec gives the 
move or stay decision predicted by BDN modeling the other 
agent. The oRofWDir indicates whether or not the other agent is 
detected in the sector of the scan corresponding to an agent that 
would have right-of-way at an intersection. The oInInt 
indicates whether the other agent is in the intersection and 
oRofW indicates whether the other agent actually has 
right-of-way. 

The BN that each agent uses to model the others is almost 
identical, lacking the oDec, and oIsNear nodes and replacing 
the oIsAhd node with AgtNear. While in the internal agent 
model, the node values are taken directly from sensor readings, 
in the other agent BDN, the node values are the predicted 
sensor readings of the other agent. AgtNear predicts whether or 
not the other agent would itself detect other agents.  

Even though oIsAhd can be seen to depend on oIsAhd both 
are needed in determining whether or not there is a free exit 
from an intersection. For example, while oIsNear may point to 
a potential block from exiting an intersection, if the InsInt value 
is true, indicating that the current agent is inside an intersection 
and oIsAhd is also true, then there definitely is a block from an 
intersection.  

V. LEARNING WITH THE INTELLIGENT AGENTS 

A. Parameter Learning 
Parameter learning is the process by which the CPTs that 

describe the relationship between a node, its parents and 
descendents, are updated by the observation of new data. 
Parameter learning enables an agent to improve its belief of the 
environment’s states. It is desirable that the agent use new 
observations to refine its belief, rather than using the new 
observations to redefine its belief. To do this, sample 
observations are generated from the existing CPT and added to 
the new observations before executing the parameter learning 
function. 

Parameter updating is done after 500 iterations of the 
simulator for each agent. The BNT function, learn_params_em 
is used because it is able to handle situations where data is 

missing. The function, learn_params_em uses 100 samples 
from the observed data and existing BN to infer the values of 
the unobserved parameters. This allows the function to update 
the CPTs even when data is not observed for a particular node. 
Prior distribution data is incorporating by generating 100 
additional sample observations from the existing network. This 
ensures the prior distribution carries half as much weight as the 
recent observations. As a result, the system should be able to 
react to changes in system parameters while still taking into 
account prior behavior. 

B. Structure Learning 
Structure learning is the process where the BN structure, the 

arcs that denote conditional dependencies between nodes, is 
learned from data. Structure learning enables an agent to 
improve its model of the relationships between environment, 
the internal agent, and other agent states. As with parameter 
updating, it is desirable that agents use new observations to 
refine the network structure, rather than defining a new 
structure based solely on the new observations. 

In the agent implementation that utilizes structure updating, 
the structure learning step is executed once every 100 simulator 
iterations. It uses the same dataset as the parameter update, the 
100 most recent observations plus 100 sample observations 
from the currently existing network. In order to deal with cases 
with missing or unobserved data, the learn_struct_em function 
from the SLP is used. 

C. Utility Learning 
Parameter and structure learning are tools that have been 

designed and studied for BNs. These tools allow automated 
learning of all the components necessary to form a BN model. 
With a BDN, a couple additional network structures are added: 
decision and utility nodes. In [3, 8], it is proposed that an 
additional learning step can be performed for utility nodes. 
Utility learning is the process where the utility tables that 
weight the combinations of decisions and influence nodes are 
updated by the observation of whether or not a selected 
decision allowed the agent to successfully change the 
environment from its current state to the desired one. 

The utility update function is given by (2). Rconst is the 
reinforcement constant. This value is small and positive when 
the action taken leads to a desired outcome. When the agent’s 
decision does not yield the desired outcome, Rconst is a large and 
negative value. Thus, the utility update weakly reinforces good 
decisions and strongly penalizes bad ones. 

)|(*)|()|( EOPRAOUAOU iconstoldinewi +=  (2) 

Equation (2) relies on the assumption that incorrect decisions or 
predictions are made when the expected utility calculated for an 
incorrectly valued influence node is highest. The expected 
utility will be highest when P(Oi|E), the probability of outcome 
Oi given evidence E, is closest to one. Thus, there is a 
secondary assumption that incorrect decisions occur when 
outcome probability for the incorrectly valued influence node is 
closest to one and outcome probabilities for the other nodes are 
not. Then, the utility update ensures that when incorrect 
decisions are made, the utility values for the incorrectly valued 
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influence nodes decrease by a greater amount than that of the 
other influence nodes.  

VI. SIMULATION RESULTS 
As mentioned earlier, the overall system goals are to 

maintain safety by not allowing agents to “collide” with each 
other and for agents to travel to their destinations in the fastest 
time (or least number of simulator iterations). Keeping in line 
with the PRT system being modeled, the travel time being 
recorded is that of an agent from when it has been answered a 
call to when it finishes servicing that call (picking up and 
dropping off a passenger). A two-agent system is simulated 
using the rule based planner, then iterating through each stage 
of the DTA. Data is collected at the end of 1000 iterations of the 
simulator. The variables tracking the number of iterations per 
trip and number of collisions are reset for use in the next 
simulation run. This set of simulations consisted of five runs for 
every agent. 

Two sets of simulations are run. The initial results, which are 
show in Table I, are those from a set of 5 consecutive sets of 
1000 simulator iterations. An extended simulation was done 
over 36 consecutive sets of 1000 simulator iterations. These 
results are summarized in Table II. 

The simulation results show that in the area of trips 
completed and average ticks per trip, the BN based agents all 
outperform the rule-based agent. Also, the addition of utility 
updating to an agent with parameter updating shows that BN 
machine learning methods have a cumulative effect. It is 
notable that structure learning did not yield much improvement 
to these agents and in some cases, actually decreased their 
performance. This could be due to the small amount of data 
used for structure learning or the possibility that the original 
agent structures were already close to being optimum. Another 
result of note is that the rule-based agent had much lower 
collision numbers than the BN agents. This could arise from a 
bias by the designer towards intelligent agents that prioritize 
efficient trip completions over collisions as well as the simple 
method used to perform the utility update.  

VII. DISCUSSION 
Utility updating enabled agents to better achieve the goal of 

increasing the PRT system’s throughput. However, the second 
goal, minimizing collisions, was not achieved. The poor 
performance of the all BN-based agents with respect to 
collisions indicates that this is most likely attributable to the 
agent structure designed in this thesis. Since the 
implementation of structure updating did not readily lend itself 
to simulation and did not show significant promise for 
increasing agent performance in the initial simulations, it is 
unknown whether structure updating would improve the 
collision numbers for the BN-based agents. 

Excluding agents that utilized structure updating, it is clear 
that utility updating had a positive albeit very small effect of 
agent performance. This could be due to the simple method 
used to perform the utility update as seen in (2), or the way in 

which Rconst is chosen. This work indicates that while utility 
updating has promise as an additional learning tool for 
intelligent agents, more work is needed to define a 
methodology for creating utility update functions that can 
deliver significant results.  
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Table I: Initial Simulation Results for a System with Two Agents 

1 2 3 4 5 Overall
Min 56 68 73 56 64 56
Max 224 287 387 368 283 387
Mean 108.267 127.188 159.538 117.529 123.667 127.238
Trips 15 16 13 17 12 73
Collisions 2 0 0 2 0 4
Coll/trip 0.133333 0 0 0.117647 0 0.054795

1 2 3 4 5 Overall
Min 59 56 56 65 56 56
Max 147 297 281 173 147 297
Mean 95.059 128.733 104.500 108.211 104.579 108.216
Trips 17 15 20 19 19 90
Collisions 1 2 3 2 1 9
Coll/trip 0.058824 0.133333 0.15 0.105263 0.052632 0.1

1 2 3 4 5 Overall
Min 56 56 62 56 59 56
Max 278 172 188 243 174 278
Mean 112.143 97.227 97.550 119.833 110.389 107.428
Trips 14 22 20 18 18 92
Collisions 2 0 2 1 2 7
Coll/trip 0.142857 0 0.1 0.055556 0.111111 0.076087

1 2 3 4 5 Overall
Min 61 56 56 62 62 56
Max 145 303 202 290 334 334
Mean 98.000 126.600 109.300 128.688 108.389 114.195
Trips 17 15 20 16 18 86
Collisions 2 6 1 1 4 14
Coll/trip 0.117647 0.4 0.05 0.0625 0.222222 0.162791

1 2 3 4 5 Overall
Min 56 56 60 56 56 56
Max 188 199 277 159 146 277
Mean 103.059 109.421 134.643 95.682 91.476 106.856
Trips 17 19 14 22 21 93
Collisions 2 2 3 0 0 7
Coll/trip 0.117647 0.105263 0.214286 0 0 0.075269

1 2 3 4 5 Overall
Min 56 65 73 57 61 56
Max 139 386 473 178 146 473
Mean 100.941 142.917 167.643 108.947 93.429 122.775
Trips 17 12 14 19 21 83
Collisions 0 2 5 4 2 13
Coll/trip 0 0.166667 0.357143 0.210526 0.095238 0.156627
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TABLE II: SUMMARY OF EXTENDED SIMULATION RESULTS 

Overall 
Performance 

Rule Based 
Agent 

DTA without 
Updating 

DTA with 
Parameter 
Updating 

DTA with 
Parameter and 
Utility Updating 

Min Trip Length 56 56 56 56 
Max Trip Length 1048 451 394 353 
Mean Trip Length 132.2737 112.2108 116.3795 107.6513 
Total Trips 558 647 623 671 
Total Collisions 15 98 84 87 
Collisions/Trip 0.0269 0.1515 0.1348 0.1297 
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