

Abstract—This paper details a learning decision-theoretic

intelligent agent designed to solve the problem of guiding vehicles
in the context of Personal Rapid Transit (PRT). The intelligent
agents are designed using Bayesian Decision Networks. The
agents are designed to utilize the known methods of machine
learning with Bayesian Networks (BN): parameter learning and
structure learning. In addition, a new method of machine learning
with BNs, termed utility learning in this paper, is introduced. BN
software for Matlab is used to realize the proposed agent.
Additional software is written to simulate the PRT problem using
various intelligent agents that utilize one or more learning
methods.

Index Terms—Bayesian Decision Networks, Machine Learning,
Multi-agent systems, Personal Rapid Transit.

I. INTRODUCTION
This paper’s goal is to study the design of intelligent agents

that operate in a multi-agent environment. An intelligent agent
is a machine that is capable of perceiving its environment and
acting upon that environment to change it from its current state
to a desired state. The ability to learn is important for an agent
to change its structure, program, or responses in a manner that
is expected to improve its future performance [1]. As the
complexity of intelligent agents increase, the agents will need
the ability to perform unsupervised learning, which is learning
without input from human controllers or observers.

The decision theoretic agents (DTA) are designed using
Bayesian Decision Networks (BDN). Bayesian Decision
Networks are formed by two network structures, Bayesian
Networks (BN) and Influence Diagrams (ID) [2]. A BN also
known as a Belief Network is a probabilistic model encoded by
a graphical structure that allows designers to represent
variables of interest and the conditional dependencies between
them. The strength of BNs over some other probabilistic
models is that a BN allows the incorporation of prior
knowledge or belief in the model. Influence Diagrams add
decision making capabilities to the Bayesian Networks because
it enables the agent to decide which action to take. Influence
Diagrams apply utility theory to decision networks by allowing

Manuscript received March 4, 2007.
I. C. Umez-Eronini is with Rochester Institute of Technology,

Rochester, NY 14623 USA (phone: 850-590-2232; e-mail:
iheanyi.umez.eronini@gmail.com).

II. Ferat Sahin is with Rochester Institute of Technology, Rochester,
NY 14623 (phone: 585 475 2175, email: feseee@rit.edu)

a designer to specify how much weight each state of a set of
variables has on the available actions that can be taken. Section
3 contains a detailed description of the components of a BDN
and the methodology used to arrive at decisions.

There are two methods of learning with BNs; structure
learning that allows determining network structure from data
and parameter learning that allows determining the conditional
probability relationships between network nodes. In this paper,
we introduce a method of learning with IDs termed utility
learning, developed in [3, 8], where an agent changes the utility
function or weighting given to influence variables in order to
change the way it makes its decisions.

The decision theoretic agent designed in this paper is applied
to the problem of vehicle control in a Personal Rapid Transit
(PRT) system. The nature of PRT makes the problem
multi-agent in nature since the actions an agent takes have
definitive effect on those that other agents can make. A
simulator is created to enable testing of the decision theoretic
agents and comparison of the performance of utility learning to
that of parameter and structure learning. The DTA will be built
using the Bayesian Network Toolbox (BNT) for Matlab by
Kevin Murphy and the Structure Learning Package (SLP) by
Philippe Leray which adds additional structure learning
functions including ones that handle learning with incomplete
data to the BNT [4].

II. PERSONAL RAPID TRANSIT
Personal Rapid Transit (PRT) is a proposed public transport

idea that offers automated on-demand non-stop point-to-point
transportation between one’s start and destination [5].
Passengers enter and exit the vehicles at stops that are not along
the main guide-way allowing the vehicles to always travel at
top speed between destinations. The issues involved in
implementation of PRT are those of design, construction and
cost of guide-ways, spacing between vehicles when traveling at
speed, other safety considerations, and the control system of the
vehicles (which are assumed to be autonomous) as well as
balancing the cost of running all the vehicles on the system
versus the actual demand. This can become complex as demand
can shift to different parts of the system, as opposed to being
balanced across the entire system, and ridership of public
transportation tends to fluctuate depending on the time of day,
season, or special occasions.

The autonomous vehicles that implement a PRT system must
simultaneously perform numerous tasks. The vehicles need to

Decision Theoretic Agent Design for Personal
Rapid Transit Systems

Iheanyi C. Umez-Eronini, Ferat Sahin

Engineering Letters, 15:2, EL_15_2_13
__

(Advance online publication: 17 November 2007)

be able to plan the most efficient routes along the transit
system, maintain occupant safety and comfort by avoiding
collisions with other vehicles as well as sudden accelerations or
decelerations. In order for the system to function in an
on-demand manner throughout any given day, vehicles need to
learn ridership patterns and adjust their actions accordingly. A
centralized control system that directs each individual vehicle
is likely to be of great computational complexity and vulnerable
in that failure of the central system could lead to a system-wide
shutdown. The individual vehicles will need to be able to pilot
themselves as well as plan routes that take into account the
movements of other vehicles.

Testing of the intelligent agent is done using a simulator
developed to model a simplified version of the PRT problem.
This work makes the assumption that the guide-ways allow for
travel of only one vehicle at a time. This is similar to having a
train system with only one set of tracks that must be used for
travel in either direction. As in the PRT concept, the stops will
be off the main guide-ways. The vehicles (intelligent agents)
will respond to calls and attempt to service them as quickly as
possible. The overall control problem is simplified by allowing
the vehicles to stop along a guide-way instead of always
traveling at full speed. The agents have a finite-range
360-degree sensor capable of detecting other agents and their
current direction of travel. Additionally, the agents have a full
map of the transit system and always know their precise
location on it. The vehicle actions are limited to traveling in one
of four directions (north, south, east, or west), or not moving at
all. The agent’s overall goals are to service calls as quickly as
possible without any collisions.

The simulator maintains a static map of the guide-ways and
destinations. This map holds information indicating which
locations are guide-ways, intersection points, or destination
points. The simulator provides functions that generate goals for
each agent, a route planner, and data collection from an agent’s
simulated sensors.

Figure 1: PRT Map Showing Sensor Radius of an Agent
The simulator can also graphically display the map overlaid
with a symbol representing an agent at its current location.

This provides a means of qualitatively analyzing the
performance of an agent planner as well as rapid development
and debugging of simulator code. Fig. 1 shows the PRT system

map with a single agent facing east. The circle represents the
limits of the agent’s sensors. The sensors are modeled such that
each intelligent agent can determine the exact locations of any
other vehicles detected directly in front of the agent and a sector
in the sensor circle where any other agents are detected.

III. BAYESIAN DECISION NETWORKS
A BN is a directed acyclic graph (DAG) that is constructed

by a set of variables coupled with a set of directed edges
between variables where each set of variables contain a finite
set of mutually exclusive states [6]. These variables are known
as the chance nodes of the graph. These nodes are not limited to
being random variables; they can be known elements or
observed entities. Fig 2 shows an example BN-DAG. In a BN,
directed edges exist between two variables that are directly
related. In terms of probability, there is a conditional
dependency between the two variables. For example, in Fig 2,
there are conditional dependencies between A and C and
between B and C. The absence of a directed edge between two
variables denotes a conditional independency. So, A and B are
conditionally independent given C. So, while it is possible that
the events A and B are not independent, once C is known,
knowledge about A cannot affect the probability of event B.

Associated with each node is a probability table that models
the chance of a node being in one of its states. Nodes that have
parents are conditionally dependent on at least one other node
and thus have associated conditional probability tables (CPT).
These tables allow designers to encode prior knowledge or
belief. If an agent is unable to observe the state of a variable, it
can estimate its belief that the node is in a particular state using
the known probability tables and relationships between
variables by a process called BN inference. This is an
algorithmic process that utilizes Bayes Rule, the Law of Total
Probability, and other probability rules to estimate the probable
state of unobserved variables.

P(A) P(B)

P(C|A,B)

A

C

B

Figure 2: Example Bayesian Network

It is this process that enables an agent to evaluate its belief
about its environment and other agents.

Bayesian decision networks extend BNs with IDs. Influence
diagrams introduce decision nodes to BNs. Decision nodes are
a set of mutually exclusive choices available to the decision
maker. Influence Diagrams are a network structure that
graphically represents the relationships between decisions
nodes, chance nodes, and utility nodes. The utility node is a

Engineering Letters, 15:2, EL_15_2_13
__

(Advance online publication: 17 November 2007)

function that maps all the possible combinations of decisions
and the chance nodes the utility node depends upon to a value
representing the desirability of those combinations. The
objective of an ID is to choose the decision that maximizes (or
minimizes) the value of the utility node.

If the state of one of the chance nodes that the utility node
depends upon is unknown or unobserved, then the IDs decision
is indeterminate. By combining IDs with BNs, an agent can
make decisions in spite of uncertainty by estimating the states
of unobserved variables. This is a very powerful tool for
designing intelligent agents since it is impossible for an agent to
have complete knowledge of its environment’s state at any
given time. In [20], expected utility is given by (1).

∑=
i

ii AOUAEOPEAEU)|(),|()|((1)

In (1), E is the available evidence, A is an action with
possible outcome state Oi, U(Oi |A) is the utility of each of the
outcome states, given that action A is taken and P(Oi |E,A) is
the conditional probability distribution of the possible outcome
states in light of the observation of evidence E and that action A
is taken [7].

IV. DESIGN OF THE INTELLIGENT AGENTS
In this work, the simulator determines, ahead of time, the

current route each agent will take in the PRT system. Based on
the sensor data, the agent decides whether to move along its
route, halt, that is to remain on the route but don’t move, or to
take a temporary detour from its current route to a temporary
new goal location. Agents can also prematurely return to their
original path from temporary route. The simulator handles
generating the alternate route goal point (at random) and uses
its path planning function to reroute the agent.

The first agent developed is the rule-based planner. It serves
as a baseline for comparing the performance of the BN based
planners for several reasons:

1. It would be the simplest to develop (once a set of rules
governing agent behavior have been established).

2. Rule based planners are typically the types of controllers
most system designers initial use baring experience or
knowledge of more advanced methods.

3. The planner itself is simple, its just made up of a series
of if-then statements (with one exception); if the
planners developed in this research cannot meet or
exceed its performance, then they’re not worth the extra
time and development effort necessary for their
implementation.

To aid in developing the rules for the planner, it is necessary
to first establish the system goals. Keeping in line with the
real-world concerns of PRT, the absolute goal is that the system
maintains safety – agents cannot ever crash into each other. In
terms of the simulator, that means that the agents cannot occupy
the same block at the same time. The second PRT goal is that
agents must travel to their goal points as quickly as possible
without violating the first. Since the simulator plans the route
for each agent to its goal points, the main job of the planner is to
ensure that an agent does not have a collision and direct it along
its path in such a way that it can travel to its target position as

fast as possible. As a result, when developing the rules that
govern agent actions in situations where another agent is
nearby and could impede its travel, the rules were designed
such that as much as possible agents will remain in motion
towards their target. A full discussion of the rules can be found
in [3, 8].

In developing the rules for the rule-based planner, decisions
were made which directly linked a specific agent-environment
state to a set of observations. One of the reasons for using BNs
is the realization that the observation-state linkages may not
always be correct since these determinations were made with
limited knowledge of actual system dynamics. A BN, which
models the system, allows the designer to over time, generate a
statistically accurate set of observation-state linkages.
Additionally, BNs allows the designer to incorporate the
original belief of the system behavior – effectively what is
encoded by the rules developed in the previous section. This
means that a BN can capture all the rules developed for the rule
based planner and through parameter updating, develop a more
accurate association of observations to agent-system states.

The BN agents are formed from the rules used to create the
rule-based planner. Nodes are variables that model possible
sensor readings to which a PRT agent would have access. The
arcs denoting conditional probability relationships were
determined by grouping together all of the variables used to
implement each rule. The utility table, a weighting of each
combination of decision values and influence node states was
manually specified to select actions the designer anticipated
would achieve the objectives of guiding agents to their target
locations as quickly as possible while minimizing collisions.

Figure 3: Internal Agent Model of Itself and Its
Environment

Each agent maintains a separate BN to model the behavior of
other agents in the system, and a single internal BN that models
the relationships between the actions that the other agents take,
the environment, and agent goals. Fig. 3 shows the internal
agent BN. The actual networks created with the BNT do not
incorporate the utility and decision nodes. The operation of
those nodes is instead carried out in software with functions
specifically written for the purpose of this work.

The names shown in Fig. 3 for each node are the ones used in
the code written to implement the agents. To simplify the
design, each node, with the exception of utility and decision
nodes, is a binary node taking on either a true or false value.

Engineering Letters, 15:2, EL_15_2_13
__

(Advance online publication: 17 November 2007)

The probability tables describe the chances of a node being in
either the true or false state given the possible states of the other
variables. The node names prefixed with an ‘o’ indicate
variables which depend upon observations of, or predictions
about, other agents.

IntNear is a node indicating whether an intersection was
detected within an agent’s scan (or field of view). InsInt
indicates whether a particular agent is inside of an intersection.
As can be seen from the BDN in Fig. 3, knowledge of being
inside an intersection depends upon whether or not there is
even one detected in an agent’s field of view. FreeExit
indicates whether there is a potential direction by which an
agent that is in a detected intersection could leave it. The value
of this node logically depends upon whether there is an
intersection detected by an agent and whether other agents are
also detected. The oIsNear indicates if another agent was
detected within a particular scan while oIsAhd indicates that not
only is an agent detected, but also the detect agent is directly
ahead of the one doing the scan. The Mov indicates whether the
current agent is moving or standing still while oDec gives the
move or stay decision predicted by BDN modeling the other
agent. The oRofWDir indicates whether or not the other agent is
detected in the sector of the scan corresponding to an agent that
would have right-of-way at an intersection. The oInInt
indicates whether the other agent is in the intersection and
oRofW indicates whether the other agent actually has
right-of-way.

The BN that each agent uses to model the others is almost
identical, lacking the oDec, and oIsNear nodes and replacing
the oIsAhd node with AgtNear. While in the internal agent
model, the node values are taken directly from sensor readings,
in the other agent BDN, the node values are the predicted
sensor readings of the other agent. AgtNear predicts whether or
not the other agent would itself detect other agents.

Even though oIsAhd can be seen to depend on oIsAhd both
are needed in determining whether or not there is a free exit
from an intersection. For example, while oIsNear may point to
a potential block from exiting an intersection, if the InsInt value
is true, indicating that the current agent is inside an intersection
and oIsAhd is also true, then there definitely is a block from an
intersection.

V. LEARNING WITH THE INTELLIGENT AGENTS

A. Parameter Learning
Parameter learning is the process by which the CPTs that

describe the relationship between a node, its parents and
descendents, are updated by the observation of new data.
Parameter learning enables an agent to improve its belief of the
environment’s states. It is desirable that the agent use new
observations to refine its belief, rather than using the new
observations to redefine its belief. To do this, sample
observations are generated from the existing CPT and added to
the new observations before executing the parameter learning
function.

Parameter updating is done after 500 iterations of the
simulator for each agent. The BNT function, learn_params_em
is used because it is able to handle situations where data is

missing. The function, learn_params_em uses 100 samples
from the observed data and existing BN to infer the values of
the unobserved parameters. This allows the function to update
the CPTs even when data is not observed for a particular node.
Prior distribution data is incorporating by generating 100
additional sample observations from the existing network. This
ensures the prior distribution carries half as much weight as the
recent observations. As a result, the system should be able to
react to changes in system parameters while still taking into
account prior behavior.

B. Structure Learning
Structure learning is the process where the BN structure, the

arcs that denote conditional dependencies between nodes, is
learned from data. Structure learning enables an agent to
improve its model of the relationships between environment,
the internal agent, and other agent states. As with parameter
updating, it is desirable that agents use new observations to
refine the network structure, rather than defining a new
structure based solely on the new observations.

In the agent implementation that utilizes structure updating,
the structure learning step is executed once every 100 simulator
iterations. It uses the same dataset as the parameter update, the
100 most recent observations plus 100 sample observations
from the currently existing network. In order to deal with cases
with missing or unobserved data, the learn_struct_em function
from the SLP is used.

C. Utility Learning
Parameter and structure learning are tools that have been

designed and studied for BNs. These tools allow automated
learning of all the components necessary to form a BN model.
With a BDN, a couple additional network structures are added:
decision and utility nodes. In [3, 8], it is proposed that an
additional learning step can be performed for utility nodes.
Utility learning is the process where the utility tables that
weight the combinations of decisions and influence nodes are
updated by the observation of whether or not a selected
decision allowed the agent to successfully change the
environment from its current state to the desired one.

The utility update function is given by (2). Rconst is the
reinforcement constant. This value is small and positive when
the action taken leads to a desired outcome. When the agent’s
decision does not yield the desired outcome, Rconst is a large and
negative value. Thus, the utility update weakly reinforces good
decisions and strongly penalizes bad ones.

)|(*)|()|(EOPRAOUAOU iconstoldinewi += (2)

Equation (2) relies on the assumption that incorrect decisions or
predictions are made when the expected utility calculated for an
incorrectly valued influence node is highest. The expected
utility will be highest when P(Oi|E), the probability of outcome
Oi given evidence E, is closest to one. Thus, there is a
secondary assumption that incorrect decisions occur when
outcome probability for the incorrectly valued influence node is
closest to one and outcome probabilities for the other nodes are
not. Then, the utility update ensures that when incorrect
decisions are made, the utility values for the incorrectly valued

Engineering Letters, 15:2, EL_15_2_13
__

(Advance online publication: 17 November 2007)

influence nodes decrease by a greater amount than that of the
other influence nodes.

VI. SIMULATION RESULTS
As mentioned earlier, the overall system goals are to

maintain safety by not allowing agents to “collide” with each
other and for agents to travel to their destinations in the fastest
time (or least number of simulator iterations). Keeping in line
with the PRT system being modeled, the travel time being
recorded is that of an agent from when it has been answered a
call to when it finishes servicing that call (picking up and
dropping off a passenger). A two-agent system is simulated
using the rule based planner, then iterating through each stage
of the DTA. Data is collected at the end of 1000 iterations of the
simulator. The variables tracking the number of iterations per
trip and number of collisions are reset for use in the next
simulation run. This set of simulations consisted of five runs for
every agent.

Two sets of simulations are run. The initial results, which are
show in Table I, are those from a set of 5 consecutive sets of
1000 simulator iterations. An extended simulation was done
over 36 consecutive sets of 1000 simulator iterations. These
results are summarized in Table II.

The simulation results show that in the area of trips
completed and average ticks per trip, the BN based agents all
outperform the rule-based agent. Also, the addition of utility
updating to an agent with parameter updating shows that BN
machine learning methods have a cumulative effect. It is
notable that structure learning did not yield much improvement
to these agents and in some cases, actually decreased their
performance. This could be due to the small amount of data
used for structure learning or the possibility that the original
agent structures were already close to being optimum. Another
result of note is that the rule-based agent had much lower
collision numbers than the BN agents. This could arise from a
bias by the designer towards intelligent agents that prioritize
efficient trip completions over collisions as well as the simple
method used to perform the utility update.

VII. DISCUSSION
Utility updating enabled agents to better achieve the goal of

increasing the PRT system’s throughput. However, the second
goal, minimizing collisions, was not achieved. The poor
performance of the all BN-based agents with respect to
collisions indicates that this is most likely attributable to the
agent structure designed in this thesis. Since the
implementation of structure updating did not readily lend itself
to simulation and did not show significant promise for
increasing agent performance in the initial simulations, it is
unknown whether structure updating would improve the
collision numbers for the BN-based agents.

Excluding agents that utilized structure updating, it is clear
that utility updating had a positive albeit very small effect of
agent performance. This could be due to the simple method
used to perform the utility update as seen in (2), or the way in

which Rconst is chosen. This work indicates that while utility
updating has promise as an additional learning tool for
intelligent agents, more work is needed to define a
methodology for creating utility update functions that can
deliver significant results.

REFERENCES
[1] N. Nilsson, “Introduction to Machine Learning”, 2005. [Online].

http://robotics.stanford.edu/people/nilsson/MLDraftBook/mlbook.pdf
[2] F. Sahin and J. S. Bay, “A biological decision-theoretic intelligent agent

solution to a herding problem in the context of distributed multi-agent
systems”, SMC 2000, Oct 2002, IEEE International Conference of
Systems, Man, and Cybernetics, 2000.

[3] I. Umez-Eronini, “Online Structure, Parameter, and Utility Updating of
Bayesian Decision Networks for Cooperative Decision Theoretic
Agents”, M.S. Thesis, Rochester Institute of Technology, Rochester NY,
2007.

[4] K. Murphy. How to Use the Bayes Net Toolbox, 2004. [Online]
Available: http://bnt.sourceforge.net/usage.html

[5] Wikipedia, (2006, April). Personal Rapid Transit, [Online] Available:
http://en.wikipedia.org/wiki/Personal_rapid_transit

[6] F. Sahin, J. S. Bay, “Learning from Experience Using a
Decision-Theoretic Intelligent Agent in Multi-Agent Systems”, in Proc.
IEEE Mountain Workshop on Soft Computing in Industrial Applications,
pp 109-114, 2001.

[7] K. B. Korb, A. E. Nicholson. Bayesian Artificial Intelligence. New York:
Chapman & Hall/CRC, 2004

[8] I. Umez-Eronini and Ferat Sahin, “Design of Intelligent Agents for
Personal Rapid Transit”, presented in the IEEE International Conference
on System of Systems Engineering, April 2007.

Iheanyi Umez-Eronini is a M.Sc. student in the Electrical Engineering
department at Rochester Institute of Technology. Currently, he is an embedded
systems engineer at Syn-Tech Systems in Florida. His research interests are in
robotics, Bayesian Networks, personal transit systems, embedded systems, and
multi-agent systems. He was an active member of RIT Multidisciplinary
Robotics Club and led the team’s first entry to the Intelligent Ground Vehicle
Competition in 2006 and help design robots for other competitions such as the
Trinity Firefighting Competition.

Ferat Sahin received his B.Sc. in Electronics and Communications
Engineering from Istanbul Technical University, Turkey, in 1992 and M.Sc.
and Ph.D. degrees from Virginia Polytechnic Institute and State University in
1997 and 2000, respectively. In September 2000, he joined Rochester Institute
of Technology, where he is an Associate Professor and the director of Multi
Agent Bio-Robotics Laboratory. His current research interests are System of
Systems, Swarm Intelligence, Robotics, MEMS Materials Modeling,
MEMS-based Microrobots, Micro Actuators, Distributed Computing,
Distributed Multi-agent Systems, and Structural Bayesian Network Learning.
He has over 70 conferences and journals in these areas. He is also the co-author
of a book called “Experimental and Practical Robotics”. He is also an associate
editor of IEEE Systems Journal and International Journal of Computers and
Electrical Engineering. He is a member of the IEEE Systems, Man, and
Cybernetics Society, Robotics and Automation Society, and Computational
Intelligence Society. He has been the Secretary of the IEEE SMC society since
2003. He has received an “Outstanding Contribution Award” for his service as
the SMC Society Secretary. He is the Publication Co-Chair for the IEEE SMC
International Conference on System of Systems Engineering (SOSE 2007).

Engineering Letters, 15:2, EL_15_2_13
__

(Advance online publication: 17 November 2007)

Table I: Initial Simulation Results for a System with Two Agents

1 2 3 4 5 Overall
Min 56 68 73 56 64 56
Max 224 287 387 368 283 387
Mean 108.267 127.188 159.538 117.529 123.667 127.238
Trips 15 16 13 17 12 73
Collisions 2 0 0 2 0 4
Coll/trip 0.133333 0 0 0.117647 0 0.054795

1 2 3 4 5 Overall
Min 59 56 56 65 56 56
Max 147 297 281 173 147 297
Mean 95.059 128.733 104.500 108.211 104.579 108.216
Trips 17 15 20 19 19 90
Collisions 1 2 3 2 1 9
Coll/trip 0.058824 0.133333 0.15 0.105263 0.052632 0.1

1 2 3 4 5 Overall
Min 56 56 62 56 59 56
Max 278 172 188 243 174 278
Mean 112.143 97.227 97.550 119.833 110.389 107.428
Trips 14 22 20 18 18 92
Collisions 2 0 2 1 2 7
Coll/trip 0.142857 0 0.1 0.055556 0.111111 0.076087

1 2 3 4 5 Overall
Min 61 56 56 62 62 56
Max 145 303 202 290 334 334
Mean 98.000 126.600 109.300 128.688 108.389 114.195
Trips 17 15 20 16 18 86
Collisions 2 6 1 1 4 14
Coll/trip 0.117647 0.4 0.05 0.0625 0.222222 0.162791

1 2 3 4 5 Overall
Min 56 56 60 56 56 56
Max 188 199 277 159 146 277
Mean 103.059 109.421 134.643 95.682 91.476 106.856
Trips 17 19 14 22 21 93
Collisions 2 2 3 0 0 7
Coll/trip 0.117647 0.105263 0.214286 0 0 0.075269

1 2 3 4 5 Overall
Min 56 65 73 57 61 56
Max 139 386 473 178 146 473
Mean 100.941 142.917 167.643 108.947 93.429 122.775
Trips 17 12 14 19 21 83
Collisions 0 2 5 4 2 13
Coll/trip 0 0.166667 0.357143 0.210526 0.095238 0.156627

B
N

 w
/ P

ar
am

et
er

,
U

til
ity

, a
nd

 S
tru

ct
ur

e
U

pd
at

in
g

B
N

 w
/

P
ar

am
et

er
 a

nd

U
til

ity
 U

pd
at

in
g

R
ul

e
B

as
ed

Pl

an
ne

r
B

N
 W

ith
ou

t a
ny

U

pd
at

in
g

B
N

 w
ith

P

ar
am

et
er

U

pd
at

in
g

on
ly

B
N

 w
/

P
ar

am
et

er
 a

nd

S
tru

ct
ur

e
U

pd
at

in
g

TABLE II: SUMMARY OF EXTENDED SIMULATION RESULTS

Overall
Performance

Rule Based
Agent

DTA without
Updating

DTA with
Parameter
Updating

DTA with
Parameter and
Utility Updating

Min Trip Length 56 56 56 56
Max Trip Length 1048 451 394 353
Mean Trip Length 132.2737 112.2108 116.3795 107.6513
Total Trips 558 647 623 671
Total Collisions 15 98 84 87
Collisions/Trip 0.0269 0.1515 0.1348 0.1297

Engineering Letters, 15:2, EL_15_2_13
__

(Advance online publication: 17 November 2007)

