

Abstract—Quantum computer algorithms require an ‘oracle’

as an integral part. An oracle is a reversible quantum Boolean
circuit, where the inputs are kept unchanged at the outputs and
the functional outputs are realized along ancillary input
constants (0 or 1). Recently, a nearest neighbour template based
synthesis method of quantum Boolean circuits has been
proposed to overcome the adjacency requirement of the input
qubits of physical quantum gates. The method used SWAP
gates to bring the input qubits of quantum CNOT or C2NOT
gates adjacent. In this paper, we propose cost reduction
techniques such as ancillary constant determination to reduce
the number of NOT gates and variable ordering and product
grouping to reduce the number of SWAP gates required in
nearest neighbour template based synthesis. The proposed
approach significantly reduces the quantum realization cost of
the synthesized quantum Boolean circuit than that of the
original nearest neighbour template based synthesis.

Index Terms— Ancillary constant determination, nearest
neighbour template, product grouping, quantum Boolean
circuit, fixed polarity Reed-Muller expression, reversible logic,
variable ordering

I. INTRODUCTION
Quantum computer algorithms require a black box called

‘oracle’. An oracle is a reversible quantum Boolean circuit,
which takes a set of inputs and produces a set of functional
outputs. The inputs are kept unchanged at the outputs and the
functional outputs are generated along ancillary input
constants (0 or 1). Thus, if the oracle has n inputs and m
functional outputs, then the oracle is realized as a (n +
m)-qubit reversible quantum Boolean circuit [1], where the
circuit has (n + m) inputs and outputs. Therefore, synthesis of
reversible quantum Boolean circuit is very important in
quantum computation.

Younnes and Miller [2] introduced representation of
Boolean quantum circuits as Reed-Muller expression using
(k + 1)-qubit CkNOT gates. However, physical realization of
CkNOT gate for k > 2 is practically very difficult and this
physical constraint requires that quantum Boolean circuit be
synthesized using CkNOT gates with k ≤ 2. A (k + 1)-qubit
CkNOT gate has k controlling inputs and one target input. The
target qubit value is inverted if and only if all the controlling
qubit values are 1. Physical realizations of these quantum
gates require that the controlling qubits and the target qubit
be physically adjacent [3]. This constraint also requires that,

Manuscript received December 11, 2007.
Mozammel H. A. Khan is with the Department of Computer Science and

Engineering, East West University, 43 Mohakhali, Dhaka 1212, Bangladesh,
phone: +880-2-9882308; fax: +880-2-8812336; e-mail: mhakhan@
ewubd.edu.

in a quantum Boolean circuit, the controlling qubits and the
target qubit of a quantum gate must be brought to physically
adjacent position using quantum SWAP gates. For this
purpose, Chakrabarti and Sur-Kolay [4] introduced a nearest
neighbour template based synthesis, where the controlling
qubits and the target qubit are brought to adjacent positions
by using quantum SWAP gates. They also used a quantum
gate library consisting of only NOT, CNOT, C2NOT, and
SWAP gates to overcome the physical realization problem
with k > 2. In this nearest neighbour template based
synthesis, besides NOT, CNOT, and C2NOT gates, a large
number of SWAP gates are needed. In the present paper, we
have reduced the number of SWAP gates by using variable
ordering and product grouping techniques. We have also
reduced number of NOT gates by judicious determination of
ancillary constant value.

The rest of the paper is organized as follows. We introduce
NOT, CNOT, C2NOT, and SWAP gates in Section II. Then
we discuss Reed-Muller expressions of a Boolean function in
Section III. In Section IV, we discuss quantum gate network
for fixed polarity Reed-Muller (FPRM) expression and also
discuss the ancillary constant determination to reduce the
number of NOT gates. We then discuss nearest neighbour
template based synthesis of quantum gate network for FPRM
expression from [4] in Section V. In Section VI, we propose
variable ordering and product grouping techniques to reduce
the number of SWAP gates in nearest neighbour template
based synthesis of quantum gate network. We calculate
quantum gate counts and quantum realization costs of several
FPRM expressions and compare with that of [4] in Section
VII. Finally, in Section VIII, we conclude the paper.

II. SOME QUANTUM GATES
In the nearest neighbour template based synthesis of [4], a

quantum gate library consisting of NOT, CNOT, C2NOT,
and SWAP gates is used. In this section, we introduce these
gates. These gates are shown in Figure 1. The NOT gate maps
the input x → x ⊕ 1, where the ⊕ symbol represents the
EXOR operation. The NOT gate inverts the input qubit value
at the output. The CNOT gate maps two inputs (x, y) → (x, y
⊕ x), where x is the control input and y is the target input. The
CNOT gate inverts the target qubit value at the output if and
only if the control qubit value is 1. The CNOT gate is also
known as Feynman gate. The C2NOT gate maps three inputs
(x, y, z) → (x, y, z ⊕ xy), where the product represents the
AND operation. Here, x and y are control inputs and z is
target input. C2NOT gate inverts the target qubit value at the
output if and only if both the control qubit values are 1. We
refer the two control lines of a C2NOT gate as top control line

Cost Reduction in Nearest Neighbour Based
Synthesis of Quantum Boolean Circuits

Mozammel H. A. Khan

Engineering Letters, 16:1, EL_16_1_01
__

(Advance online publication: 19 February 2008)

and bottom control line. C2NOT gate is also known as Toffoli
gate. The SWAP gate maps two inputs (x, y) → (y, x). A
SWAP gate exchanges the two qubit values at the output.
NMR based implementation costs of these gates are as
follows [4, 9, 10]:

• Cost of NOT gate = 1
• Cost of CNOT gate = 5
• Cost of C2NOT gate = 25
• Cost of SWAP gate = 5

x x
y xy ⊕x 1⊕x

x x
y

xyz ⊕
y

z
x

xy
y

(a) (b) (c) (d)

Figure 1. (a) NOT gate, (b) CNOT gate, (c) C2NOT gate, (d)
SWAP gate

III. REED-MULLER EXPRESSION OF A BOOLEAN FUNCTION
In [2] and also in the nearest neighbour template based

synthesis of [4], a Boolean function is represented by its
Reed-Muller expression and then the Reed-Muller
expression is realized using quantum CkNOT gates. In this
section, we discuss Reed-Muller expressions of a Boolean
function in brief.

There are many canonical two-level AND-EXOR
expressions for a given Boolean function [5]. Among them
positive polarity Reed-Muller (PPRM) expression and fixed
polarity Reed-Muller (FPRM) expressions are very popular.
In the PPRM expression, all the variables appear in
uncomplemented form throughout the AND-EXOR
expression. In the FPRM expression, a variable appears
either in complemented form or in uncomplemented form
throughout the AND-EXOR expression. If a variable appears
in uncomplemented form, we say that its polarity is 0 and if
the variable appears in complemented form, we say that its
polarity is 1. If a Boolean function has n variables, then the
n-tupple of the variable polarities represent the polarity of the
FPRM expression. As there are 2n possible choices of
polarity for an n-variable Boolean function, there are 2n
possible FPRM expressions for the function. In this respect,
the PPRM expression is an FPRM expression with polarity 0.
There are several methods of converting a Boolean function
into a given polarity FPRM expression [6-8]. Here, we will
not discuss the methods and the readers may see the
references. The 8 possible FPRM expressions for the
Boolean function

012012012012

012)7,6,5,1(),,(
xxxxxxxxxxxx

xxxf
+++=

= ∑

are given below:

00112012),,(xxxxxxxxf ⊕⊕= (polarity 0) (1)

1),,(010112012 ⊕⊕⊕⊕= xxxxxxxxxf (polarity 1) (2)

01212012),,(xxxxxxxxf ⊕⊕= (polarity 2) (3)

101212012),,(xxxxxxxxxf ⊕⊕⊕= (polarity 3) (4)

001112012),,(xxxxxxxxxf ⊕⊕⊕= (polarity 4) (5)

1),,(00112012 ⊕⊕⊕= xxxxxxxxf (polarity 5) (6)

1),,(120112012 ⊕⊕⊕⊕= xxxxxxxxxf (polarity 6) (7)

1),,(20112012 ⊕⊕⊕= xxxxxxxxf (polarity 7) (8)

These FPRM expressions are used in [4] to illustrate the
nearest neighbour template based synthesis. We will also use
these FPRM expressions for our examples.

IV. QUANTUM GATE NETWORK FOR FPRM EXPRESSION
In [4], an n-input single-output FPRM expression is

realized using the quantum gate network model of Figure 2,
where 0x to 1−nx are the n function inputs and the functional
output f is realized along an ancillary constant input c = 0. In
the quantum gate network of an FPRM expression, the
complemented variables are first realized using NOT gates.
Then, the first product term from the FPRM expression is
realized using the control inputs of a CkNOT gate and the
product is EXORed with ancillary constant 0 using the target
input of the gate. The next product term from the FPRM
expression is realized similarly and then EXORed with the
previous product term (which is the target output of the
previous CkNOT gate) using another CkNOT gate. In this
way, EXOR sum of all the product terms are realized. Then,
if the FPRM expression has a constant 1 as in (2), (6), (7), and
(8), then another NOT gate is placed along the output f (since,

xx =⊕1). Finally, the complemented variables are restored
using NOT gates. The quantum gate network for FPRM
expression

1),,(120112012 ⊕⊕⊕⊕= xxxxxxxxxf

of (7) is shown in Figure 3. Readers can see [4] for quantum
gate networks for FPRM expressions of (1), (2), (3), (4), (5),
(6), and (8). In [4], the ancillary constant c is assumed to be 0.
The problem of this assumption is that if an FPRM
expression has a constant 1 as in (2), (6), (7), and (8), then an
additional NOT is required. This NOT gate can be omitted if
we assume c = 1 for these cases. This rule can be generalized
as

Rule 1 (Ancillary constant determination): If an FPRM
expression has a constant 1 in the expression, then assume c
= 1, otherwise assume c = 0.

0x 0x
1x 1x

1−nx 1−nx
MM

c f

Figure 2. Model of quantum Boolean circuit

To describe the quantum gate network of Figure 3, we

number the input lines from 0 onward starting from the target

Engineering Letters, 16:1, EL_16_1_01
__

(Advance online publication: 19 February 2008)

input (ancillary constant). We also assume that quantum
gates are placed one after another from left to right. We
describe a gate in the quantum network using the line
numbers as follows: NOT(line number), CNOT(control line
number, target line number), and C2NOT(top control line
number, bottom control line number, target line number). For
example, the first C2NOT gate from the left in Figure 3 is
described as C2NOT (3, 2, 0). Using this convention, we
describe the quantum gate network of Figure 3 as

f = NOT(3) NOT(2) C2NOT(3, 2, 0) C2NOT(2, 1, 0)
 CNOT(3, 0) CNOT(2, 0) NOT(2) NOT(3)

2x 2x

1x 1x

0x 0x
1 f0

1
2
3

no Line

Figure 3. Quantum gate network for FPRM expression

1),,(120112012 ⊕⊕⊕⊕= xxxxxxxxxf

V. NEAREST NEIGHBOUR TEMPLATE BASED SYNTHESIS OF
QUANTUM GATE NETWORK FOR FPRM EXPRESSION

Reader can see that, in Figure 3, the control lines of
C2NOT(3, 2, 0) gate are adjacent but they are not adjacent to
the target line. Similarly, the control line of CNOT(3, 0) and
CNOT(2, 0) gates are not adjacent to the target line. The
control lines of these gates are to be brought adjacent to the
target line using SWAP gates. In [4], nearest neighbour
templates are introduced for this purpose as shown in Figure
4. We describe a SWAP gate as SWAP(top line number,
bottom line number). Then, we can describe the templates of
Figure 4 as

C2NOT(3, 2, 0) ≡ SWAP(2, 1) SWAP(3, 2) C2NOT(2, 1, 0)
 SWAP(3, 2) SWAP(2, 1)

C2NOT(3, 1, 0) ≡ SWAP(3, 2) C2NOT(2, 1, 0) SWAP(3, 2)

CNOT(3, 0) ≡ SWAP(3, 2) SWAP(2, 1) CNOT(1, 0)

 SWAP(2, 1) SWAP(3, 2)

CNOT(2, 0) ≡ SWAP(2, 1) CNOT(1, 0) SWAP(2, 1)

0
1
2
3

no Line

≡

(a)

≡

(b)

≡

(c)
0
1
2
3

≡

(d)

Figure 4. Nearest neighbour templates for (a) C2NOT(3, 2,
0), (b) C2NOT(3, 1, 0), CNOT(3, 0), and CNOT(2, 0)

The nearest neighbour templates require a large number of
SWAP gates. In [4], rules for calculating the number of
SWAP gates are given, but the rule statements are ambiguous
and do not directly agree with the examples. However, the
example calculations are correct. Here, we state rules for
calculating SWAP gates very clearly.

Rule 2 (Number of SWAP gates needed for C2NOT gate):
Let, in a C2NOT gate, t be the top control line number and b
be the bottom control line number. Then the number of
SWAP gates required to bring the control inputs adjacent to
the target input is 2(t + b −3).

Example: For C2NOT(3, 2, 0) gate, t = 3 and b = 2. Then the
number of SWAP gates needed is 2(3 + 2 − 3) = 4.

Rule 3 (Number of SWAP gates needed for CNOT gate):
Let, in a CNOT gate, c be the control line number. Then the
number of SWAP gates required to bring the control input
adjacent to the target input is 2(c −1).

Example: For CNOT(3, 0) gate, c = 3. Then the number of
SWAP gates needed is 2(3 − 1) = 4.

Now, if we replace the C2NOT(3, 2, 0), CNOT(3, 0), and
CNOT(2, 0) gates of Figure 3 by their corresponding
templates, we get the quantum gate network of Figure 5,
which requires 10 additional SWAP gates. The quantum gate
network of Figure 5 can be described as

f = NOT(3) NOT(2) SWAP(2, 1) SWAP(3, 2)

 C2NOT(2, 1, 0) SWAP(3, 2) SWAP(2, 1) C2NOT(2, 1, 0)
 SWAP(3, 2) SWAP(2, 1) CNOT(1, 0) SWAP(2, 1)
 SWAP(3,2) SWAP(2, 1) CNOT(1, 0) SWAP(2, 1)
 NOT(2) NOT(3)

2x 2x

1x 1x

0x 0x
1 f

Figure 5. Quantum gate network for FPRM expression

1),,(120112012 ⊕⊕⊕⊕= xxxxxxxxxf with SWAP
gates.

VI. VARIABLE ORDERING AND PRODUCT GROUPING
From Rules 2 and 3, we see that the number of SWAP

gates is directly proportional to the distance from the target
input to the control inputs. We can reduce these distances by
judicious ordering of the variables and grouping of the
products of the FPRM expression. We propose here
techniques for such variable ordering and product grouping.

The philosophy of variable ordering is to bring the frequent
variables closer to the target input so that the number of
SWAP gates needed to bring the variables adjacent to the
target input is reduced. The variable ordering technique is
discussed below:

We construct a variable occurrence table as shown in
Table 1. The first column lists the variables of the
function. The next few columns (exactly equal to the

Engineering Letters, 16:1, EL_16_1_01
__

(Advance online publication: 19 February 2008)

number of products in the FPRM expression) represent
the products of the FPRM expression. We then
determine the occurrence of the variables in the
products of the FPRM expression by putting 1 in the
corresponding cells of the table. For example, variable

2x occurs in the products 12 xx and 2x . Therefore, we
put 1s in the intersections of the columns corresponding
to the products 12 xx , 2x and the row corresponding to
the variable 2x . In this way, we fill up the occurrence
information in the table. Then, we calculate total
occurrence of the variables. For example, variable 2x
occurs twice and its total occurrence is 2. Then we order
the variables according to their decreasing order of total
occurrence. Tie is broken arbitrarily. In Table 1, the
order of the variables is 021 xxx << and this ordering is
indicated by their order number in the last column.

Table 1. Variable occurrence table for the FPRM expression

1),,(120112012 ⊕⊕⊕⊕= xxxxxxxxxf .
 Products Total Variable

Variable
12 xx 01xx 2x 1x occurrence order

2x 1 1 2 1

1x 1 1 1 3 1

0x 1 1 1

We then rewrite the function using the decided variable

order. The FPRM expression

1),,(120112012 ⊕⊕⊕⊕= xxxxxxxxxf

of (7) is now rewritten as

1),,(120121021 ⊕⊕⊕⊕= xxxxxxxxxf . (9)

 The quantum gate network for the FPRM expression of (9) is
shown in Figure 6. The quantum gate network of Figure 6
needs only 4 SWAP gates compared to 10 SWAP gates in the
quantum gate network of Figure 5. The quantum gate
network of Figure 6 can be represented as

f = NOT(2) NOT(1) C2NOT(2, 1, 0) SWAP(3, 2)

 C2NOT(2, 1, 0) SWAP(3, 2) SWAP(2, 1) CNOT(1, 0)
 SWAP(2, 1) CNOT(1, 0) NOT(1) NOT(2)

2x 2x

1x 1x

0x 0x

1 f
Figure 6. Quantum gate network for FPRM expression

1),,(120121021 ⊕⊕⊕⊕= xxxxxxxxxf with SWAP gates.

Now, we will discuss the product grouping technique.
The motivation of product grouping is illustrated using the
quantum gate network of Figure 7. Figure 7(a) represents the
quantum gate network with SWAP gates for the example
FPRM expression

BACBDDCBAF ⊕⊕=),,,(1 , (10)

which needs 10 SWAP gates. If we group the products of
(10) as

ACBBDDCBAF ⊕⊕=)(),,,(1 ,

then the quantum gate network with SWAP gate will be as
shown in Figure 7(b), which needs 8 SWAP gates. Therefore,
this sort of product grouping will reduce the number of
SWAP gates in the quantum gate network. In the case of such
product grouping, the swapped variables are swapped back to
original order after implementing all the products of the
group and thus the number of SWAP gates is reduced. The
rule for such product grouping is stated below.

Rule 4 (Product grouping): If a smaller product of an
FPRM expression has x number of literals and these x literals
are exactly similar to the first x literals of another larger
product, then these two products are grouped together. If
more than two products satisfy the criteria, then they all are
grouped together.

B
A

C

0

D

B
A

C

1F

D

)(a

B
A

C

0

D

B
A

C

1F

D

)(b

Figure 7. (a) Quantum gate network with SWAP gates for
BACBDDCBAF ⊕⊕=),,,(1 and (b) quantum gate

network with SWAP gates for
ACBBDDCBAF ⊕⊕=)(),,,(1 .

Using rule 4, we can rewrite the FPRM expression of (9)

as

1)(),,(201121021 ⊕⊕⊕⊕= xxxxxxxxxf (11)

The quantum gate network for (11) with SWAP gates is
shown in Figure 8, which needs 4 SWAP gates. The quantum
gate network of Figure 8 can be described as

f = NOT(2) NOT(1) C2NOT(2, 1, 0) CNOT(1, 0) SWAP(3,
2) C2NOT(2, 1, 0) SWAP(3, 2) SWAP(2, 1) CNOT(1, 0)
SWAP(2, 1) NOT(1) NOT(2)

In this example, the numbers of SWAP gates of Figures 6 and
8 are same. But the motivation discussed above shows that in
many situation the product grouping technique will reduce
the number of SWAP gates.

Engineering Letters, 16:1, EL_16_1_01
__

(Advance online publication: 19 February 2008)

2x

1x

0x

1

2x

1x

0x

f
Figure 8. Quantum gate network with SWAP gates for the

FPRM expression
1)(),,(201121021 ⊕⊕⊕⊕= xxxxxxxxxf with product

grouping.

VII. EXPERIMENTAL RESULTS
We have calculated the numbers of NOT gates, C2NOT

gates, CNOT gates, SWAP gates, and quantum realization
costs for the FPRM expressions of (1) to (8) and these values
are compared with those from [4] in Table 2. We have also
shown the percentage decrease of quantum realization costs
in our approach. Table 2 shows that in one case (polarity 0)
the cost of our approach is exactly the same as that of [4]. For
the other seven cases the cost of our approach is 1.25% to
26.96% lesser than that of [4], which shows that the proposed
approach significantly reduces the quantum realization cost.

Table 2. Comparison of quantum gate counts and quantum realization costs for FPRM expression of (1) to (8)

 For the case of [4] For our case
Polarity of

FPRM
expression

Number
of

C2NOT
gates

Number
of

CNOT
gates

Number
of

SWAP
gates

Number
of NOT

gates

Quantum
realization

cost

Number
of

C2NOT
gates

Number
of

CNOT
gates

Number
of

SWAP
gates

Number
of NOT

gates

Quantum
realization

cost

% decrease
of quantum
realization

cost
Polarity 0 2 1 4 0 75 2 1 4 0 75 0.00
Polarity 1 2 2 6 3 93 2 2 4 2 82 11.83
Polarity 2 2 1 8 2 97 2 1 4 2 77 20.62
Polarity 3 2 2 10 4* 114** 2 2 4 4 84 26.32
Polarity 4 2 2 6 2 92 2 2 4 2 82 10.87
Polarity 5 2 1 4 5 80 2 1 4 4 79 1.25
Polarity 6 2 2 10 5 115 2 2 4 4 84 26.96
Polarity 7 2 1 8 6 101 2 1 4 6 81 19.80
* This count is reported as 6 in [4], which should be 4.
** This value is reported as 116 in [4], which should be 114.

VIII. CONCLUSION
In [4], a nearest neighbour template based synthesis of

quantum Boolean circuit is proposed using NOT, CNOT,
C2NOT, and SWAP gates. The necessity of using SWAP
gates is due to the requirement of the physical quantum gates
that its input qubits should be adjacent. In this paper, we have
introduced variable ordering and product grouping
techniques to bring the input lines of a quantum gate more
close so that the number of SWAP gates required is less than
that of [4]. We also proposed ancillary constant selection rule
to reduce one NOT gate than the approach of [4].
Experimental results show that our approach significantly
reduces the realization cost of the quantum circuit.

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2002.
[2] A. Younes and J. Miller, “Representation of Boolean quantum circuits

as Reed-Muller expressions,” arxiv:quant-ph/0304134, May 2003.
[3] I. A. Grigorenko and D. V. Khveshchenko, “Single-step

implementation of universal quantum gates,” Physical Review Letters,
95, 110501, 2005.

[4] A. Chakrabatri and S. Sur-Kolay, “Nearest neighbour based synthesis
of quantum Boolean circuits,” Engineering Letters, vol. 15, no. 2,
2007.

[5] T. Sasao (ed), Logic Synthesis and Optimization, Kluwer Academic
Publishers, 1993, Ch. 13.

[6] M. H. A. Khan and M. S. Alam, “Mapping of on-set fixed polarity
Reed-Muller coefficients from on-set canonical sum of products
coefficients and the minimization of pseudo Reed-Muller expressions,”
International Journal of Electronics, vol. 86, no. 3, 1999, pp. 255-268.

[7] M. H. A. Khan and M. S. Alam, “Mapping of fixed polarity
Reed-Muller coefficients from minterms and the minimization of fixed

polarity Reed-Muller expressions,” International Journal of
Electronics, vol. 83, no. 2, 1997, pp. 235-247.

[8] M. H. A. Khan and M. S. Alam, “Algorithms for conversion of
minterms to positive polarity Reed-Muller coefficients and vice versa,”
Information Processing Letters, vol. 62, 1997, pp. 223-230.

[9] J. Kim, J-S. Lee, and S. Lee, “Implementation of the refined
Deutsch-Jozsa algorithm on a three-bit NMR quantum computer,”
Physical Review A, vol. 62, 022312, 2000.

[10] J. Kim, J-S. Lee, and S. Lee, “Implementing unitary operators in
quantum computation,” Physical Review A, vol. 62, 032312, 2000.

Engineering Letters, 16:1, EL_16_1_01
__

(Advance online publication: 19 February 2008)

