
 
 

 

  
Abstract—dynamic analysis of structures for earthquake 

induced loads is very expensive in terms of the computational 
burden. In this study, to reduce the computational effort a new 
neural system which is called parallel wavelet back propagation 
(PWBP) neural networks has been introduced. Training of PWBP 
is implemented in two phases. In the first phase, the input space is 
classified by using competitive neural networks. In the second 
phase, one distinct WBP neural network is trained for each class. 
Comparison the numerical results obtained by PWBP with the 
corresponding ones obtained by the single WBP neural network 
reveals the better performance generality of PWBP.  
 

Index Terms—back propagation, wavelet, competitive, 
earthquake, neural network.  
 

I. INTRODUCTION 
In the recent years, neural networks are considered as more 

appropriate techniques for solving the complex and time 
consuming problems. They are broadly utilized in civil and 
structural engineering applications. Determining the dynamic 
time history responses of structures for the earthquakes 
loadings is one of the time consuming problems with a huge 
computational burden. In the present study, neural networks are 
employed to predict the time history responses of structures. 
Some neural networks such as radial basis function (RBF), 
generalized regression (GR), counter propagation (CP), back 
propagation (BP) and wavelet back propagation (WBP) neural 
networks are used in civil and structural engineering 
applications [1-3]. As shown in Refs. [2-3] the performance 
generality of WBP for approximating the structural time history 
responses is better than that of the RBF, GR, CP and BP neural 
networks. Therefore, in this study we have focused on WBP 
neural networks and its improvements. The most important 
phase in the neural networks training is data generation. As 
emphasized in the relevant professional literatures such as Ref. 
[4] there is no explicit method to select the training samples and 
therefore this job is usually accomplished on the random basis. 
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Therefore, in the large scale problems selection of proper 
training data may require significant computer effort. Also, in 
the case of such problems, to train a robust neural network, 
many training samples must be selected. In the present paper, 
we introduce a new neural system for eliminating the main 
difficulties occurred in training mode of WBP neural networks. 
The new system is designed in two main phases. In the first 
phase, the input space is classified based on one criterion using 
a competitive neural network. In the second phase, one distinct 
WBP neural network is trained for each class using data 
located. In this manner, a set of parallel WBP neural networks 
are substituted with a single WBP neural network. The neural 
system is called parallel wavelet back propagation (PWBP) 
neural networks. The numerical results indicate that the 
performance generality of PWBP is better than that of the 
single WBP neural network. 
 

II. BACK PROPAGATION NEURAL NETWORKS 
Back Propagation was created by generalizing the 

Widrow-Hoff learning rule to multiple layer neural networks 
and nonlinear differentiable transfer functions. Input vectors 
and the corresponding target vectors are used to train a network 
until it can approximate a function, associate input vectors with 
specific output vectors. Neural networks with a sigmoid layer 
and a linear output layer are capable of approximating any 
function with a finite number of discontinuities. Standard back 
propagation is a gradient descent algorithm, as is the 
Widrow-Hoff learning rule, in which the neural network 
weights are moved along the negative of the gradient of the 
performance function. The term back propagation refers to the 
manner in which the gradient is computed for nonlinear 
multilayer neural networks. There are a number of variations on 
the basic algorithm that are based on other standard 
optimization techniques, such as conjugate gradient and 
Newton methods.  In this study we have employed scaled 
conjugate gradient (SCG) algorithm that was developed by 
Moller [5]. 

  

III. FUNDAMENTALS OF WAVELET THEORY 
Wavelet theory is the outcome of multi-disciplinary 

endeavours that brought together mathematicians, physicists 
and engineers. This relationship creates a flow of ideas that 
goes well beyond the construction of new bases or transforms. 
The term of wavelet means a little wave. A function 
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)R(Lh 2∈  (the set of all square integrable or a finite energy 
function) is called a wavelet if it has zero average on ),( +∞−∞  
[6]: 
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This little wave must have at least a minimum oscillation and 

a fast decay to zero in both the positive and negative directions 
of its amplitude. These three properties are the 
Grossmann-Morlet admissibility conditions of a function that is 
required for the wavelet transform. The wavelet transform is an 
operation which transforms a function by integrating it with 
modified versions of some kernel functions. The kernel 
function is called the mother wavelet and the modified version 
is its daughter wavelet. A function )R(Lh 2∈ is admissible if: 
 

∫
+∞

∞−

=ω
ω
ω

= 0d
)(H

c
2

h
 (2) 

 
where H(ω) is the Fourier transform of h(t). The constant hc  is 
the admissibility constant of the function h(t). For a given h(t), 
the condition hc < ∞ holds only if 0)0(H = .  

The wavelet transform of a function )R(Lh 2∈  with respect 
to a given admissible mother wavelet h(t) is defined as: 
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where * denotes the complex conjugate. However, most 
wavelets are real valued. 

Sets of wavelets are employed for approximation of a signal 
and the goal is to find a set of daughter wavelets constructed by 
dilated and translated original wavelets or mother wavelets that 
best represent the signal. The daughter wavelets are generated 
from a single mother wavelet )t(h by dilation and translation 
[7]: 
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Where a > 0 is the dilation factor, b is the translation factor. 
 

IV. WAVELET NEURAL NETWORKS 
Wavelet neural networks (WNN) employing wavelets as the 

activation functions recently have been researched as an 
alternative approach to the neural networks with sigmoidal 
activation functions. The combination of wavelet theory and 
neural networks has lead to the development of WNNs. WNNs 
are feed forward neural networks using wavelets as activation 
function. In WNNs, both the position and the dilation of the 
wavelets are optimized besides the weights. Wavenet is another 
term to describe WNN. Originally, wavenets did refer to neural 

networks using wavelets. In wavenets, the position and dilation 
of the wavelets are fixed and the weights are optimized [6]. 
 

V. WAVELET BACK PROPAGATION NEURAL NETWORKS 
BP network is now the most popular mapping neural 

network. But it has few problems such as trapping into local 
minima and slow convergence. Wavelets are powerful signal 
analysis tools. They can approximately realize the 
time-frequency analysis using a mother wavelet. The mother 
wavelet has a square window in the time-frequency space. The 
size of the window can be freely variable by two parameters. 
Thus, wavelets can identify the localization of unknown signals 
at any level. Activation function of hidden layer neurons in BP 
neural network is a sigmoidal function shown in Fig.1a. To 
design wavelet back propagation (WBP) neural network we 
substitute hidden layer sigmoidal activation function of BP 
with POLYWOG1 wavelet [7]: 

 
)2/texp()t()1exp()t(h 2

1POLYWOG −=  (5) 
 

Plot of POLYWOG1 with a=1 and b=0, is shown in Fig.1.b. In 
the resulted WBP neural network, the position and dilation of 
the wavelets as activation function of hidden layer neurons are 
fixed and the weights of network are optimized using the SCG 
algorithm. In this study, we obtain good results considering b = 
0 and a = 2.5. The activation function of the hidden layer 
neurons is as (6).  
 

)2/)5.2/t(exp()5.2/t()1exp()t(h 2
1POLYWOG −=  (6) 

 
Therefore, WBP is a modified back propagation neural 

network with POLYWOG1 hidden layer neurons activation 
function. And adjusting the weights of the neural network is 
performed using SCG algorithm. Typical topology of WBP is 
shown in Fig.2. 
 

VI. COMPETITIVE NEURAL NETWORKS 
Some applications need to group data that may, or may not 

be, clearly definable. Competitive neural networks can learn to  
 

 
 

Fig.1:a) Sigmoidal function, b) POLYWOG1 wavelet 
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Fig.2: Typical topology of WBP 

 
detect regularities and correlations in their input and adapt their 
future responses to that input accordingly. The neurons of 
competitive networks learn to recognize groups of similar input 
vectors. A competitive network automatically learns to classify 
input vectors. However, the obtained classes by the competitive 
network depend only on the distance between input vectors. If 
two input vectors are very similar, the competitive network 
probably will put them in the same class. There is no 
mechanism in a strictly competitive network design to say 
whether or not any two input vectors are in the same class or 
different classes. A competitive network simply tries to identify 
groups as best as they can. Training of competitive network is 
based on Kohonen [10] self-organization algorithm. A key 
difference between this network and many other networks is 
that the competitive network learns without supervision. 
During training the weights of the winning neuron are updated 
according to: 
 

)]k(w)k(x[)k(w)1k(w ijjijij −α+=+  (7) 

 
where wij is the weight of competitive layer from input i to 
neuron j, xj is jth component of the input vector, α is learning 
rate and k is discrete time. 
 

VII. PARALLEL WAVELET BACK PROPAGATION NEURAL 
NETWORKS 

As mentioned previously, in the case of large problems to 
train a neural network with acceptable performance generality, 
it is quite necessary that an adequate number of training data to 
be selected. Therefore, too much computer effort is required in 
the training phase. To attain appropriate generalization 
spending low effort we propose the PWBP neural networks. 

At first, the selected input-target training pairs are classified 
in some classes based on a specific criterion. In other words, the 
input and target spaces are divided into some subspaces as the 
data located in each subspace have similar properties. Now we 
can train a small WBP neural network for each subspace using 
its assigned training data. Considering the mentioned simple 

strategy a single WBP neural network which is trained for all 
over the input space is substituted with a set of parallel WBP 
neural networks as each of them is trained for one segment of 
the classified input space. 

In PWBP, each WBP neural network has specific dilation 
factor which may differ from that of the other WBP neural 
networks. Therefore performance generality of PWBP neural 
networks is higher than that of the single WBP neural network. 

Improving generalization process of PWBP is performed 
very rationally and economically in comparison with that of the 
single WBP neural network. In other words, improving 
generalization process and retraining of some small parallel 
WBP neural networks have low effort with respect to those of 
the single WBP neural network. Furthermore, it is very 
probable that some of the parallel WBP neural networks of 
PWBP require no improving generalization. 

Selection a proper criterion for classification of the input 
space depends on the nature of the problem and its variables 
thus recognition of the effective arguments to select an efficient 
criterion has very significant influence on the generality of 
PWBP. Determination the number of the classes depends on the 
complicacy and size of the input space and there are no special 
criteria for this mean. 

VIII. ERROR ESTIMATION 
In the present study to evaluate the error between exact and 

approximate results, the root mean squared error (RMSE) is 
calculated.  
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where, xi and x i are the ith component of the exact and 
approximated vectors, respectively. n is the vectors dimension. 

To measure how successful fitting is achieved between exact 
and approximate responses, the Rsquare statistic measurement 
is employed. A value closer to 1 indicates a better fit.  
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where, x  is the mean of exact vectors component. 

 

IX. NUMERICAL RESULTS 
 

A. Example 1 
A three stories steel frame structure is shown in Fig.3. Rigid 

diaphragms are assigned to the roof of each story. Cross 
sections of columns and beams are selected from the wide 
flange sections available in European profile list. Spans in x 
and y directions are 4 m. Height of each storey is 3 m. 
Distributed load of 700 kg/m2 are considered on the 

Engineering Letters, 16:1, EL_16_1_03
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



 
 

 

diaphragms. In order to practical demands and simplify the 
time history analysis, cross-sections of the columns are selected 
from the profiles listed in Table 1. Also, a profile of IPE 300 is 
assigned to the all beams.  

 

 
Fig. 3: Steel Frame 

 

 
Fig. 4: The Naghan earthquake records (Iran 1977) 

 
Due to practical demands unique cross-sectional properties 

is considered for all columns in each story. 
 

Table 1: Available properties 
No Columns 
1 
2 
3 
4 
5 
6 
7 

HE 160-M 
HE 200-M 
HE 240-M 
HE 280-M 
HE 320-M 
HE 360-M 
HE 450-M 

 

B. Data generation 
In this problem input space consists of three natural periods 

of the structures and corresponding time history responses of 
the third story in x direction with respect to the Naghan 
earthquake are considered as target space. A total number of 46 
structures are randomly generated, based on cross-sectional 
properties, and are analyzed for the earthquake induced loads. 

From which 31 samples are used for training and 15 samples 
are employed to test the performance generality of the neural 
networks. In this study to design the neural networks 
MATLAB [8] is employed and dynamic analysis of the 
structures is performed using SAP2000 [9]. 

C. Training the single WBP neural network 
A single WBP neural network is trained using the mentioned 

training set. In this network 14 WBP neurons and 250 linear 
neurons are assigned to the hidden and output layers, 
respectively. As shown in Table 2 the performance generality 
of the neural network is not very good. To attain appropriate 
performance generality PWBP is employed. 

D. Training PWBP neural networks 
As mentioned in section V., we need a criterion to classify 

the input space. Here, we employ natural periods of the 
structure as the classification criterion. It is obvious that the 
structures with similar natural periods yield the same patterns 
for dynamic structural responses. To classify the input space a 
competitive neural network is trained. In this problem we 
obtain the best results by choosing three classes. After 
classification, a distinct WBP neural network can be trained for 
each class. The results of testing the WBP and PWBP neural 
networks are summarized in Table 2. 
 

Table 2: Rsquare and rmse of the Single WBP and PWBP 
neural networks 

Single WBP PWBP Test Rsquare rmse Rsquare rmse Class 
1 0.990 0.197 0.982 0.273 2 
2 0.726 0.976 0.988 0.210 2 
3 0.957 0.366 0.967 0.320 2 
4 0.937 0.398 0.985 0.198 2 
5 0.934 0.438 0.985 0.215 2 
6 0.854 0.711 0.997 0.096 2 
7 0.956 0.458 0.992 0.195 3 
8 0.993 0.176 0.993 0.180 1 
9 0.934 0.535 0.995 0.103 1 

10 0.994 0.118 0.999 0.059 1 
11 0.949 0.490 0.984 0.280 1 
12 0.807 0.724 0.970 0.365 1 
13 0.992 0.194 0.988 0.241 3 
14 0.981 0.297 0.992 0.198 3 
15 0.982 0.279 0.999 0.067 3 

Average 0.932 0.424 0.988 0.200 - 
 
The displayed results in the above table indicate that the 

performance generality of PWBP neural networks is better than 
that of the single WBP network. Rsquare and rmse of the 
parallel WBP neural networks are shown in Tables 3 and 4, 
respectively. The parallel WBP neural networks of class 1, 2, 
and 3 are trained with 3, 3, and 2 hidden layer neurons, 
respectively.  

To improve the performance generality of the single WBP 
neural network, the number of training data should be 
frequently increased until the acceptable accuracy is obtained. 

Table 3: Rsquare of PWBP neural networks  
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Class Metric 1 2 3 
0.993 0.945 0.992 
0.995 0.991 0.988 
0.999 0.972 0.992 
0.984 0.985 0.999 
0.970 0.985 - 

Rsquare 

- 0.997 - 
Average 0.988 0.980 0.993 

 
Table 4: Rsquare of PWBP neural networks 

Class Metric 1 2 3 
0.180 0.273 0.194 
0.103 0.210 0.241 
0.059 0.320 0.198 
0.280 0.198 0.067 
0.365 0.215 - 

rmse 

- 0.096 - 
Average 0.197 0.219 0.175 

 

E. Example 2 
A ten bar steel truss is shown in Fig. 5. Cross-sectional areas 

of the members are selected from the pipe sections available in 
European profile list. The truss was subjected to the El Centro 
earthquake records (S-E 1940), displayed in Fig. 6, which is 
effectively used in x direction. Span in x direction and height of 
the truss is 3 m and 6 m, respectively. The mass of 5000 kg is 
lumped at each free node. 

In order to simplify the time history analysis, 8 types of 
cross-sectional areas are considered for the truss elements 
which are displayed in Table 5.  

Because of zero internal stresses of elements 5 and 6 under 
the earthquake loading, a minimum cross sectional area of 
0.515 cm2 was assigned to them. Due to simplicity and 
practical demands, the truss members are divided into 6 
groups based on cross-sectional areas, shown in Table 6.  

 

 
 

Fig. 5: 10-bar steel truss 

 
Fig. 6: The El Centro (S-E 1940) records 

 
Table 5: Available pipe profiles 

No. Area (cm2) 

1 
2 
3 
4 
5 
6 
7 
8 

12.5 
13.7 
17.2 
25.1 
27.2 
31.1 
50.0 
52.7 

 
 

Table 6: Element groups of the 10-bar truss  
Group 1 2 3 4 5 6 

Members 1 2 3 4 7 
8 

9 
10 

 

F. Data generation 
In this problem the input space consists of four higher natural 

periods of the structures and corresponding time history 
responses of node 6 in x direction against the El Centro 
earthquake are considered as target space. At first a total 
number of 240 structures are randomly generated based on 
cross-sectional areas, from which 200 samples are used for 
training and 40 ones are employed to test the neural networks 
performance generality.  

G. Training the single WBP neural network 
To train the single WBP neural network 40 WBP neurons 

and 2688 linear neurons are assigned to hidden and output 
layers, respectively.  

H. Training PWBP neural network 
In this problem we obtain the best results with five classes. 

The number of training data located in class 1 to 5 is 30, 41, 37, 
40 and 52, respectively. In this example the parallel WBP 
neural networks have 4, 5, 4, 5 and 5 WBP neurons. The test 
results of the single WBP and PWBP neural networks are 
summarized in Table 7. The results indicate that the 
performance generality of PWBP is better than that of the 
single WBP. Rsquare and rmse of the parallel WBP neural 
networks are shown in Tables 8 and 9, respectively. 
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Table 7: Table 2: Rsquare and rmse of the Single WBP and 
PWBP neural networks 

Single WBP PWBP Test Rsquare rmse Rsquare rmse Class 
1 0.872 0.220 0.988 0.066 1 
2 0.839 0.200 0.994 0.036 1 
3 0.646 0.255 0.989 0.043 1 
4 0.918 0.164 0.992 0.049 1 
5 0.872 0.190 0.995 0.036 1 
6 0.946 0.106 0.992 0.039 1 
7 0.643 0.685 0.873 0.158 1 
8 0.753 0.225 0.990 0.045 1 
9 0.924 0.271 0.995 0.067 2 

10 0.959 0.178 0.995 0.060 2 
11 0.899 0.331 0.992 0.088 2 
12 0.918 0.250 0.964 0.165 2 
13 0.933 0.256 0.995 0.064 2 
14 0.709 0.460 0.925 0.233 2 
15 0.941 0.247 0.996 0.059 2 
16 0.628 0.544 0.767 0.429 2 
17 0.969 0.235 0.995 0.090 3 
18 0.919 0.357 0.901 0.395 3 
19 0.394 1.126 0.978 0.214 3 
20 0.983 0.144 0.991 0.102 3 
21 0.986 0.160 0.998 0.054 3 
22 0.939 0.300 0.998 0.047 3 
23 0.982 0.179 0.996 0.085 3 
24 0.946 0.304 0.996 0.082 3 
25 0.946 0.278 0.995 0.084 4 
26 0.970 0.231 0.997 0.060 4 
27 0.967 0.213 0.998 0.041 4 
28 0.934 0.339 0.996 0.075 4 
29 0.960 0.238 0.997 0.054 4 
30 0.946 0.268 0.999 0.030 4 
31 0.960 0.235 0.993 0.098 4 
32 0.957 0.220 0.995 0.071 4 
33 0.698 0.519 0.966 0.174 5 
34 0.959 0.139 0.989 0.072 5 
35 0.764 0.489 0.930 0.268 5 
36 0.882 0.249 0.975 0.113 5 
37 0.742 0.462 0.985 0.108 5 
38 0.933 0.251 0.989 0.101 5 
39 0.943 0.201 0.967 0.151 5 
40 0.902 0.309 0.992 0.087 5 

Average 0.875 0.300 0.976 0.108 - 
 

Table 8: Rsquare of PWBP neural networks  
Class  Metric 1 2 3 4 5 

0.0659 0.0677 0.0899 0.0841 0.1737 
0.0361 0.0596 0.3954 0.0605 0.0719 
0.0432 0.0880 0.2137 0.0412 0.2638 
0.0492 0.1654 0.1023 0.0748 0.1133 
0.0364 0.0640 0.0542 0.0543 0.1082 
0.0394 0.2334 0.0467 0.0304 0.1006 
0.1581 0.0588 0.0849 0.0975 0.1511 

Rsquare 

0.0449 0.4290 0.0819 0.0711 0.0872 
Average 0.0592 0.1457 0.1336 0.0642 0.1337 

Table 9: rmse of PWBP neural networks  

Class Metric 1 2 3 4 5 
0.9886 0.9953 0.9954 0.9950 0.9662 
0.9947 0.9950 0.9013 0.9979 0.9891 
0.9898 0.9928 0.9782 0.9988 0.9307 
0.9926 0.9641 0.9915 0.9967 0.9756 
0.9953 0.9958 0.9984 0.9979 0.9859 
0.9925 0.9253 0.9985 0.9993 0.9892 
0.8732 0.9966 0.9960 0.9932 0.9678 

rmse 

0.9901 0.7679 0.9961 0.9956 0.9922 
Average 0.9771 0.9541 0.9819 0.9968 0.9746 

 

X. CONCLUSION 
An efficient method is introduced to predicting the time 

history responses of structures combining competitive and 
wavelet back propagation neural networks. The resulted neural 
system is called parallel wavelet back propagation (PWBP) 
neural networks. Two numerical examples are considered to 
demonstrate the computational advantages of the PWBP with 
respect to the single WBP neural networks. The numerical 
results reveal that PWBP neural networks can be effectively 
employed to predict the time history responses of structures for 
earthquake loading. 
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